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a b s t r a c t

We propose a conservative and variation preserving finite volume method for reaction
and diffusion in angiogenesis. The reaction domain keeps changing the morphology and
length, and its mesh is non-uniform and does not overlap with the diffusion mesh. These
facts make it very challenging to develop a numerical method that conserves the mass
when transferring data between the reaction and diffusion domains. We prove themethod
developed in this work not only conserves the mass locally but also retains the variation
in the reaction domain. In contrast, the direct interpolation may smear out the reaction
data in the data transfer process. This method is applied to the growth factor reaction and
diffusion problems in angiogenesis.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Angiogenesis, the formation of new blood vessels, is crucial to many processes such as wound healing and cancer. It is
controlled by growth factors such asVascular Endothelial Growth Factor (VEGF). VEGF is releasedby injured tissue or hypoxic
cancer cells and diffuses in the tissue. Once reaching blood vessels, VEGF binds to receptors such as VEGFR2 on endothelial
cells (ECs) that line the blood vessel. The activation of VEGFR2 triggers a sequence of intracellular events resulting in cell
proliferation and migration. These new blood vessels are called capillaries because they are very thin. Their diameter is at
most 20 µm, but the length can extend to the size of the tissue, for example, 2 mm in diameter of a rat cornea [1] or a
dormant tumor [2]. The reaction (binding kinetics) occurs only on thin capillaries, but the diffusion happens in the whole
tissue domain.
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Fig. 1. (a) The highly irregular and tortuous blood vessel capillaries in a xenotransplanted U87 human glioblastoma multiforme tumor (upper part) in a
mouse brain. The size of this tissue is 2.6 mm by 2 mm. This picture is taken from [12] with permissions. (b) multi-resolution of diffusion and reaction
domains/meshes. The squaremeshlines are for the diffusion domain, and the irregular line represents a capillary centerline where the dots are the reaction
mesh points.

The real problem is three-dimensional (3-D) but for simplicity we only consider a two-dimensional (2-D) tissue, denoted
as Ω . Note that the proposed numerical method and its properties can be straightforwardly extended to the 3-D case. We
denote the capillary domain as ΩC ⊂ Ω , which is the collection of all capillaries in Ω . For simplicity, we assume the
capillaries are of the uniform diameter dc . Denote the centerline of the capillaries asΣ , its arc length parameter as s, and its
spatial point as x(s).

Denote u as the concentration of the free growth factor, and [FR] and [BR] as the concentrations of free receptors and
growth factor/receptor complexes (or bound receptors), respectively. The mathematical model of our study can be written
as (e.g. [3,4])

∂u
∂t

+ HΩC v⃗ · ∇u = D∇
2u + HΩC f (u) inΩ, (1)

where HΩC is the Heaviside function of the domainΩC , v⃗ is the velocity of the capillary, and D is the diffusion constant. The
termHΩC v⃗ ·∇umodels the convection of growth factor by the capillary. The reaction function ‘‘f ’’ represents the reaction on
the capillary. One often used example (e.g. [4]) considers the binding kinetics between the growth factor and its receptor:

f (u) = −konu[FR] + koff[BR],
∂[FR]
∂t

+ HΩC v⃗ · ∇[FR] = −konu[FR] + koff[BR] + kp[BR],

∂[BR]
∂t

+ HΩC v⃗ · ∇[BR] = konu[FR] − koff[BR] − kp[BR]

 inΩC , (2)

where kon, koff, and kp are rates of association, disassociation, and internalization, respectively. In this model, the sum of free
receptors and bound receptors is constant, denoted as RT , [FR] + [BR].

The growth factor model (1) and (2) are usually combined with a capillary growth model. There are mainly two types of
capillary growth models: lattice models and non-lattice models [5]. In lattice models such as [6,5], all the mesh points of a
capillary is a subset of the diffusion mesh points. That is, the reaction sites and the diffusion sites are identical. In this case,
there is no need to transfer data between the reaction and diffusion meshes. However, in many non-lattice models such
as [7,8,5,9,10,3,4] and this work, the capillary mesh (reaction mesh) and the diffusion mesh do not overlap. In this case, the
growth factor has two expressions: one on the reaction mesh and the other on the diffusion mesh. To connect the reaction
and diffusion processes, a data transfer between the two meshes is required.

We have two criteria in developing the data transfer algorithm between the non-overlappingmeshes:mass conservation
and reaction data variation preserving. When a quantity is expressed on two different meshes, it is natural to expect that
these two expressions are identical in some measure. The measure we use is the mass conservation that includes both the
local conservation (Theorem 4) and the global conservation (Theorem 5). The accurate computation of growth factors on the
capillary is very important because their concentrations and variations can directly determine the fate of ECs. For example,
the viability and proliferation of ECs are directly controlled by the VEGF concentrations, and the variation of VEGF along the
capillary determines the direction of EC migration [11,4]. Therefore, it is critical to conserve the mass locally and preserve
the variation of data in the reaction domain when designing the data transfer algorithm.

To the best of our knowledge, this work is the first to address these two criteria among numerical methods for reaction
and diffusion on non-overlapping meshes. In this study, the diffusion domain is discretized with a uniform Cartesian mesh
and the reaction domain is discretizedwith a non-latticemethod. In general, the reactionmesh points are not uniform along
the capillary and they are not overlapping with the diffusion mesh points or center points (see Fig. 1(b)). Furthermore, the
reaction mesh points keep changing positions during capillary growth. These facts pose a big challenge in developing a data
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Fig. 2. Illustration of reaction and diffusion domains.ΩD is the 2-D diffusion domain with a uniform Cartesian mesh.ΩI is the 1-D domain aligned with
ΩD centerlines to fit the capillary.ΩRλ is the stretched capillary domain with the same length asΩI .ΩR is the real capillary where reactions are solved.

transfer algorithm that satisfies the above two criteria. For instance, the direct data interpolation may produce catastrophic
results, as proved in Theorem 2 and demonstrated in Section 3.1.

The rest of the paper is laid out as follows. In Section 2we present the details of the Conservative and Variation Preserving
Finite Volume Method and prove its conservation properties. In Section 3 we show some numerical simulations for VEGF
reaction and diffusion in angiogenesis. We conclude in Section 4.

2. A conservative and variation preserving finite volume method

2.1. A simple capillary growth algorithm

A full capillary growth model depending on growth factors can be found in [4]. To focus on the reaction and diffusion
mechanisms, we adopt a very simple capillary growth algorithm here. Denote its mesh points as xj, j = 1, . . . ,m, where
x1 is the root and xm is the tip. Denote their arc length as sj(t) at time t . The root x1 is fixed in space and we let s1(t) = 0,
for all time. The total capillary length at time t is equal to the arc length of the tip, sm(t). Assume the growth speed of the
tip is a constant U and the speed of point j is j−1

m−1U . All trailing points follow the tip by migrating on the path of the tip. In
other words, the capillary is the path of the tip. Therefore, the arc length of point j is sj(t) = sj(0) +

j−1
m−1Ut and its spatial

coordinate xj can be calculated with its arc length along the capillary. To mimic the tortuous shape of capillaries, we allow
the capillary to make turns which is a stochastic process. The tip can turn if it extends more than the distance L0 from the
last turning point or the root. We denote the positive/negative x-direction as East/West, the positive/negative y-direction as
North/South. We assume the tip mainly migrates to East, and it can only turn from South/North to East, and vice versa. If the
tip points to North or South before turning, then the probability of its turning East is p1, and the probability of its not turning
is 1 − p1. If the tip points to East before turning, then the probability of its turning South/North is p2, and the probability of
its not turning is 1 − 2p2. One example of a capillary generated by this algorithm is illustrated in Fig. 1(b).

2.2. Data transfer between reaction and diffusion domains

Let Ω = [0, L]2 where L is the tissue size. In the 2-D case, the capillary cross-section becomes a line segment of length
dc . To best represent the capillary domainΩC inΩ , we discretizeΩ with a uniform Cartesian mesh and mesh size h = dc .

The tissue domain with this specific mesh is denoted as ΩD. The capillary centerline Σ is discretized by an ordered
sequence of points. For simplicity, we enforce all points to migrate along the centerlines of theΩD mesh, which are defined
as the horizontal or vertical lines connecting center points of mesh boxes. Amesh box refers to a rectangle delineated by two
neighboring horizontal meshlines and two neighboring vertical meshlines inΩD. We denoteΩR as the domainΣ associated
with the discrete points. In general, the length of ΩR is not an integer multiple of h. In order to facilitate the data transfer
betweenΩD andΩR, we first find a curveΩI alongΩD centerlines that is the best fit ofΩR and whose length is an integer
multiple of h. Then we stretch or compressΩR to obtainΩRλ , which is of the same length asΩI . The relationships between
these domains and meshes are shown in Fig. 2.

Specifically, we define the following domains and finite volume spaces.

ΩD, VD: Suppose there areN mesh boxes in the diffusion domainΩD, denoted as Bk, k = 1, . . . ,N . Denote the center point
of Bk as xk = (xk1, x

k
2), then Bk is defined as Bk = {x = (x1, x2) ∈ Ω : |xi − xki | < h/2, i = 1, 2}. Introduce basis

functions φD
1 , . . . , φ

D
N , each of which is the set indicator function of Bk. Define VD = span{φD

1 , . . . , φ
D
N}. Denote

the mean value of u on the box i as ui, i.e., ui(t) =
1
h2

Bi
u(x, t)dx, then u has a piecewise constant representationN

i=1 ui(t)φD
i .

ΩR, VR: Denote the mesh points on ΩR as xRj , j = 1, . . . ,m, in the order from the root to the tip of the capillary, and
denote their arc lengths as sRj , where sR1 = 0. Denote the length of the capillary as LΩR , then sRm = LΩR . Denote



186 X. Zheng et al. / Journal of Computational and Applied Mathematics 275 (2015) 183–196

the interval centered around sRj as [ξ Rj , ξ
R
j+1], where ξ R1 = 0, ξ R2 =

sR1+sR2
2 , . . . , ξ Rj =

sRj−1+sRj
2 , ξ Rm+1 = sRm. Therefore,

a one-dimensional notation ofΩR with its finite volume intervals is

ΩR = [0, LΩR ] with intervals [ξ Rj , ξ
R
j+1], j = 1, . . . ,m.

OnΩR, introduce set indicator functionsψR
j , j = 1, . . . ,m, where eachψR

j is of value one in [ξ Rj , ξ
R
j+1] and zero at

all other intervals. Define VR = span

ψR

1 , . . . , ψ
R
m


.

ΩI , VI : Choose all the mesh boxes of ΩD that contain one portion of the curve Σ whose length is more than h/2, and
denote them as BI

i , i = 1, . . . , n, in the order from the root to the tip of the capillary. These are called interface
boxes. For each BI

i , the center point is denoted as xIi and the corresponding basis function as φI
i . Then connect the

center points of all the interface boxes to form a one-dimensional curve, denoted as ΩI . Assign the arc length
parameter sI toΩI , and denote, in each interface box BI

i , the first point onΩI as sIi = (i− 1)h and the last point as
sIi+1 = ih. The length ofΩI is LΩI = nh. The equivalent one-dimensional notation ofΩI is

ΩI = [0, LΩI ] with uniform mesh points 0 = sI1 < · · · < sIn+1 = LΩI .

On ΩI , define the basis functions as φI
i , i = 1, . . . , n, where φI

i is equal to 1 on the interval [sIi , s
I
i+1] and zero

otherwise. Define VI = span

φI
1, . . . , φ

I
n


.

ΩRλ , VRλ : Let λ =
LΩI
LΩR

, which typically is not equal to 1. To facilitate the data transfer between ΩD and ΩR, we further
introduce a new domainΩRλ = λΩR, i.e.,

ΩRλ = [0, LΩI ] with intervals [ξ
Rλ
j , ξ

Rλ
j+1], ξ

Rλ
j = λξ Rj , j = 1, . . . ,m.

The basis functions in VR are stretched to obtain basis functions ψRλ
j , j = 1, . . . ,m on ΩRλ by letting ψRλ

j (ξ) =

ψR
j (ξ/λ), where ξ ∈ ΩRλ . Define VRλ = span


ψ

Rλ
1 , . . . , ψ

Rλ
m


.

Therefore, VR, VRλ , and VI are all piecewise constant function spaces, and their lengths satisfy LΩI = LΩRλ
= λLΩR = nh.

We define two projections π I
Rλ

and π
Rλ
I , two stretching/compression operators πRλ

R and πR
Rλ
, and two restric-

tion/expansion operators π I
D and πD

I as follows.

(1) π I
Rλ

: VRλ → VI , for any u ∈ VRλ ,
π I
Rλ(u), v


L2

= (u, v)L2 , ∀ v ∈ VI; (3)

(2) πRλ
I : VI → VRλ , for any u ∈ VI ,

π
Rλ
I (u), v


L2

= (u, v)L2 , ∀ v ∈ VRλ; (4)

(3) πRλ
R : VR → VRλ , for any uR ∈ VR,

π
Rλ
R (uR)(s) =

1
λ
uR

 s
λ


, ∀s ∈ [0, LΩRλ

]; (5)

(4) πR
Rλ

: VRλ → VR, for any uRλ ∈ VRλ ,

πR
Rλ(uRλ)(s) = λuRλ(λs), ∀s ∈ [0, LΩR ]; (6)

(5) π I
D : VD → VI , for any uD =

N
i=1 uDiφ

D
i ∈ VD, assuming φD

ij
|ΩI = φI

j , j = 1, . . . , n,

π I
D(uD) =

n
j=1

uDij
φI
j ; (7)

(6) πD
I : VI → VD, for any uI =

n
j=1 uIjφ

I
j ∈ VI , assuming φD

ij
|ΩI = φI

j , j = 1, . . . , n,

πD
I (uI) =

n
j=1

uIjφ
D
ij . (8)

The inner product (u, v)L2 in Eqs. (3) and (4) is defined by

u(s)v(s)ds. The relationship between these operators

and spaces is illustrated in Fig. 2. It is easy to see from (3) and (4) that both πRλ
I and π I

Rλ
reserve the mass, that is,

ΩRλ
π

Rλ
I (u

I)dξ Rλ =

ΩI

uIds,∀uI
∈ VI , and


ΩI
π I
Rλ
(uRλ)ds =


ΩRλ

uRλdξ Rλ , ∀uRλ ∈ VRλ . Further, we define two combined

operators π I
R = π I

Rλ
◦ π

Rλ
R and πR

I = πR
Rλ

◦ π
Rλ
I . It can be easily verified that
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Lemma 1. For any uR ∈ VR and uI ∈ VI ,
π I
R(uR), vI


L2(ΩI )

= (uR, vI(λ·))L2(ΩR) , ∀ vI ∈ VI;
πR
I (uI), vR


L2(ΩR)

=


uI , vR


·

λ


L2(ΩI )

, ∀ vR ∈ VR.

Lemma 2.
ΩD

πD
I (uI)ds = h


ΩI

uIds, ∀uI ∈ VI .

Proof. Notice that both ΩD and ΩI are of uniform mesh size h. So

ΩI
φI
j ds = h, j = 1, . . . , n, and


ΩD
φD
i dx = h2, i =

1, . . . ,N . Therefore, for any uI =
n

j=1 uIjφ
I
j ,

ΩD

πD
I (uI)dx

Eq. (8)
=

n
j=1


ΩI

uIjφ
D
ij (x)dx =

n
j=1

uIjh
2

= h
n

j=1


ΩI

uIjφ
I
j (s)ds = h


ΩI

uIds. �

Remark 1. In the 3-D case, Lemma 2 becomes

ΩD
πD
I (uI)ds = h2


ΩI

uIds.

2.3. Relations between π I
R and πR

I

The operators π I
R and πR

I are crucial to the data transfer between the reaction and diffusion domains. A key observation
of their relationship is that πRλ

R is an isomorphism from VR to VRλ and πR
Rλ

is the inverse. Therefore, we only need to study

the interactions between π I
Rλ

and πRλ
I .

As an immediate consequence of Eqs. (3) and (4), we have the following lemma.

Lemma 3. For any u ∈ VRλ , v ∈ VI ,

π I
Rλ(u) =

n
i=1

M I
i (u)φ

I
i , π

Rλ
I (v) =

m
j=1

MRλ
j (v)ψ

Rλ
j , (9)

where M I
i (u) is the mean value of u in (si, si+1) and MRλ

j (v) is the mean value of v in (ξ Rλj , ξ
Rλ
j+1).

We denote the sets of mesh points of ΩI , ΩRλ , and ΩR as SI , SRλ , and SR, respectively. That is, SI = {sI1, s
I
2, . . . , s

I
n, s

I
n+1},

SRλ = {ξ
Rλ
1 , ξ

Rλ
2 , . . . , ξ

Rλ
m , ξ

Rλ
m+1}, and SR = {ξ R1 , ξ

R
2 , . . . , ξ

R
m, ξ

R
m+1}. We denote the sets of interior mesh points ofΩI ,ΩRλ , and

ΩR as S̊I , S̊Rλ , and S̊R, respectively. That is, S̊I = {sI2, . . . , s
I
n}, S̊Rλ = {ξ

Rλ
2 , . . . , ξ

Rλ
m }, and S̊R = {ξ R2 , . . . , ξ

R
m}.

Theorem 1. (i) πRλ
I ◦ π I

Rλ
= IdVRλ

if and only if SRλ ⊆ SI .

(ii) π I
Rλ

◦ π
Rλ
I = IdVI if and only if SI ⊆ SRλ .

Proof. We only need to prove (i) because (ii) is similar.
(i) ‘‘⇒’’: We will prove by contradiction. Assume there is some point ξ Rλj0 ∈ SRλ , but ξ

Rλ
j0

∉ SI . Suppose ξ
Rλ
j0

∈ (sIk, s
I
k+1).

Then M I
k(ψ

Rλ
j0
) > 0 and MRλ

j0−1(φ
I
k) > 0. Furthermore, M I

i (ψ
Rλ
j0
) ≥ 0 and MRλ

j0−1(φ
I
i ) ≥ 0 for each i = 1, . . . , n. Let

ξ0 = (max{sIk, ξ
Rλ
j0−1} + ξ

Rλ
j0
)/2, then sIk < ξ0 < ξ

Rλ
j0

. On one hand ψRλ
j0
(ξ0) = 0 because the support of ψRλ

j0
is [ξ

Rλ
j0
, ξ

Rλ
j0+1]. On

the other hand we have

π
Rλ
I ◦ π I

Rλ(ψ
Rλ
j0
)(ξ0) = π

Rλ
I ◦


n

i=1

M I
i (ψ

Rλ
j0
)φI

i


(ξ0)

=

n
i=1

M I
i (ψ

Rλ
j0
)

m
j=1

MRλ
j (φ

I
i )ψ

Rλ
j (ξ0)

=

n
i=1

M I
i (ψ

Rλ
j0
)MRλ

j0−1(φ
I
i )

≥ M I
k(ψ

Rλ
j0
)MRλ

j0−1(φ
I
k) > 0.

This is a contradiction to πRλ
I ◦ π I

Rλ
= IdVRλ

.



188 X. Zheng et al. / Journal of Computational and Applied Mathematics 275 (2015) 183–196

(i) ‘‘⇐’’: if SRλ ⊆ SI , then for each interval [ξ Rλj , ξ
Rλ
j+1] of ΩRλ , there exist sIk1 , s

I
k2

∈ SI such that [ξ
Rλ
j , ξ

Rλ
j+1] = [sIk1 , s

I
k2

].

According to Lemma 3, we have π I
Rλ
(ψ

Rλ
j ) = χ

[sIk1
,sIk2

]
, where χ

[sIk1
,sIk2

]
is of value one in the interval [sIk1 , s

I
k2

] and zero

otherwise. Using Lemma 3 again, we obtain πRλ
I ◦ π I

Rλ
(ψ

Rλ
j ) = ψ

Rλ
j . Because j is arbitrary, πRλ

I ◦ π I
Rλ

= IdVRλ
. �

Corollary 1. (i) πR
I ◦ π I

R = IdVR if and only if λSR ⊆ SI .
(ii) π I

R ◦ πR
I = IdVI if and only if SI ⊆ λSR.

The conditions λSR ⊆ SI and SI ⊆ λSR are almost impossible to hold because the capillary points change positions
arbitrarily in every time step of our capillary growth algorithm. Thus, in general, after one operation of πR

I ◦ π I
R some

information of the data will be lost. In numerical simulations, such an operation may be performed in every time step.
The following theorem shows that after sufficiently many steps, the data will converge to its mean value.

Theorem 2. If S̊Rλ ∩ S̊I = ∅, then for any u ∈ VRλ ,

lim
k→∞

(π
Rλ
I ◦ π I

Rλ)
k(u) =

1
LΩRλ


ΩRλ

u(ξ Rλ)dξ Rλ .

Proof. First, we note that by Lemma 3 for any v ∈ VI , max(πRλ
I (v)) ≤ max(u) andmin(π I

Rλ
(v)) ≥ min(v). Similarly for any

u ∈ VRλ , we havemax(π I
Rλ
(u)) ≤ max(u) andmin(π I

Rλ
(u)) ≥ min(u). Denote P = π

Rλ
I ◦π I

Rλ
. Therefore, max P(u) ≤ max(u)

and min P(u) ≥ min(u), which implies ∥Pk+1(u)∥L∞ ≤ ∥Pk(u)∥L∞ ≤ ∥u∥L∞ , ∀k ∈ N. So {Pk(u), k ∈ N} is a bounded
subset in the finite dimensional space VRλ with the L∞ norm. Then it must have a convergent subsequence, which is denoted
as {Pki(u), i ∈ N} and its limit is denoted as u0 ∈ VRλ . By the dominant convergence theorem,


ΩRλ

u0 =

ΩRλ

u. Since

max(Pk(u)) ≤ max(u) and min(Pk(u)) ≥ min(u), ∀k ∈ N, we have max(u0) ≤ max(u) and min(u0) ≥ min(u).
Second, we shall prove that max u0 = min u0, that is, u0 is a constant. Assume the contrary is true, that is, max(u0) >

min(u0). Without loss of generality, we assume (ξj, ξj+1) is the last interval taking the maximum value and j < m. Suppose
ξj+1 ∈ (si, si+1) ⊂ ΩI . By Lemma 3,π I

Rλ
(u0)|(si,si+1) is themean value of u0 in (si, si+1). Because u0 is strictly less thanmax(u0)

in the non-empty interval (ξj+1, ξj+2) ∩ (si, si+1), π I
Rλ
(u0)|(si,si+1) is also strictly less than max(u0). On the other hand, when

mapped back to VRλ , π
I
Rλ
(u0)|(si,si+1) has a non-zero contribution to the value πRλ

I ◦ π I
Rλ
(u0)(ξj,ξj+1) through the non-empty

interval (ξj, ξj+1)∩(si, si+1). Therefore,π
Rλ
I ◦π I

Rλ
(u0)|(ξj,ξj+1) is also strictly less thanmax(u0).ΩRλ hasm intervals, so u0 has at

mostm−1maximum intervals. Then afterm steps P-iterations, max(Pm(u0)) < max(u0). Let δ = max(u0)−max(Pm(u0)).
It is easy to tell that Pm(u0) is the limit of another subsequence {Pki+m(u), i ∈ N}. Then there exists K ∈ N so that ∀ki > K ,
∥Pki+m(u)− Pm(u0)∥∞ ≤ δ/2. So |max(Pm(u0))− max(Pki+m(u))| ≤ ∥Pki+m(u)− Pm(u0)∥∞ ≤ δ/2. Since max(Pki+m(u))
is a decreasing function of ki, 0 ≤ max(Pki+m(u)) − max(Pm(u0)) ≤ δ/2. Furthermore, ∀kj > ki + m,max(Pkj(u)) ≤

max((Pki+m(u))) ≤ max((Pm(u0)))+ δ/2 = max(u0)− δ/2. Therefore, ∥Pkj(u)− u0∥∞ ≥ max(u0)− max(Pkj(u)) ≥ δ/2.
This is contradictory to the assumption that u0 is the limit of {Pkj(u), kj ∈ N}. Therefore, u0 must be a constant.

Finally, since max(Pk(u)) − min(Pk(u)) is a decreasing function of k, and one subsequence is of limit zero, therefore, as
for the whole sequence, limk→∞(max(Pk(u))− min(Pk(u))) = 0. Thus, the whole sequence converges to a constant. �

Corollary 2. If (λS̊R) ∩ S̊I = ∅, then limk→∞(π
R
I ◦ π I

R)
k(u) =

1
LΩR


ΩR

u(ξ R)dξ R, ∀u ∈ VR.

2.4. A conservative and variation preserving finite volume method

Because the capillaries keep changing its morphology in time, we denote the capillary domain at time step tk as ΩR(k).
The same rule is applied to associated domains and operators, such as ΩI(k), π

I(k)
Rλ(k)

, πRλ(k)
R(k) , etc. Assume at the time step

tk−1
= (k − 1)1t, k = 1, 2, . . . , we have obtained the capillary domainΩR(k−1) = ∪

m
i=1[ξ

R(k−1)
i , ξ

R(k−1)
i+1 ], the solution uk−1

D

in VD, and the solution uk−1
R(k−1), [FR]

k−1
R(k−1), and [BR]k−1

R(k−1) in VR(k−1). Note that the number of basis functions of VR(k) is a fixed
number denoted by m but the number of basis of VI(k) depends on time, i.e., n = n(k). Now we proceed to time step tk to
compute the solutions uk

D, u
k
R(k), [FR]

k
R(k), and [BR]kR(k).

2.4.1. Capillary growth step
Using the capillary growth algorithm described in Section 2.1, we compute the new capillary domain ΩR(k) =

∪
m
i=1[ξ

R(k)
i , ξ

R(k)
i+1 ]. Then determine domainsΩI(k) andΩRλ(k) according to the description in Section 2.2, and generate spaces

VI(k) = span{φ
I(k)
1 , . . . , φ

I(k)
n(k)}, VR(k) = span{ψ

R(k)
1 , . . . , ψ

R(k)
m }, and VRλ(k) = span{ψ

Rλ(k)
1 , . . . , ψ

Rλ(k)
m }.

We assume the capillary moves in such a manner that eitherΩI(k−1) ⊂ ΩI(k) orΩI(k−1) ⊇ ΩI(k). The former represents
the capillary invading a new region, and the latter represents the capillary shrinking or remaining the same.
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2.4.2. Convection step
The convection part is

∂u
∂t

+ v⃗ · ∇u = 0 inΩC .

In the capillary growth algorithm, all points move with the capillary velocity v⃗. Then the above equation becomes du
dt = 0,

where d
dt is the material derivative. Therefore, the mean value of u on each interval [ξ Rj , ξ

R
j+1] is conserved in this convection

step. Thus, the mean value of u becomes

uk,∗
R(k),i =

ξ
R(k−1)
i+1 − ξ

R(k−1)
i

ξ
R(k)
i+1 − ξ

R(k)
i

uk−1
R(k−1),i (10)

on each interval

ξ
R(k)
i , ξ

R(k)
i+1


, i = 1, . . . ,m. Similarly, we have [FR]k,1R(k),i =

ξ
R(k−1)
i+1 −ξ

R(k−1)
i

ξ
R(k)
i+1 −ξ

R(k)
i

[FR]k−1
R(k−1),i, and [BR]k,1R(k),i =

ξ
R(k−1)
i+1 −ξ

R(k−1)
i

ξ
R(k)
i+1 −ξ

R(k)
i

[BR]k−1
R(k−1),i.

Then we update u inΩD:

uk,1
D = uk−1

D − πD
I(k−1) ◦ π

I(k−1)
D (uk−1

D )+ πD
I(k) ◦ π

I(k)
R(k)(u

k,∗
R(k)). (11)

Note when ΩI(k−1) ⊂ ΩI(k), the capillaries invade the region ΩI(k)\ΩI(k−1) and add more growth factor to the original
concentration π I(k)

D (uk−1
D )− π

I(k−1)
D (uk−1

D ) there. Accordingly, we need to add the original amount toΩR(k):

uk,1
R(k) =

uk,∗
R(k) + π

R(k)
I(k)


π

I(k)
D (uk−1

D )− π
I(k−1)
D (uk−1

D )

, ifΩI(k−1) ⊂ ΩI(k);

uk,∗
R(k), ifΩI(k−1) ⊇ ΩI(k).

(12)

2.4.3. Reaction step

On each interval

ξ
R(k)
i , ξ

R(k)
i+1


, i = 1, . . . ,m, we solve the reaction equation ∂uR,i

∂t = f (uR,i) and equations in (2) from

tk−1 to tk with the initial value uk,1
R(k), [FR]

k,1
R(k) and [BR]k,1R(k). Denote the result as uk,2

R(k), [FR]
k
R(k), and [BR]kR(k).

Afterwards, u inΩD is updated to

uk,2
D = (IdVD − πD

I(k) ◦ π
I(k)
D )(uk,1

D )+ πD
I(k) ◦ π

I(k)
R(k)(u

k,2
R(k)). (13)

The time derivative of the reaction equations is approximated by the implicit trapezoidal method and the resulting
nonlinear equations are solved by the Broyden method (cf. [13]).

2.4.4. Diffusion step
We solve the diffusion equation ∂uD

∂t = D∇
2uD in ΩD from tk−1 to tk with input uk,2

D and output uk,3
D . Then we update u

onΩR by transferring the difference of uD fromΩD toΩR:

uk,3
R(k) = uk,2

R(k) + π
R(k)
I(k) ◦ π

I(k)
D (uk,3

D − uk,2
D ). (14)

We use the standard five-point stencil to discretize the Laplace operator and the Crank–Nicolson scheme to discretize
the time derivative. For details readers are referred to [14, Chapter 3]. Finally, we obtain the end-of-step data uk

D = uk,3
D and

uk
R(k) = uk,3

R(k).

Remark 2. When this numerical method is extended to the 3-D case, the differences are only on the construction of the
domain ΩD and the operators π I

D and πD
I and the solution process of the diffusion equation ∂uD

∂t = D∇
2uD, which are all

straightforward.

2.5. Reaction variation preserving

Eq. (14) is the crucial step to keep the variation of data in the reaction domain.

Theorem 3 (Reaction Variation Preserving). Suppose the capillary is fixed in space and the diffusion constant D is zero. If the
whole numerical method ( 2.4.1–2.4.4) is applied, then the value of u on the reaction domain is only determined by the numerical
method of ∂u

∂t = f (u) and (2).
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Proof. If the capillary is fixed in space, thenΩR(k),ΩI(k), VR(k), VI(k) are fixed. In the convection step, we have uk,∗
R(k) = uk−1

R(k−1)

from Eq. (10) and uk,1
R(k) = uk,∗

R(k) = uk−1
R(k−1) from Eq. (12). Because D = 0, the diffusion step must give uk,3

D = uk,2
D and thus

uk,3
R(k) = uk,2

R(k) according to Eq. (14). Therefore, the value of u onΩR(k) is only determined by ∂u
∂t = f (u) and equations in (2)

in the reaction step. �

The strategy of (14) is the same as the wavelet method, where the average message is stored in the coarser level and the
oscillation (local value minus the average value) is kept in the finer level. This can be clearly seen by rewriting (14) as

uk,3
R(k) = π

R(k)
I(k) ◦ π

I(k)
D (uk,3

D )+


uk,2
R(k) − π

R(k)
I(k) ◦ π

I(k)
D (uk,2

D )

. (15)

On the right side of (15), the first term stands for the new average information on the coarser meshΩI , and the difference
in brackets represents the old oscillation on the finer meshΩR.

In contrast, the direct interpolation

uk,3
R(k) = π

R(k)
I(k) ◦ π

I(k)
D (uk,3

D ) (16)

would smear out the oscillation of uR along the capillary, as proved in Theorem 2. Note that the computational costs of
the direct interpolation formula (16) and the proposed formula (14) are almost identical, because the main cost of both
formulas is on the same operator πR(k)

I(k) ◦π
I(k)
D . The differences between these two formulas in numerical simulations will be

demonstrated in Section 3.

2.6. Mass conservation properties

Lemma 4. If ΩI(k−1) ⊂ ΩI(k), then π
I(k)
D ◦πD

I(k−1)(v) = v, ∀v ∈ VI(k−1). If ΩI(k−1) ⊇ ΩI(k), then π
I(k)
D ◦πD

I(k−1) ◦π
I(k−1)
D (uD) =

π
I(k)
D (uD), ∀uD ∈ VD.

Proof. IfΩI(k−1) ⊂ ΩI(k), then VI(k−1) ⊂ VI(k) if any function in VI(k−1) is given a zero extension to the regionΩI(k)\ΩI(k−1).
Let n = dim(VI(k−1)) and VI(k−1) = span{φI

1, . . . , φ
I
n}. For each j = 1, . . . , n, there exists ij such that πD

I(k−1)φ
I
j = φD

ij
,

which implies that π I(k)
D (φD

ij
) = π

I(k−1)
D (φD

ij
) = φI

j . For any v ∈ VI(k−1), assume v =
n

j=1 vjφ
I
j . Thus, π

I(k)
D ◦ πD

I(k−1)(v) =

π
I(k)
D ◦ πD

I(k−1)(
n

j=1 vjφ
I
j ) = π

I(k)
D (

n
j=1 vjφ

D
ij
) =

n
j=1 vjφ

I
j = v.

If ΩI(k−1) ⊇ ΩI(k), then VI(k−1) ⊇ VI(k) if any function in VI(k) is given a zero extension to the region ΩI(k−1)\ΩI(k). We
define VI(k−1) and its basis functions in the same way as in the last paragraph, and further define VI(k) = span{φI

1, . . . , φ
I
m}

wherem ≤ n. For any uD ∈ VD, assume uD =
dim(VD)

i=1 uDiφ
D
i , then π

I(k−1)
D (uD) =

n
j=1 uDij

φI
j . Further, for each j = 1, . . . , n,

there exists ij such thatπ I(k)
D (φD

ij
) = φI

j . Thusπ
I(k)
D ◦πD

I(k−1)◦π
I(k−1)
D (uD) = π

I(k)
D ◦πD

I(k−1)(
n

j=1 uDij
φI
j ) = π

I(k)
D (

n
j=1 uDij

φD
ij
) =m

j=1 uDij
φI
j = π

I(k)
D (uD). �

The following theorem gives the direct comparisons between uk,j
D and uk,j

R(k), j = 1, 2, 3, on the interface domainΩI(k).

Theorem 4 (Local Conservation).

(i) If ΩI(k−1) ⊇ ΩI(k), then π I(k)
D (uk,1

D ) = π
I(k)
R(k)(u

k,1
R(k)). If ΩI(k−1) ⊂ ΩI(k), then π I(k)

D (uk,1
D ) = π

I(k)
R(k)(u

k,1
R(k)) +

IdVI(k) − π
I(k)
R(k) ◦ π

R(k)
I(k)

 
π

I(k)
D (uk−1

D )− π
I(k−1)
D (uk−1

D )

.

(ii) π I(k)
D (uk,2

D ) = π
I(k)
R(k)(u

k,2
R(k)).

(iii) π I(k)
R(k)(u

k,3
R(k)) = π

I(k)
R(k) ◦ π

R(k)
I(k)


π

I(k)
D (uk,3

D )


+ π
I(k)
R(k)


IdVR(k) − π

R(k)
I(k) ◦ π

I(k)
R(k)


uk,2
R(k).

Remark 3. Because of Corollary 1, we cannot expect π I(k)
R(k) ◦ π

R(k)
I(k) = IdVI(k) or π

R(k)
I(k) ◦ π

I(k)
R(k) = IdVR(k) for the general capillary

growth. Therefore, π I(k)
D (uk,1

D ) ≠ π
I(k)
R(k)(u

k,1
R(k))whenΩI(k−1) ⊂ ΩI(k) and π

I(k)
D (uk,3

D ) ≠ π
I(k)
R(k)(u

k,3
R(k)).

Proof. (Part i) WhenΩI(k−1) ⊇ ΩI(k), apply π
I(k)
D on both sides of (11), then

π
I(k)
D (uk,1

D ) = π
I(k)
D (uk−1

D )− π
I(k)
D ◦ πD

I(k−1) ◦ π
I(k−1)
D (uk−1

D )+ π
I(k)
D ◦ πD

I(k) ◦ π
I(k)
R(k)(u

k,∗
R(k))

= π
I(k)
D (uk−1

D )− π
I(k)
D (uk−1

D )+ π
I(k)
R(k)(u

k,∗
R(k))

= π
I(k)
R(k)(u

k,1
R(k)), (17)

where we have used the facts that π I(k)
D ◦ πD

I(k−1) ◦ π
I(k−1)
D (uk−1

D ) = π
I(k)
D (uk−1

D ) by Lemma 4 and uk,1
R(k) = uk,∗

R(k) in the case of
ΩI(k−1) ⊇ ΩI(k).
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WhenΩI(k−1) ⊂ ΩI(k), apply π
I(k)
D on both sides of (11), then

π
I(k)
D (uk,1

D ) = π
I(k)
D (uk−1

D )− π
I(k)
D ◦ πD

I(k−1) ◦ π
I(k−1)
D (uk−1

D )+ π
I(k)
D ◦ πD

I(k) ◦ π
I(k)
R(k)(u

k,∗
R(k))

= π
I(k)
D (uk−1

D )− π
I(k−1)
D (uk−1

D )+ π
I(k)
R(k)(u

k,∗
R(k)), (18)

where we have used the facts that π I(k)
D ◦πD

I(k−1) ◦π
I(k−1)
D (uk−1

D ) = π
I(k−1)
D (uk−1

D ) by Lemma 4 and π I(k)
D ◦πD

I(k) = IdVI(k) . Apply

π
I(k)
R(k) on both sides of (12) whenΩI(k−1) ⊂ ΩI(k), then

π
I(k)
R(k)(u

k,1
R(k)) = π

I(k)
R(k)(u

k,∗
R(k))+ π

I(k)
R(k) ◦ π

R(k)
I(k)


π

I(k)
D (uk−1

D )− π
I(k−1)
D (uk−1

D )

. (19)

Subtraction of (18) and (19) gives the second formula in (i).
(Part ii) Apply π I(k)

D on both sides of (13), then

π
I(k)
D (uk,2

D ) = π
I(k)
D ◦ (IdVD − πD

I(k) ◦ π
I(k)
D )(uk,1

D )+ π
I(k)
D ◦ πD

I(k) ◦ π
I(k)
R(k)(u

k,2
R(k)) = π

I(k)
R(k)(u

k,2
R(k)).

(Part iii) Apply π I(k)
R(k) on both sides of (15), then

π
I(k)
R(k)(u

k,3
R(k)) = π

I(k)
R(k) ◦ π

R(k)
I(k)


π

I(k)
D (uk,3

D )


+ π
I(k)
R(k)


uk,2
R(k) − π

R(k)
I(k) ◦ π

I(k)
D (uk,2

D )

.

The formula (iii) can be obtained by replacing π I(k)
D (uk,2

D ) in the above equation by π I(k)
R(k)(u

k,2
R(k)) using formula (ii). �

Although uk,1
D (in the case of ΩI(k−1) ⊂ ΩI(k)) and uk,3

D are not identical to uk,1
R(k) and uk,3

R(k) when projected to ΩI(k),
respectively, we have the following conservation properties.

Theorem 5 (Global Conservation). Assume

ΩI(0)

π
I(0)
D u0

Dds =

ΩR(0)

u0
R(0)ds, then for k = 1, . . . ,

(a)

ΩR(k)

uk,∗
R(k)dξ =


ΩR(k−1)

uk−1
R(k−1)dξ ;

(b)

ΩD

uk,1
D dx =


ΩD

uk−1
D dx;

(c)

ΩR(k)

uk,1
R(k)dξ =


ΩR(k−1)

uk−1
R(k−1)dξ, if ΩI(k−1) ⊇ ΩI(k);

(d)

ΩR(k)

uk,1
R(k)dξ =


ΩR(k−1)

uk−1
R(k−1)dξ +


ΩI(k)


π

I(k)
D − π

I(k−1)
D


(uk−1

D )ds, if ΩI(k−1) ⊂ ΩI(k);

(e)

ΩI(k)

π
I(k)
D (uk,1

D )ds =

ΩR(k)

uk,1
R(k)dξ ;

(f)

ΩI(k)

π
I(k)
D (uk,2

D )ds =

ΩR(k)

uk,2
R(k)dξ ;

(g)

ΩI(k)

π
I(k)
D (uk,3

D )ds =

ΩR(k)

uk,3
R(k)dξ .

Proof. Equation (a) is a direct result of (10). With the help of the mass conservation properties of operators listed in
Section 2.2, equations (c) and (d) are deduced from (12) and (a), the equation (e) from Theorem 4(i), and equations (f)
and (g) from Theorem 4(ii) and (iii), respectively. As for (b), according to formula (11),

ΩD

uk,1
D dx =


ΩD


uk−1
D − πD

I(k−1) ◦ π
I(k−1)
D (uk−1

D )+ πD
I(k) ◦ π

I(k)
R(k)(u

k,∗
R(k))


dx

Lemma 2
=


ΩD

uk−1
D dx − h


ΩI(k−1)

π
I(k−1)
D (uk−1

D )dx + h

ΩR(k)

uk,∗
R(k)dξ

(a)
=


ΩD

uk−1
D dx − h


ΩI(k−1)

π
I(k−1)
D (uk−1

D )dx + h

ΩR(k−1)

uk−1
R(k−1)dξ

=


ΩD

uk−1
D dx,

where in the last equality we have used an induction from the initial condition

ΩI(0)

π
I(0)
D (u0

D)ds =

ΩR(0)

u0
R(0)ds. �
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a b

Fig. 3. (a) The initial data uR (solid), its projection (dashline) toΩI , and the mean value ūR (dash–dot line). (b) The maximum error of ∥Pk(u) − ūR∥∞,ΩR
with respect to the iteration number k.

a b

Fig. 4. (a) The numerical solutions and the exact solution at t = 1. The direct interpolation is used. (b) Maximum error with respect to time step size1t .

3. Numerical simulations

3.1. Data smearing out by direct interpolation

If the capillaries remain stationary and the reaction rate f and the diffusion constant D are both zeros, then the exact
solution u is equal to the initial data. However, if the direct data interpolation (16), instead of the proposed formula (14), is
used, then the full numerical algorithm in Section 2.4 is just the iteration of the operator P = πR

I ◦π I
R. In the first example, we

demonstrate how this process smears out the variation of data as proved in Theorem 2. The domainΩR = [0, 1] is divided
into 25 intervals and the mesh points are ξ R1 = 0, ξ Ri =

2i−3
2n , (i = 2, . . . , n + 1), ξ Rn+2 = 1, where n = 24. The domain

ΩI = [0, 1] is divided into 10 equidistant intervals. In this way, the inner mesh points ofΩR andΩI are disjoint. The initial
data uR is generated by a random generator and both uR and its projectionπ I

R(uR) are shown in Fig. 3(a). Themaximum error,
∥Pk(u)− ūR∥∞,ΩR = maxx∈ΩR |Pk(u)(x)− ūR|, where ūR =

 1
0 uR(x)dx (the mean value of uR overΩR), is plotted in Fig. 3(b),

which shows the pointwise convergence of Pk(u) to the mean value.
Next, we add a reaction on the capillary, ∂u

∂t = u, u(x, 0) = x. All the others are the same as in the last example. The
numerical solutions at t = 1 with different time step 1t values are shown in Fig. 4(a). Note that when 1t decreases,
the numerical solutions become more uniform, which demonstrates the smearing property of the direct interpolation. The
maximum error between the numerical solutions and the exact solution at t = 1 is shown in Fig. 4(b), where the error
increases when1t gets smaller. This surprising result is purely produced by the direct interpolation.

In contrast, if the proposed formula (14) is used, then the catastrophic effects in the above two examples will not occur
and the true solution will be recovered.

3.2. Simulations of VEGF reaction and diffusion in angiogenesis

We use the Conservative and Variation Preserving Finite Volume Method in Section 2.4 to solve Eqs. (1) and (2). For the
whole domain Ω = [0, 2 mm]

2, we choose the spatial mesh size h = 0.02 mm and the time step 1t = 0.001 days for
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a b

Fig. 5. Simulation results of VEGF concentration. The no-flux condition is applied on four edges of the domain. D = 4 × 103 µm2 day−1 . (a) t = 1 day,
(b) t = 7 days.

all simulations in this subsection. The diffusion constant D ranges from 4 × 103 µm2 day−1 to 4 × 106 µm2 day−1. Other
parameters are: the VEGF reference value C0 = 3.33 × 10−3 µM (equal to 1 in the color bar), total receptor concentration
RT = 7.64 × 10−3 µM. The parameters for VEGF/receptor kinetics are kon = 9.98 × 104 µM−1 day−1, koff = 72.36 day−1,
and kp = 16.08 day−1. The initial value of VEGF is set to be the reference value C0 in the whole domain. All these parameters
are also used in [15,3].

Tomodel the capillary growth,we apply the algorithm in Section 2.1 In thiswork, we setm = 501, sm(0) = 0.2mm,U =

0.36mm/day, L0 = 0.04mm, p1 = 0.8, and p2 = 0.1. The initial value of free receptor [FR] is RT , and that of bound receptor
[BR] is zero. Initially, these capillaries are of length 0.2 mm, therefore, the mesh size on the capillaries is 0.4 µm. When the
capillary extends to themaximum length 2.72mm at t = 7 days, themesh size is 6µm, still far less than the diffusionmesh
size h = 20µm. The capillaries at t = 7 days are shown in Fig. 9(a) and (b).

In the first group of simulations, we enforce the no-flux condition on all the four edges of the square domain and
investigate the growth factor uptake by capillaries with three different diffusion constants: D = 4 × 103, 4 × 104, 4 ×

105 µm2 day−1. The results at day t = 1 and t = 7 are shown in Figs. 5–7. With the no-flux boundary condition, the
growth factor will drop to zero level due to capillary uptake given sufficient time. When the capillaries are extending, the
endothelial cells are consuming VEGF, therefore the VEGF concentration keeps decreasing along the paths of capillaries.
When D is the smallest, most growth factor in the domain remains at day 7, and the capillary path is clearly seen in this case
(Fig. 5). When D increases to 4× 104 µm2 day−1, more growth factor molecules are consumed by capillaries (Fig. 6(b)), and
when D increases to 4× 105 µm2 day−1 the growth factor has vanished at 7 days (Fig. 7(b)). It is interesting to observe that
the growth factor concentration is higher in the front of the capillaries than the rear, which can be clearly seen from Fig. 6(b).
This is because the capillary is extending into the high concentration region. The free and bound receptor densities on one
of three capillaries are shown in Fig. 8 for D = 4 × 103, 4 × 104 µm2 day−1. The oscillation of data is due to the change
of directions of capillaries. The bound receptor density is higher near the tip because the tip always migrates into a new
location with higher growth factor value. The receptors quantities near the capillary tip are of smaller gradient magnitude
for larger diffusion constant.

Next, we study the growth factor uptake when the boundary condition of growth factor on the right edge x = 2 mm is
changed to u = 3.33×10−3 µM, that is, the right edge serves as the source of VEGF. The results for 4×105, 4×106 µm2 day−1

are shown in Fig. 9. In contrast to the results in the first group, when the diffusion constant is larger, the growth factor
concentration in the whole domain is higher, because the source of growth factor continuously provides new growth factor
into the domain and the larger diffusion indicatesmore compensation for the capillary uptake (Fig. 9(a), (b)). With increased
growth factor concentration for larger diffusion constant, the bound receptor density is also larger and distribution along
the capillary is less oscillatory (Fig. 9(c), (d)).

4. Conclusions

In this paper, we developed a conservative and variation preserving finite volume method when the reaction mesh
and the diffusion mesh are not overlapping. The numerical method not only reserves the mass during data transfer but
also retains the spatial variation along the capillary. Numerical examples show that the direct interpolation has the risk of
creating purely artificial effects and smearing out the data.

Our novel data transfer algorithm is similar to the wavelet method which is used in a multiscale reaction–diffusion
model [16]. However, the wavelet method in [16] is only applicable to a fixed straight-line reaction domain and uniform
reaction meshes. In contrast, our algorithm can handle the non-uniform spatial discretization and arbitrary shaped reaction
domains whose shape and length are constantly changing in time.
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a b

Fig. 6. Simulation results of VEGF concentration. The no-flux condition is applied on four edges of the domain. D = 4 × 104 µm2 day−1 . (a) t = 1 day,
(b) t = 7 days.

a b

Fig. 7. Simulation results of VEGF concentration. The no-flux condition is applied on four edges of the domain. D = 4 × 105 µm2 day−1 . (a) t = 1 day,
(b) t = 7 days.

a b

Fig. 8. Simulation results on one capillary at t = 7 days. The no-flux condition is applied on four edges of the domain. (a) D = 4 × 103 µm2 day−1 .
(b) D = 4 × 104 µm2 day−1 .

In thiswork, the reactions aremodeled by ordinary differential equations. Nevertheless, the reactions can also bemodeled
by other methods such as stochastic equations as in [17,16], which can be easily incorporated in our algorithm. In this work
the capillaries grow along the diffusion domain meshlines. But our algorithm can be applied with slight modifications to
any non-lattice capillary growthmodel which producesmore realistic vasculaturemorphology such as the stochastic model
of [7], the circular random walk model of [5], and the cell-based model of [3]. Although this study is for the 2-D case, the
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a b

c d

Fig. 9. Simulation results at t = 7 days. The boundary condition is u = 3.33 × 10−3 µM at x = 2 mm and no-flux condition on other three edges. (a,
c) D = 4 × 105 µm2 day−1 . (b, d) D = 4 × 106 µm2 day−1 .

numerical method can be straightforwardly extended to the 3-D case (see Remark 2) and all the properties still hold except
that Lemma 2 requires a slight modification (see Remark 1).

Acknowledgment

Zheng and Kim are supported by the Central Michigan University ORSP Early Career Investigator (ECI) grant #C61373.

Appendix A. Supplementary data

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/j.cam.2014.08.002.

References

[1] M.M. Sholley, G.P. Ferguson, H.R. Seibel, J.L. Montour, J.D. Wilson, Mechanisms of neovascularization. Vascular sprouting can occur without
proliferation of endothelial cells, Lab. Invest. 51 (1984) 624–634.

[2] D. Hanahan, J. Folkman, Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis, Cell 86 (1996) 353–364.
[3] T. Jackson, X. Zheng, A cell-based model of endothelial cell migration, proliferation and maturation during corneal angiogenesis, Bull. Math. Biol. 72

(2010) 830–868.
[4] X. Zheng, G.Y. Koh, T. Jackson, A continuous model of angiogenesis: initiation, extension, and maturation of new blood vessels modulated by vascular

endothelial growth factor, angiopoietins, platelet-derived growth factor-B, and pericytes, Discrete Contin. Dyn. Syst. Ser. B 18 (4) (2013) 1109–1154.
[5] M.J. Plank, B.D. Sleeman, Lattice and non-lattice models of tumour angiogenesis, Bull. Math. Biol. 66 (2004) 1785–1819.
[6] A.R.A. Anderson, M.A.J. Chaplain, Continuous and discrete mathematical models of tumor-induced angiogenesis, Bull. Math. Biol. 60 (1998) 857–900.
[7] C.L. Stokes, D.A. Lauffenburger, Analysis of the roles of microvessel endothelial cell randommobility and chemotaxis in angiogenesis, J. Theoret. Biol.

152 (1991) 377–403.
[8] S. Tong, F. Yuan, Numerical simulations of angiogenesis in the cornea, Microvasc. Res. 61 (2001) 14–27.
[9] S. Sun, M.F. Wheeler, M. Obeyesekere, C. Patrick, A deterministic model of growth factor-induced angiogenesis, Bull. Math. Biol. 67 (2005) 313–337.

[10] V. Capasso, D. Morale, Stochastic modelling of tumour-induced angiogenesis, J. Math. Biol. 58 (2009) 219–233.
[11] N. Mantzaris, S. Webb, H.G. Othmer, Mathematical modeling of tumor-induced angiogenesis, J. Math. Biol. 49 (2004) 111–187.

http://dx.doi.org/10.1016/j.cam.2014.08.002
http://refhub.elsevier.com/S0377-0427(14)00359-8/sbref1
http://refhub.elsevier.com/S0377-0427(14)00359-8/sbref2
http://refhub.elsevier.com/S0377-0427(14)00359-8/sbref3
http://refhub.elsevier.com/S0377-0427(14)00359-8/sbref4
http://refhub.elsevier.com/S0377-0427(14)00359-8/sbref5
http://refhub.elsevier.com/S0377-0427(14)00359-8/sbref6
http://refhub.elsevier.com/S0377-0427(14)00359-8/sbref7
http://refhub.elsevier.com/S0377-0427(14)00359-8/sbref8
http://refhub.elsevier.com/S0377-0427(14)00359-8/sbref9
http://refhub.elsevier.com/S0377-0427(14)00359-8/sbref10
http://refhub.elsevier.com/S0377-0427(14)00359-8/sbref11


196 X. Zheng et al. / Journal of Computational and Applied Mathematics 275 (2015) 183–196

[12] B.J. Vakoc, R.M. Lanning, J.A. Tyrrell, T.P. Padera, L.A. Bartlett, T. Stylianopoulos, L.L. Munn, G.J. Tearney, D. Fukumura, R.K. Jain, B.E. Bouma, Three-
dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging, Nat. Med. 15 (2009) 1219–1223.

[13] J. Stoer, R. Bulirsch, Introduction to Numerical Analysis, third ed., Springer, 2010.
[14] R. Eymard, T. Gallouët, R. Herbin, Finite volume methods, Handb. Numer. Anal. 7 (2000) 713–1018.
[15] F. Mac Gabhann, A.S. Popel, Model of competitive binding of vascular endothelial growth factor and placental growth factor to VEGF receptors on

endothelial cells, Am. J. Physiol. Heart Circ. Physiol. 286 (1) (2004) H153–H164.
[16] S.K. Mishra, K. Muralidharan, P. Deymier, G. Frantziskonis, S. Simunovic, S. Pannala,Wavelet-based spatial scaling of coupled reaction–diffusion fields,

Int. J. Multiscale Comput. Eng. 6 (2008) 281–297.
[17] T. Alarcon, K.M. Page, Stochastic models of receptor oligomerization by bivalent ligand, J. R. Soc. Interface 3 (2006) 545–559.

http://refhub.elsevier.com/S0377-0427(14)00359-8/sbref12
http://refhub.elsevier.com/S0377-0427(14)00359-8/sbref13
http://refhub.elsevier.com/S0377-0427(14)00359-8/sbref14
http://refhub.elsevier.com/S0377-0427(14)00359-8/sbref15
http://refhub.elsevier.com/S0377-0427(14)00359-8/sbref16
http://refhub.elsevier.com/S0377-0427(14)00359-8/sbref17

	A conservative and variation preserving finite volume method for non-overlapping meshes of reaction and diffusion in angiogenesis
	Introduction
	A conservative and variation preserving finite volume method
	A simple capillary growth algorithm
	Data transfer between reaction and diffusion domains
	Relations between  πRI  and  πIR 
	A conservative and variation preserving finite volume method
	Capillary growth step
	Convection step
	Reaction step
	Diffusion step

	Reaction variation preserving
	Mass conservation properties

	Numerical simulations
	Data smearing out by direct interpolation
	Simulations of VEGF reaction and diffusion in angiogenesis

	Conclusions
	Acknowledgment
	Supplementary data
	References


