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Abstract

Artificial Intelligence (AI) and Machine Learning (ML) are transforming the
cybersecurity landscape. These technologies have shown significant promise in
enhancing cyberdefense capabilities. For instance, intrusion detection system (IDS) and
spam filters utilize machine learning algorithms to continuously monitor networks for
abnormal behavior. However, there is increasing trend that cyberattackers are also
adopting AI tools to enhance their offensive strategies. When both attackers and
defenders leverage Al technologies, the balance of power may shift toward the side that
can more effectively exploit Al capabilities. In this research, we study the importance of
mastering AI dominance in cybersecurity contest between attackers and defenders within
a dynamic game framework. Using ransomware attacks as a case study, we explore how
the evolution of AI impacts the outcomes and payoffs of cyberattacks. Organizations
facing cyberattack threats can utilize similar models to simulate strategic defenses and
assess various levels of Al integration needed for effective cybersecurity.

Keywords: Artificial intelligence (AI), machine learning (ML), cybersecurity,
adversarial/offensive Al, dynamic game theory, ransomware

Introduction

Artificial Intelligence (AI) includes machine learning (ML), deep learning (DL), natural language processing
(NLP), and other computational techniques aimed at simulating human intelligence. It has been widely
adopted across various industries and sectors (Rashid and Kausik, 2024; Weng, et al., 2024). As cyber
threats grow in complexity and scale, advanced technologies like Al are essential to enhance the detection,
prevention, and response to security incidents (Salem et al., 2024). In recent years, we have entered a new
era where Al is increasingly used to assist in automating and solving many tasks for cyber defenders.
Generative Al technologies like ChatGPT, Gemini, and GitHub Copilot demonstrate how AI can reduce the
cognitive load and stress associated with day-to-day cybersecurity operations.

Traditionally, AI has been adopted only at the defenders’ side, such as behavioral-based intrusion
detection/prevention systems (IDS/IPS) using machine learning models for anomaly detections (Dong and
Kotenko, 2025). As Al continues to evolve, it will enable more tailored cybersecurity solutions, helping
defenders make more accurate and informed decisions. However, despite this potential, defenders must
remain cautious of the possibility that attackers will also leverage AI to their advantage. Adversarial
machine learning (AML), for example, has been proved effective in defeating AI/ML models used by the
defenders such as spam generations (Gregory and Liao, 2023). Adversaries are increasingly turning to Al
to automate their tasks, helping manage infrastructure, accelerate phishing lure creation, impersonate
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employees via deepfakes, and leverage open-source information and tools to develop highly tailored
operational plans for threats like ransomware (Iturbe et al., 2024). Al can assist attackers in various types
of cyberattack, both from a technological and a human perspective. Researchers have demonstrated that it
is feasible to use generative Al to automate penetration testing via large language models (LLMs) (Gregory
and Liao, 2024). By lowering the barrier to entry, Al broadens the pool of potential attackers and enhances
the effectiveness of attacks by automating and scaling the attack process.

When both defenders and attackers adopt AI technologies to enhance their actions, which side will AI
ultimately favor? How can we ensure that Al serves as an accelerator for cybersecurity rather than a
hindrance? These are imperative research questions that warrant investigation. To that end, we formulate
a novel dynamic game theoretical framework to model the interactions between cyberdefenders and
cyberattackers, both empowered by Al systems. When the attack is Al-driven, targets deploy also AI-driven
defenses to counter it. In game theory, a dynamic game models situations where players make decisions
over time, with the order and timing of moves influencing the outcome. It captures strategic interactions
where players can observe previous actions and adjust their strategies accordingly.

The AI cybersecurity dynamic game includes three key adaptations, i.e., recording of past attack success
rate; adjustment of ransom requests; and Al evolution over time. The AI evolution on both the defensive
and offensive sides is of special interest. We conduct extensive simulations of Al-powered cyberattacks
within such dynamic game framework, using ransomware attacks as a case study. The dynamic game setting
means that both the attacker and the targets continuously adjust their strategies. Each round of the game
represents a full cycle of attack and defense. As the game progresses, Al on both sides evolves, making the
game dynamic and non-static. In both the model and simulation, AI plays a critical role in amplifying the
effectiveness of both the attack and defense.

The main contributions of this research are modeling a dual-Al adoption adversarial environment in
cybersecurity and the simulation of how Al evolution can impact cybersecurity outcomes and payoffs. Our
methodology involves constructing a multistage dynamic game of Al-powered ransomware attacks and
defenses. We model the key stages of the ransomware lifecycle and simulate the impacts of relative Al
evolution on the AT levels of the game players, the attack success rates, and the attack payoffs. The dual-Al
adoption environment reflects a mutually reinforcing, co-evolving Al training dynamics between attackers
and defenders.

We find that in the scenario specified by the game-theoretical setting, i.e., a game-theoretical scenario
where a single attacker (or a group treated as a unified entity) launches attacks on multiple targets, when
chance does not favor any player and Al evolution follows uniform rules, the attacker tends to benefit more
from AI than the defenders. The repeated game with non-predefined rounds seems to be infinite as the
attacker’s wealth keeps accumulating, allowing the attacker to launch more attacks with the expanding
budget. In more cases, the attacker ends up with a higher AI development level than the targets, probably
due to the model presumption that the attacker learns from the past dealing with all potential targets while
each target learns from only personal experiences dealing with the attacker. The insight derived is that
although cyber-defenders may take a cutting edge in Al as a starter, Al can eventually benefit attackers
more as the vast target population enables more effective training and learning for offensive AI than
defensive Al In a mutual Al learning environment, no matter how advanced the defenders’ Al levels are,
attackers may maintain financial incentives to launch attacks. This study highlights the importance of
gaining an Al advantage in winning the cybersecurity game. Although cyberattacks such as ransomware
attacks naturally give attackers a financial advantage by demanding ransoms, the relative advancement of
Al by defending targets can slow down the attacker’s wealth accumulation. The future balance between
attackers and defenders will depend on who can innovate faster. Organizations facing cyberattack threats
can use similar game models to simulate strategic defenses and evaluate the various levels of Al integration
required for effective cybersecurity defense.

The rest of the paper is organized as follows. We first discuss related work. We then describe the dynamic
game, including game players, strategy spaces, the multiple stages in each round of the game, and the
evolution of the game. Simulation results are presented to demonstrate the impacts of Al on the profitability
and the effectiveness of cyberattacks and AI evolution on both the defensive and offensive sides. The final
section concludes the work and outlines directions for further research.

Forty-Sixth International Conference on Information Systems, Nashville, Tennessee, USA 2025
2



AI Cybersecurity Dynamic Game Study

Related Work

There has been extensive literature exploring the capabilities and potentials of AI/ML(DL) for
cyberdefense. Al-based intrusion detection systems (IDS) can detect abnormal behavior patterns and
identify potential threats more effectively than traditional signature-based methods (Dong and Kotenko,
2025; Sowmya and Anita, 2023). Al-based malware detection techniques show promising results in
identifying malware that is complicated and behaves in unpredictable ways (Akhtar and Feng, 2023;
Bensaoud et al., 2024). Al is efficient at identifying phishing/spam by quickly detecting patterns in large
volumes of data that is hard for humans to do manually (Dada et al., 2019; Xiang et al., 2011). Surveys and
reviews of various Al techniques and their applications in cybersecurity disclose the Al-effectiveness in
anomaly detection, threat identification, prevention against, and incident response to prevalent threats like
phishing, social engineering, ransomware, and malware (Ofusori et al., 2024; Okdem and Okdem, 2024).
Al-based technologies can outperform traditional approaches in organizational cybersecurity through the
entire security life cycle (Jada and Mayayise, 2024). Al has achieved much success in cybersecurity
solutions, and certain cybersecurity problems would only be overcome efficiently with AI (Das and
Sandhane, 2021). Explorations of opportunities for further advancing AI-based cybersecurity adoptions are
underway (Ferrag et al., 2025; Kaur et al., 2023).

While emerging as a powerful technology full of potentials for cybersecurity, AT has revealed also a complex
landscape of cybersecurity challenges. Defense-aware adversaries adapt their strategies and techniques to
circumvent Al defensive measures, posing a new set of cyberthreats (Imam and Vassilakis, 2019). The
phenomena of adversarial samples inspire much research on adversarial machines learning (AML) (Costa
et al., 2024; Long et al., 2022) and generative adversarial networks (GAN) (S and Durgadevi, 2021; Zhang
et al., 2023b). AML has been proved effective in defeating AI/ML models used by the defenders such as
spam generations (AlEroud and Karabatis, 2020; Gregory and Liao, 2023) and the manipulation of the
Command and Control (C&C) channel on social media platforms (Rigaki and Garcia, 2018). Recent
advances in AML demonstrate limitations and vulnerabilities of explainable AT methods (Baniecki and
Biecek, 2024). It is feasible to use generative Al to automate penetration testing via large language models
(LLMs) (Gregory and Liao, 2024; Iturbe et al., 2024). A survey reviews different types of attacks on Al
models and the data used to train them, emphasizing the importance of developing secure and robust Al
models to ensure security (Rahman et al., 2023).

In most recent years, there has been a growing trend that adversaries are increasingly turning to Al to
automate their tasks, tailoring operational plans for threats like ransomware (Iturbe et al., 2024). When
both adversaries and defenders use Al, it creates a dynamic and constantly evolving “arms race” where each
side attempts to outsmart the other, creating mutually reinforced evolutions of both offensive and defensive
Al The dual use of AI by the opposing parties fits naturally in a dynamic game setting. Game theory is
commonly used to study the complexities of cybersecurity (Dasgupta and Collins, 2019; Do et al., 2017;
Ogunbodede, 2023; Verma et al., 2024).

Lastly, some researches focus on ransomware attacks, from static models of ransomware pricing
(Hernandez-Castro et al., 2020), data-selling (Li and Liao, 2020), etc. to dynamic games of ransomware
negotiations (Caporusso et al., 2018; Ryan et al., 2022), ransomware attack and defense (Zhang et al.,
2023a; Zhao et al., 2021), etc. This paper builds a dynamic multistage game of ransomware including
choosing attack targets, launching attacks and monetizing ransom, similar to researches adopting
multistage game frameworks of ransomware (Ryan et al., 2022; Zhao et al., 2021). On top of that, both the
ransomware attacks and defenses are Al-powered. The multistage game is repeated in non-predefined
rounds, along which both the offensive and defensive AI is constantly evolving, determining the attack
success rates and the corresponding payoffs of ransomware attacks. To the best of our knowledge, this paper
is the first research conducting dynamic game theory and simulation studies of cybersecurity where both
cyberattack and cyberdefense are AI-powered.

A Dynamic Game of AI-powered Ransomware Attack and Defense

We use ransomware as a case study to examine the implications of the simultaneous adoption of AI by both
the attacker and the targets. To capture the dynamics and the interactions between the two parties, we
model an iterated game between one attacker and multiple targets. The attacker is a malicious actor (or a
group of malicious actors) operating within a budget (financial constraint), denoted as “B”. The targets are
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organizations that are targeted by the attacker for ransomware payments. All players in the game are
equipped with A, and their Al levels evolve as the game progresses.

Specifications of AI-powered Ransomware Attack and Defense

To bypass the targets’ security, the attacker must develop ransomware and continually update and improve
it to overcome the ever-evolving challenges of compromising the targets. This task is facilitated by Al.
Automation and scaling mechanisms make attacks more sophisticated and harder to defend against. AI not
only enhances the effectiveness of an attack but also fundamentally alters how attacks are executed by
enabling faster replication, better adaptation, and more strategic targeting. On the defense side, the targets
also leverage Al to strengthen their defenses. Defenders deploy Al-based intrusion detection systems to
identify abnormal behavior patterns. Plausible countermeasures and adaptations to the attacker’s AI-driven
tactics include the targets’ adjusting to evolving Al strategies and implementing countermeasures that can
scale as quickly as the attacks themselves. This could involve Al-driven traffic filtering, dynamic network
adjustments, or real-time patching of vulnerabilities.

We model AT’s role in cyberattacks and cyberdefenses within a dynamic game between one attacker and N
targets as follows:

e The attacker is initially equipped with AI technology to develop and improve ransomware;

e There is no additional Al training cost after the game starts, assuming the marginal cost of Al is
minimal and is therefore ignored in the model;

e The AT used by the attacker is modeled to increase the attack success rate;

The AI used by the targets is modeled to decrease the attack success rate;

e The AI levels of both the attacker and the targets evolve as the game progresses. The rate of
evolution decays over time, with the decay being partially offset by the relative improvement in the
Al level of the opposing party.

The game is assumed to be zero-sum, meaning the target’s loss is the attacker’s gain. We examine who
benefits more from AI by analyzing how the relative size of the parameters impacts the outcomes of the
game. The key parameters of interest are the Al levels of the attacker and the targets, as well as the
corresponding ransomware attack success rate. Additionally, we explore how the relative evolution of Al
affects the economic welfare of both the attacker and the targets by tracing the time path of the profitability
of ransomware as Al evolves.

Structure of the Game

The attacker and the targets enter the dynamic ransomware game equipped with AI technologies, meaning
the strategic actions of both parties are AI-powered. Specifically, the attacker makes an initial investment
in self-learning and evasive Al ransomware, while the targets invest in predictive AI and adaptive learning.

Each round of the game is a multistage interaction between the ransomware attacker and the targets,
focusing on the decision-making processes of both parties during a ransomware attack and ransom
payment. In this process, we identify five stages involved in a typical tth round of the game. Each round is a
Stackelberg game of leaders and followers, capturing the strategic advantage the attacker has by moving
first and the targets’ reactive strategy.

In a new round of the game, the attacker adapts their strategy by using information from prior rounds. Both
the attacker and the targets continuously update their AI capabilities in each round. The attacker starts the
tth round with an accumulated budget, “Bt”. The attacker must decide which targets to attack and what
ransom to request if a ransomware attack is successful. The attacker forms expectations about what will
happen in round t based on the events that occurred in all previous rounds.

Stage 1 — Choose Targets

With Al-powered attack techniques in place, the attacker selects targets to attack based on the following
rules:

e Choose targets based on expected profit, ranked from highest to lowest;
e Only select targets with expected profit; targets with expected loss are disregarded;
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e Ensure that total attack costs stay within the available budget.

The budget constraint and financial rules that govern the attacker’s selection of targets are as follows:

nz C,< B (1)

m, >0 (2)

and

where C,, is the cost of executing the attack, including Al training, infrastructure, evasion tactics, etc., n is
the index of the target, and n® € [0, N] represents the number of targets the attacker chooses to attack in the
tth round of the game. The attacker selects targets within the budget constraint by ranking them according
to expected profit, i.e., m; = 7w, ... = T, ... = Ty

The adaptive attacker uses past experiences of attack successes and ransom requests to estimate the profits
to be gained from individual targets as follows:

T[nzﬁXEXRn_Cn (3)

where ¥, is the cumulative attack success rate for the target in previous rounds of the game, and p,, is the
probability that the target paid ransom in the past. These two values are updated in each round. R, is the
ransom amount the attacker plans to demand from the target if the attack is successful. Hence by definition
Yn X Dy X R, measures the expected probabilistic ransom the attacker anticipates from target n. Given the
cost of attacking the target, measured by C,, ¥, X P, X R,, — C,, measures the profit the attack expects to
gain from the target. The rule for demanding ransom is outlines below in Stage 3.

When B! = 0, the attacker runs out of budget, and the game ends. Besides, the attacker will not launch
attacks on any targets with an expected loss, even if the budget permits, meaning that =,, > 0 for any target
that attacker may choose. In other words, the game also ends if the attacker runs out of all potentially
profitable targets.

Stage 2 — Launch Attacks

The attacker launches attacks by spreading ransomware via emails, websites, or exploiting vulnerabilities.
Once a target is infected, its data files are encrypted by the ransomware, and the target is then requested to
pay a ransom.

The attack success rate changes as the AI adapts and improves. In each round of the game, the likelihood
that a target is compromised depends on the relative Al development levels of both the attacker and the
target. A relatively high AI defense level indicates stronger defenses and more effective countermeasures,
while a relatively high AT attack level implies a more effective attack.

Without loss of generality, we assume that the probability of successfully infecting a target with ransomware
is positively proportional to the Al level of the attacker and inversely proportional to the Al level of the
target. This assumption is reasonable, as more advanced and intelligent offensive AI can learn and adapt to
defender strategies quicker, identify vulnerabilities more efficiently, prioritize high-value, low-risk targets,
and better evade detection. Conversely, more advanced and capable defensive Al can detect and respond to
threats more rapidly, proactively strengthen defenses, and learn more effectively from past attacks. To
illustrate how the attack success rate depends on the relative Al capabilities of the attacker and the target,
we use the following mathematical formula:

_Aat 4)
Yne=1-e Ant (
where y,,, € [0,1] represents the attack success rate on target n, which is the probability that the target is
successfully compromised by ransomware in round t. 4,, is the AI level of the attacker, and 4,,, is the AI
level of the target in the tth round of the game, with both A, > 0 and 4,,, > 0. The relative AI level of the

attacker and the target is the key determinant of the attack success rate: As % - 00, Yp, = 1; As % - o0,

n,t a,t

Yne = 0.
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If the attack fails (i.e., y,,, = 0), the attacker receives a zero payoff and only incurs the attack costs. The
game between the attacker and the nt target pauses until the next round. However, if the attack succeeds,
the game between the attacker and the target proceeds to Stage 3.

Stage 3 — Ransom Request

Upon a successful attack, the attacker requests a ransom of R,, from the nth target, which is now a victim.
The attacker’s optimal ransom strategy (R;;) is to set the ransom just below the victim’s data value:

Ry =V, —e¢ )

where 1}, is the data value of the victim, and ¢ is a small amount to ensure ransom payment. In other words,
the attacker aims to extract the maximum possible ransom without pushing the targets to refuse. It is a
reasonable and economically grounded assumption that the optimal ransom demand is slightly below the
victim’s willingness to pay (WTP), which is primarily influenced by the value they assign to their data. If the
attacker sets the ransom above the victim’s WTP, they risk getting nothing. Setting it just below maximizes
the chance of payment while extracting the highest possible value.

To request the optimal ransom, the attacker needs to know the value of the victim’s data. Without relevant
information, the attacker is unlikely to set the optimal ransom demand. In practice, due to information
asymmetry, the attacker may not know the victim’s exact WTP, but they may estimate it. In a dynamic game
environment, the attacker can estimate the data value through trial and error. The attacker adopts an
adaptive ransom strategy by implementing a learning mechanism, where the ransom is adjusted based on
past experiences of successful or failed ransom requests. The fundamental rule is the marginal adjustment
to ransom request: If the victim paid the most recent ransom demand, the attacker will raise the ransom by
a margin; if the victim rejected the most recent ransom demand, the attacker will lower the ransom by a
margin. In a repeated game, the marginal adjustments to the ransom request, in theory, will eventually
allow the attacker to approximate the data value of the target, assuming the data value remains constant
over time.

This assumption of incremental adjustment in ransom request is aligned with how some ransomware
operators operate in practice. From a theoretical perspective, this kind of approach can be framed as a
sequential decision-making problem or a dynamic pricing model based on observed behavior. From a
strategic point of view, incremental adjustment based on behavior allows the attacker to infer the victim’s
WTP, especially if no prior information is available. If the victim pays the ransom, the attacker may infer
the WTP is at least that amount, and possibly higher. If the victim doesn’t pay, they might infer the current
price exceeds WTP. Our simplified ransom adjustment strategy mirrors basic economic signaling and
adaptive pricing strategies.

Stage 4 — Ransom Decision of the Victim

The victim of the ransomware attack decides whether to pay the ransom. The victim’s decision variable is
Pn: () p, = 1, indicating the victim chooses to pay the ransom; and (ii) p, = 0, indicating the victim chooses
not to pay the ransom. The ransom payment rule is: The victim pays the ransom if the ransom demand does
not exceed their WTP; otherwise, the victim refuses to pay.

To maintain focus on core strategic dynamics, the model excludes bargaining strategies and post-demand
interactions, such as whether attackers return data, the completeness of recovery, or hidden exploitation of
encrypted data. These factors have negligible impact on the overall conclusions. For instance, failing to
return data after payment would damage attacker reputation, reduce future victim compliance, and
outweigh the minor cost savings from avoiding recovery. It is therefore reasonable to assume attackers
return data upon payment, allowing the data recovery stage to be omitted. Likewise, while bargaining could
reveal a victim’s willingness to pay, it primarily affects the ransom amount in a given instance and does not
alter the study’s central insights into the strategic implications of Al for attackers and defenders.

Stage 5 — Al Learning and Evolving

The Al levels of both the attacker and the targets evolve with the new data obtained in each round of the
game.
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Al evolution of the attacker. The rule for Al evolution of the attacker is as follows:

Agr = Age-1(1+1g) (A +74:5:1) (6)

where A, ;_, is the Al level of the attacker at the end of the previous round of the game, which is also the AI
level of the attacker at the beginning of the current round. r,, is a random factor that reflects the
randomness (and chance) in the effectiveness of Al learning and training, partially accounting for the
impact of the environment on the probability of launching a successful attack. A positive and high r
indicates good luck in Al training, while a negative and low r suggests that Al training is not progressing as
smoothly or as expected. s;_;is the cumulative attack success rate of the attacker in all previous rounds of
the game.

In particular, 1, is the Al learning rate of the attacker, which decreases over time to reflect diminishing
marginal return to Al training, similar to the learning rate decay technique commonly used in machine
learning models. As Al training progresses, the learning rate gradually decreases. In Al learning, the
learning rate determines how much the AI level changes based on past experiences. Mathematical
representations of learning rate decay include step decay schedules, exponential decay schedules,
polynomial decay schedules, and others. Without loss of generality, we use a modified inverse time decay
schedule, where the number of rounds of the game (“t”) is used to reduce the learning rate through inverse
decay.

In addition to time decay in Al training, the AI strength and effectiveness of an opponent can positively
impact the effective training of a party. To highlight the mutually reinforcing nature of Al training in a
dynamic cybersecurity game, we assume that the AI level or sophistication of the attacker can accelerate
the defender’s Al training, and vice versa. The idea that the attacker’s Al can speed up the defender’s
training is rooted in adversarial machine learning, where both sides continuously adapt to one another. A
more sophisticated Al attacker can introduce complex threats and new attack patterns, prompting the
defender’s Al to learn and mitigate these, thus accelerating its development. Similarly, an advanced Al
defender may generate more complex responses, offering high-quality data — such as detection patterns,
countermeasures, and behavioral shifts — for the attacker’s Al to learn from. In adversarial learning, a
strong opponent forces the other side to improve faster. The smarter the adversary, the more one can learn,
as long as one survives long enough to observe and adapt to the evolving dynamics. In mathematical
expression, we use the relative Al level of the game players as the coefficient of t. Since one can learn more
effectively from a stronger opponent, an increase in the relative Al level of the opposing party will slow
down the learning rate decay.

Based on the above, we use the following relative-Al-adjusted inverse time decay schedule to model the
attacker’s Al learning rate:
_ 1
Mot = A s (7)

1+ 57—t
Apt-q

where A“'t_l/ Ao is the AI level of the attacker relative to the nth target. The attacker’s Al learning
nt—

accelerates as its relative Al level decreases, which is equivalent to an increase in the relative Al level of the
target.

Al evolution of the targets. While the attacker updates their AI models, the targets update their AT models
as well to improve detection and response policies, as reflected by the following AI evolution rule:

Ape = Ane1 (L + 0 ) (L + 1 fe1) )

where 4,,,_ is the Al level of the nth target at the end of the previous round of the game, and f;_; =1 —s,_;
is the cumulative rate of attack failure of the attacker, which is equivalent to the defense success rate of the
target.

We use a relative-Al-adjusted inverse time decay schedule to model the Al learning rate for the target that

is similar to the schedule for the attacker where A444-1 / Ao in Equation (7) is replaced with Ant-1 / Aoy
n,t— a,t—
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To summarize, Al-powered cyberattacks adapt to evade detection, compelling defenders to continuously
retrain their AT models. As a result, both the attacker and the targets engage in Al training in each round of
the game. Between rounds, the attacker updates their AI models according to their Al evolution rule, while
the targets do the same based on their own evolution dynamics. In the subsequent round, the attacker ranks
potential targets by expected profit, selects targets, launches attacks, and adjusts ransom demands through
marginal updates informed by recent ransom outcomes. The targets, in turn, decide whether to comply with
ransom requests. Through this iterative process, both sides learn from each other, continually improve their
Al systems, and the game persists.

Factors Affecting AI Learning

As modeled, there are four factors that influence the progress of Al training for both the attacker and the
targets.

The duration of Al training;

Past records of attack outcomes;

Randomness or chance;

The relative Al level of the attacker and the targets.

Item 1 states that Al learning slows down as the game progresses. Like regular business investment, Al
training is subject to diminishing returns, meaning the Al level increases at a decreasing rate, which aligns
with the concept of learning rate decay in machine learning.

Item 2 reflects the adaptive nature of learning. Al learns from past experiences. A higher cumulative attack
success rate in previous rounds enhances Al learning for the attacker. Similarly, a higher cumulative attack
failure rate of the attacker (i.e., a higher cumulative defense success rate of the target) enhances Al learning
for the target.

Item 3 embodies the randomness or chance involved in AI training. In this context, “chance” refers to
uncertainty and randomness, factors beyond direct control or prediction, that can influence the
performance and effectiveness of Al training. The interactions between random initialization of parameters,
data quality, hyperparameter tuning, and the stochastic nature of optimization processes can lead to
unexpected outcomes, both positive and negative.

Item 4 captures the mutually-reinforced learning between the attacker and the targets. One side of the game
can learn more effectively when the opponent is stronger and more sophisticated. The attacker learns faster
as the relative Al level of the targets increases, and the targets learn faster as the relative Al level of the
attacker increases.

Evolving Financial Conditions of the Attacker

The financial conditions of the attacker change as the game progresses. In the tth round of the game, the
ransomware profit received by the attacker is:

N
m = Z(Rn —c) ©)
n=0

where R, — C, is the net revenue, or profit, received from a target. Specifically, R,, = 0 for targets (i) not
chosen as targets, (ii) on whom the attack fails, and (iii) who reject the ransom request. Additionally, C, =
0 for those not chosen as targets.

The attacker’s budget at the end of the tt (or the beginning of the (t+1)t%) round of the game is
B**t = Bt + II* (10)

The attacker’s budget may increase, decrease, or remain unchanged, depending on whether they earn
profits, incur losses, or break even in a given round of the game.
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Dynamic Game Outcomes

If the dynamic Stackelberg-type cybersecurity game is not AI-powered, the outcome is typically a Subgame
Perfect Nash Equilibrium (SPNE). The attacker moves first in the game by selecting targets and setting the
ransom, and the targets respond by deciding whether to pay the ransom. This sequential structure can be
analyzed using backward induction, leading to SPNE. The attacker anticipates the target’s best response
and optimally sets the ransom just below the target’s data value. The targets, in turn, rationally choose to
pay the ransom if it is no higher than the value of their data. If the attacker consistently sets the ransom
close to the target’s data value, and the target acts rationally, the game settles into a predictable pattern.

However, with Al-powered learning and adaptation, the game may never reach a dynamic equilibrium
where both players stabilize their strategies over time. In other words, the dynamic cybersecurity game
between the attacker and the targets may never stabilize, and both parties will continuously evolve. The AI-
powered game functions like an arms race between the attacker and the defenders, with the game’s outcome
depending on which party is more Al-efficient.

Without the random factors and mutual learning, expected game outcomes are as follows:

o If the attacker improves Al faster than the targets, attack success rates increase over time. Attacks
become more effective, widespread, and profitable, and AI benefits the attacker more;

e If the targets improve Al faster than the attacker, attack success rates decline over time.
Ransomware becomes unprofitable, and the attacker may eventually go bankrupt;

e If the Al arms race continuous without a decisive advantage, a cybersecurity equilibrium emerges
where attack and defense evolve at the same rate. Both the attacker and the targets will
continuously escalate tactics, and the AI arms race keeps cyber risks high for both parties.

Random factors and mutual learning introduce complexity into the game’s dynamics. The time path of the
game will not be unidirectional. The influence of the randomness is inherently unpredictable. The effects
of mutual-learning AI on both the attacker and the targets — as well as on their interactions — depend on
the efficiency, effectiveness, and reinforcement capabilities of each side’s Al systems, as governed by their
respective Al evolution rules. Since the game is zero-sum — meaning the victim’s ransom payment (a “loss”)
is the attacker’s revenue (a “gain”) — we can trace the dynamic changes in the attacker’s budget across game
rounds to assess the impact of Al on both the attacker and the targets.

Simulation Study

Based on the cybersecurity attack-and-defense scenario outlined in the dynamic game, we simulate a
dynamic Al-powered ransomware game between one attacker and nine targets. The definitions and
assigned values of the game parameters are provided in Table 1.

Parameter | Definition Value

N Number of targets 9

r Random factor in Al training | r € (—0.5,0.5)

A% Data value of the target 100 — 900 for Targets 1 to 9 with 100 incremental
C Attack cost 20% of the data value of an individual target

A Al level Initial AI level is 0.5 for all

n Attack success rate Initial attack success rate is 50%

R Ransom request Initial ransom is two times the attack cost

B Attacker’s budget Initial budget is 500

Table 1. Parameter Definitions and Assigned Values in the Simulation

The simulation runs for 100 rounds, i.e., T = 100. The attack success rate depends on the effectiveness of
the attacker’s Al versus the effectiveness of the targets’ Al. Our developed program simulates the dynamic
Stackelberg game between the attacker and multiple targets who take sequential actions. The data value of
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the targets ranges from 100 to 900 for Target 1 through Target 9, with an incremental increase of 100. The
attack cost for each target is set to 20% of the target’s data value. Both the data value and the attack cost are
held constant. The attacker selects targets and requests ransom, while the targets decide whether to pay the
ransom. The incremental adjustment to ransom request is 10%, i.e., ransom request is raised by 10% if the
most recent ransom is paid, or ransom request is lowered by 10% if the most recent ransom request is
declined. Both the attacker and the targets deploy Al in their attacks and defenses. We simulate their AI
effectiveness by considering both adaptiveness and randomness.

In this dynamic game simulation, the relationship between Round ¢ and Round t+1 captures how the
strategies of both the attacker and the targets evolve over time based on prior outcomes, such as
adjustments to ransom demands. In particular, the successes and failures of past attacks and defenses are
incorporated into the Al training processes on both sides.

Attack Profitability and Attacker Advantage

We track the attacker’s total money (“budget”) earned from all targets, as well as the money earned from
individual targets, and monitor the Al evolution for both the attacker and the targets to gain insights into
the role of Al in effective cyberattacks and cyberdefenses.

Figure 1 shows how the total money earned by the attacker changes over time. As shown, the attacker’s total
funds increase over time, albeit with fluctuations. This trend is unsurprising, given that ransomware attacks
can be highly profitable. Since the attacker targets only those victims with expected positive returns and
successfully collects ransoms from compromised systems, profits are likely to grow steadily — particularly
when neither side holds a clear AI advantage. The attacker’s improving financial position highlights an
inherent advantage in the offensive role, with substantial potential for financial gain.
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Figure 1. Attacker’s Total Money

However, an improved Al defense level of the target, relative to the Al level of the attacker, is expected to
reduce the profitability of ransomware attacks. More advanced defensive Al can slow the growth of attack
profits and may even cause them to decrease. To illustrate the impact of the relative Al evolution between
attackers and defenders on ransomware profitability, Figure 2 shows the per-target ransomware profit
earned from attacking targets with varying levels of AI development. Since targets have different data
values, and attacking a high-value target may yield a higher ransom in dollar terms, ransom profits are
scaled by the data value of each target for better comparison.
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Figure 2. Data-value-adjusted Attack Profit per
Victim

As shown, while ransomware profits generally increase across targets, several patterns emerge:

e Some targets demonstrate Al advantage over the attacker (Targets 3 and 4 in the simulation). When
attacking these targets, the attacker experiences a slight initial increase in attack profit, followed by
a decline in attack profit in later rounds of the simulation;

e Some targets start with initial AT advantage but are later overtaken by the attacker (Targets 2, 5,7
and 9 in the simulation). When attacking these targets, the attack profit stays about the same
initially, then picks up in later rounds of the simulation. There can be temporary fall in attack profit;

e The attacker dominates some targets in AI advantage throughout (Targets 6 and 8 in this
simulation). When attacking these targets, attack profit increases overall.

Evolution of AI Model Levels and Attack Profitability

Figures 3-5 show the evolution of the Al levels of the attacker and targets, each representing a different
pattern. The patterns of changes in attacker profit among targets are closely related to the relative Al
development of the attacker and the targets. Generally, the growth of attack profit slows down when the Al
level of the targets exceeds that of the attacker, and vice versa.

Figure 3 shows the evolution of the Al levels between the attacker and Target 3 representing for targets who
achieve an Al advantage over the attacker as the game progresses. In this case, targets have faster Al
evolution compared to the attacker in most rounds of the game, leading to a gradual increase in attack profit
(with the increase in attack profit being slower than in the Al-neutral scenario). As the relative Al advantage
of the targets strengthens in later rounds of the simulation, the attacker’s total money decreases. Overall,
the data-value-adjusted profit lines of the targets are relatively flat, as seen in Figure 2.

Figures 4 shows another representative phenomenon where Al is initially used by cybersecurity defender
(e.g., training an AI model to detect attacks as an IDS). However, when attackers utilize AI as well (e.g.,
adversarial machine learning), they can successfully defeat the machine learning models deployed by the
defenders. For Targets 2, 5, 7 and 9, we observe an initial Al advantage of the targets, which is later
surpassed by the attacker. As a result, the attack profit initially increases slowly but then rises significantly,
where the relative AI advantage of the attacker becomes more distinct. In the early rounds of the game,
however, the AI advantage of the targets successfully keeps the attacker’s funds at a low level, with limited
increases from the initial budget. Target 5 is used as an example for illustration purpose.
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Figure 3. Game Evolution of AT Model Levels
between Attacker and Defenders Who Have Al
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Figure 4. Game Evolution of AT Model Levels
between Attacker and Defenders Who Have Initial
AT Advantage but are Later Overtaken by Attacker

Figure 4 shows another representative phenomenon where Al is initially used by cybersecurity defender
(e.g., training an AI model to detect attacks as an IDS). However, when attackers utilize AI as well (e.g.,
adversarial machine learning), they can successfully defeat the machine learning models deployed by the
defenders. For Targets 2, 5, 7 and 9, we observe an initial AI advantage of the targets, which is later
surpassed by the attacker. As a result, the attack profit initially increases slowly but then rises significantly,
where the relative Al advantage of the attacker becomes more distinct. In the early rounds of the game,
however, the AT advantage of the targets successfully keeps the attacker’s funds at a low level, with limited
increases from the initial budget. Target 5 is used as an example for illustration purpose.
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Finally, Figure 5 shows significant Al progress for the attacker compared to the targets (6 and 8), resulting
in a faster accumulation of attack profit. Target 6 is used as an example to illustrate this pattern.

Evolution of AI Learning

In the context of the model setting, the key determinant of the relative AI evolution is the Al learning rate
(1), which decays over time but increases when the opponent is Al-strong. Figure 6 compares the Al levels
of Target 1 and the attacker, and Figure 7 compares their respective Al learning rates.
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Figure 6. Game Evolution of Relative AI Levels for
Attacker and Target 1
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Figure 7. Game Evolution of Relative AI Learning
Rates for Attacker and Target 1

We can observe that the relative Al learning rates are inversely related to the relative Al levels. When one
party’s relative Al level strengthens, it promotes the AI learning of the opponent. Additionally, Target 1
ranks the highest in terms of profitability for the attacker in the middle rounds of the simulation due to the
significant Al advantage of the attacker, which is unique among the targets. The attacker’s Al strength
stimulates Target 1 to improve its Al learning. However, as the victim gradually surpasses the attacker in
Al development, the attack profit decreases.

Further Discussions

Randomness in Al training introduces minor variations across simulation runs. The results presented are
from a representative run, with robustness verified through multiple sensitivity analyses. While numerical
values differ, all simulations consistently show: (1) increasing attack profitability, (2) distinct patterns in
the relative Al evolution of attackers and targets, and (3) an inverse relationship between attack profitability
growth and target AI development. These recurring patterns confirm the robustness of the study’s insights.

Although research on adversarial game theory in Al-enabled cyber offense and defense remains nascent
and comprehensive datasets are limited, recent trends and reports provide partial empirical support for the
simulation findings.

First, Al-powered attacks present substantial financial incentives for adversaries, with illicit gains showing
a persistent upward trend. In 2024, cryptocurrency scam revenues totaled at least $9.9 billion, and possibly
up to $12.4 billion, driven largely by Al-enhanced attack methods (Mattackal, 2025). Ransomware remains
a dominant form of crypto-related crime, generating $1.25 billion in 2023, the highest on record. Although
revenues fell in 2024 following law enforcement actions against major groups such as LockBit and BlackCat,
the number of ransomware incidents reported on dark-web leak sites reached an all-time high (Chainalysis,
2025).

Second, the net advantage of Al depends on how effectively each side adapts to Al-driven innovations.
Between March 2024 and February 2025, one in six breaches involved Al-enabled attacks (IBM, 2025). In
2025, 68% of cybersecurity analysts reported Al-generated phishing as harder to detect than ever, while
reported Al-enabled cyberattacks rose by 47% (Namase, 2025). On defense, generative Al has accelerated
phishing response preparation from hours to minutes. Organizations with extensive Al and automation use
saved an average of $1.9 million per breach and reduced detection and containment times by 8o days (IBM,
2025). Reflecting this reliance, the global Al-in-cybersecurity market is projected to grow from $15 billion
in 2021 to $135 billion by 2030 (Acumen Research and Consulting, 2022).
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Finally, long-term dynamics may favor attackers due to richer opportunities for training and adaptation in
a large, diverse target population. Potential targets vastly outnumber attackers, and offensive actors tend
to share tools, tactics, and intelligence more freely than defenders. Ransomware-as-a-Service (RaaS)
ecosystems exemplify this, enabling rapid dissemination of capabilities, such as in the REvil group, where
a core team developed the malware and affiliates distributed it. By contrast, defenders often restrict breach
data sharing for privacy, reputational, or legal reasons, limiting collective learning. Many organizations lack
visibility into broader attack patterns until after major incidents, reinforcing the asymmetry observed in
simulation models (IBM, 2025). These factors suggest that in a sustained AI arms race, attackers’ broader
and faster learning potential may yield a strategic long-term advantage.

Conclusion

Al plays a crucial role in enhancing cybersecurity defenses by improving the efficiency, accuracy, and speed
of detecting, preventing, and responding to cyber threats. However, as a double-edged sword, Al can assist
both attackers and defenders. It can lower the threshold for launching cyberattacks while simultaneously
enhancing their effectiveness. AT has demonstrated its ability to identify system and network vulnerabilities
more efficiently than traditional methods, reducing the time and skill needed for attackers to compromise
systems. Additionally, Al tools can automate the crafting of realistic phishing messages and malicious
websites. By learning from interactions, Al can adapt its tactics to target specific individuals with high
precision, thereby increasing the likelihood of successful attacks. Thus, the growing use of Al presents both
opportunities and challenges for cybersecurity practices.

When AI systems are employed for both defensive and offensive purposes, the question of which side AI
favors becomes central. This dynamic creates both fascinating and challenging interactions. In a dynamic
cybersecurity game where both attackers and defenders utilize AI and continually learn from each other,
the outcomes can be complex.

To explore this critical research question, we modeled Al-powered cyberattacks and cyberdefenses within
a dynamic game theoretic framework, using ransomware attacks/defenses as a case study. Each round of
the game represents a multistage process that captures the full lifecycle of ransomware attacks. We
simulated the evolution of this dynamic game, tracking changes in the attacker’s financial condition, as well
as the AI adaptation and evolution of both attackers and targets. Special attention was given to the role of
mastering AT dominance in determining the outcome of the cybersecurity contest between attackers and
defenders.

Using ransomware as a case study, our simulation results indicate that, in most cases, the attacker’s
financial condition continues to improve, providing strong financial incentives to keep launching attacks.
These results also suggest that Al is more likely to benefit attackers, especially as attackers gain Al
dominance in more cases. This is likely due to the game structure, where the attacker learns from
interactions with all targets, while each target learns only from interactions with the single attacker.

We examined how the evolution of Al influences the outcomes and payoffs of cyberattacks. Our findings
show that whether AI benefits attackers or defenders more depends largely on how adaptive each party is
to AI advancements. If Al-powered defenses improve detection and proactively patching faster than the
attacker’s Al innovations, then Al benefits the targets (shown by the decelerated wealth accumulation of
the attacker). Conversely, if Al enhances the adaptability and automation of attacks more than it boosts
defenses, Al is more advantageous for the attacker (shown by the accelerated wealth accumulation of the
attacker), a trend likely to increase in the future.

The key implication is that, even if defenders initially have the advantage with cutting-edge AI, attackers
can eventually gain more value from AI due to the larger target population, which enables more effective
training and learning for offensive Al than defensive Al In a mutual Al learning environment, no matter
how advanced the defenders’ AI may be, attackers will always have financial incentives to continue
launching attacks. Organizations facing cyberattack threats can adapt the proposed models to simulate
strategic defenses against rapidly evolving Al-enabled attacks. Effective cybersecurity management
requires not only integrating AI but also establishing continuous learning loops that leverage real-time
threat intelligence and incident data, ensuring both competitiveness and resilience.
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