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Reassessment of the phylogenetic relationships among Anodonta, Pyganodon, and
Utterbackia (Bivalvia: Unionoida) using mutation coding of allozyme data
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ABSTRACT.— The use of molecular markers has greatly increased our understanding of unionoid systematics.  However, it is critical
that their use in phylogenetic studies be conducted with the correct methodologies in order to ensure that the correct interpretations of
evolutionary history are made.  The phylogenetic relationships of a selection of Anodonta were investigated by Hoeh (1990), who
found variation in 23 allozyme loci.  These allozymes were coded using the presence/absence of alleles, yielding 67 characters used
in a phylogenetic analysis.  The resulting phylogeny was used as evidence to recommend the elevation of Pyganodon and Utterbackia
to full generic status.  Since the publication of Hoeh (1990) the coding of characters using the presence/absence of alleles has been
shown to be invalid and has been superseded by mutation coding, with the locus as the character.  The phylogenetic analysis of 20
characters, coded using mutation coding, yielded two equally parsimonious trees and an interpretation markedly different from that of
Hoeh (1990).  Both trees supported the monophyly of Pyganodon and Utterbackia.  However, the genus Anodonta was paraphyletic
with respect to both Pyganodon and Utterbackia.  The one Eurasian species (Anodonta cygnea) was resolved as the sister of the
remaining ingroup taxa, including Pyganodon, Utterbackia, and the North American Anodonta.  These findings lead to a taxonomic
problem, requiring further phylogenetic analysis of the Anodontinae.  In order to test the phylogenetic hypotheses presented herein,
we strongly recommend the construction of a phylogeny for all anodontine taxa using a combination of mitochondrial and nuclear
DNA sequences.
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INTRODUCTION

Molecular markers have greatly increased our under-
standing of unionoid systematics.  Allozymes and DNA se-
quencing have been used to reevaluate both higher and lower
level phylogenies and classifications of unionoids (e.g.,
Campbell et al., 2005; Roe and Hoeh, 2003, and references
therein).  However, even with the advancement of molecu-
lar data available for systematic studies, it remains criti-
cally important that correct phylogenetic methodologies are
used to resolve species relationships.

The genera Anodonta Lamarck, 1799; Pyganodon
Crosse and Fisher, 1893; and Utterbackia Baker, 1927 be-
long to the Holarctic unionid subfamily Anodontinae. Early
classifications of Anodonta sensu lato were based on mor-
phological characters (Heard and Guckert, 1970; Kat, 1983).
However, many of the shell characters are extremely plas-
tic, making identifications of species of Anodonta s. l. very
difficult.  Accordingly, the phylogenetic relationships of a
selection of Anodonta s. l. were investigated with molecu-
lar characters by Hoeh (1990), who found variation in 23
allozyme loci.  These allozymes were coded using the pres-
ence/absence of alleles, yielding 67 characters used in a
phylogenetic analysis.  The resulting phylogeny was used
as evidence to recommend the elevation of Pyganodon and

Utterbackia to full generic status.
Hoeh (1990) suggested that using the allele as the char-

acter was preferred over using the locus as the character
(Buth, 1984) because it did not ignore potential phyloge-
netic information contained in shared alleles.  This reason-
ing is flawed, as the additional characters provided by treat-
ing the presence or absence of an individual allele as a char-
acter do not necessarily reflect the evolution of new states.
Precence/absence coding of characters allows parallel losses
of an allele to be treated as a unifying character.  Addition-
ally, some of the extra “information” provided by presense/
absence coding serves to disproportionally weight polymor-
phic loci (Murphy, 1993; Murphy and Doyle, 1998; Murphy
and Lovejoy, 1998).  Hoeh (1990) also stated that his pref-
erence for coding the allele as the character provided for
much higher resolution in the resultant phylogeny.  Choos-
ing a methodology based on the resulting phylogeny is cir-
cular reasoning and violates the rules of parsimony (Brooks
and McLennan, 2002). Coding the locus as the character
often results in different topologies from topologies derived
from the allele being coded as the character (Altaba, 1997;
Meier, 1994; Murphy, 1993; Murphy and Doyle, 1998;
Murphy and Lovejoy, 1998).  Hoeh (1990) was correct in
his contention that coding the locus as the character may
significantly increase the number of equally parsimonious
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Table 1.  Character matrix of allozyme data from Hoeh (1990), coded using mutation coding (Murphy and Doyle, 1998).  Only
potentially phylogenetically informative characters are included in the matrix.

Character PGM GPD ACPa ACPb GAPDH GPT ICD-2 MDH-1 MDH-2 AO

P. cataracta (Say, 1817) 0 1 ? 2 0 0 0 1 1 1
P. gibbosa (Say, 1824) 2 1 2 1 0 0 0 1 1 1
P. grandis (Say, 1829) 0 1 0 0 0 0 0 0 1 0
P. lacustris (Lea, 1857) 0 1 ? 2 0 0 0 1 1 0
P. fragilis (Fleming, 1828) 0 1 0 0 0 0 0 1 1 1
A. implicata (Say, 1829) 1 0 0 0 0 1 0 1 2 0
A. suborbiculata (Say, 1831) 0 0 2 1 0 1 0 1 2 1
A. couperiana (Lea, 1840) 0 0 2 0 1 1 0 1 2 1
A. heardi* (Gordon & Hoeh, 1995) 2 0 2 0 1 1 0 1 2 1
A. cygnea (Linnaeus, 1758) 1 1 0 0 0 0 1 1 0 0
A. kennerlyi (Lea, 1860) 0 0 0 0 0 1 0 1 0 1
U. peggyae (Johnson, 1965) 0 0 1 0 0 0 1 1 1 1
U. imbecillis (Say, 1829) 0 0 1 0 0 0 1 1 1 1
L. compressa• (Lea, 1829) 0 0 0 0 0 0 0 0 0 0
L. complanata• (Barnes, 1823) 0 0 0 0 0 ? 0 0 0 0
L. costata• (Rafinesque, 1820) 0 0 0 0 0 ? 0 0 0 0

Character CAT-1 ADH B-GUR ICD-1 EST FDP GOT LAP PEP-1 PEP-2

P. cataracta (Say, 1817) 2 0 0 0 0 0 0 0 0 2
P. gibbosa (Say, 1824) 2 0 0 0 0 0 0 1 0 2
P. grandis (Say, 1829) 2 1 2 1 1 0 0 1 0 2
P. lacustris (Lea, 1857) 2 0 2 0 0 0 0 1 0 2
P. fragilis (Fleming, 1828) 2 1 2 0 0 0 1 1 0 2
A. implicata (Say, 1829) 1 0 1 1 1 1 1 1 0 1
A. suborbiculata (Say, 1831) 0 0 0 1 0 1 1 0 0 1
A. couperiana (Lea, 1840) 0 0 0 1 0 1 1 0 0 1
A. heardi* (Gordon & Hoeh, 1995) 1 0 0 1 0 1 1 0 1 1
A. cygnea (Linnaeus, 1758) 0 1 2 0 0 0 0 0 1 1
A. kennerlyi (Lea, 1860) 0 0 1 1 0 0 1 0 0 1
U. peggyae (Johnson, 1965) 0 0 0 0 0 0 0 1 0 1
U. imbecillis (Say, 1829) 0 0 0 0 0 0 1 1 0 1
L. compressa• (Lea, 1829) 0 ? 0 0 0 0 0 0 0 0
L. complanata• (Barnes, 1823) 0 0 0 0 0 0 0 0 0 0
L. costata• (Rafinesque, 1820) 0 0 0 0 0 0 0 0 0 0

*Anodonta heardi is a recently described species (Gordon and Hoeh, 1993-1994) called A. “couperiana” by Hoeh (1990).
• Outgroup taxa.

trees (EPT).  However, the single tree resolved by presence/
absence coding may not be one of the group of EPTs re-
solved by using the locus as the character (Murphy and
Doyle, 1998).  We recognize that adequate descriptions of
methods for coding the locus as the character (Murphy and
Doyle, 1998) were not introduced until after Hoeh’s (1990)
paper was published.  Nevertheless, in order to test the
phylogenetic hypothesis for Anodonta proposed by Hoeh
(1990), we have reanalyzed his allozyme dataset using
mutation coding as described by Murphy and Doyle (1998).

METHODS

We recoded the allozyme dataset of (Hoeh, 1990) us-
ing the locus as the character (Murphy and Doyle, 1998),

yeilding 20 characters (Table 1).  The original allozyme
dataset used in Hoeh (1990) is reprinted for comparison in
Table 2.  Based on mutation coding, 4 of the 23 allozyme
loci (CAT-2, FH, PGD, and SOD) were found to be unin-
formative as all of the alleles found in the ingroup taxa were
also found in the outgroup taxa.  In order to code the locus
ACP, it had to be split into two characters, as some charac-
ter states of this highly polymorphic locus required addi-
tive coding and others required non-additive coding.
Lasmigona costata, L. complanata, and L. compressa were
used as outgroup taxa.  A maximum parsimony analysis of
the 20 allozymic characters was performed using an heuris-
tic search with 100 replications of random stepwise addi-
tions using PAUP* v.4.0b10 (Swofford, 1998).  Nodal sup-
port was assessed with Bremer decay analysis (Bremer,
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Table 2. Character matrix of allozyme data from Hoeh (1990), coded using presence absence coding.

Allozyme Locus PGM GPD ACP SOD FH GAPDH GPT PGD ICD-2   MDH-1 MDH-2 AO

Character No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
P. cataracta 0 0 1 0 0 1 0 0 0 0 0 1 1 0 0 0 1 1 0 1 0 1 0 1 0 0 1 0 1 0 0 1 1 0
P. gibbosa 0 0 1 1 0 1 0 0 0 0 1 1 0 0 0 0 1 1 0 1 0 1 0 1 0 0 1 1 1 0 0 1 1 0
P. grandis 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 0 1 0 0 1 1 0 0 0 1 0 1
P. lacustris 0 1 1 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 0 1 0 1
P. fragilis 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 1 0 0 1 0 1 0 0 1 1 0
A. implicata 1 0 1 0 0 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 1 0 1 0 1 0 1 0 1 0 0 0
A. suborbiculata 0 0 1 0 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 0 1 1 0 0 1 0 1 0 1 0 1 0
A. couperiana 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
A. heardi 0 0 1 1 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
A. cygnea 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 1 1 1 0 0 0
A. kennerlyi 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 1 0 0 1 0 1 0 0 0 1 1 0 0 1 0
U. peggyae 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 0 1 1 0
U. imbecillis 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 1 0 1 0 1 0 1 0 1 0 0 1 0 0 1 1 0
L. compressa• 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 0 1 1 0 1 0 0 ? ?
L. complanata• 0 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0 ? ? 0 1 0 1 1 0 1 0 0 0 1
L. costata• 0 1 0 0 0 0 1 1 1 0 0 0 0 0 1 0 1 0 1 1 0 ? ? 1 0 0 1 0 0 1 0 0 ? ?

Allozyme Locus CAT-2 CAT-1 ADH B-GUR ICD-1 EST FDP GOT LAP PEP-1 Pep-2

Character No. 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
P. cataracta 1 0 0 1 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 1
P. gibbosa 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1
P. grandis 0 0 1 1 1 0 0 0 1 0 0 0 1 0 1 1 0 0 0 1 0 0 1 0 0 1 1 0 0 1 0 0 1
P. lacustris 0 0 1 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1
P. fragilis 0 1 0 1 0 0 0 1 1 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 1 0 0 1
A. implicata 0 0 1 0 0 0 1 0 1 0 1 0 0 0 1 1 0 1 0 1 1 0 0 0 0 0 1 0 0 1 1 0 0
A. suborbiculata 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 1 0 1 0 0 1 0 0 0 0 1 0 0 1 0 1 0 0
A. couperiana 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 1 0 1 0 0 1 0 0 0 0 1 0 0 1 0 1 0 0
A. heardi 0 0 1 0 0 0 1 0 1 0 0 1 0 0 1 1 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0
A. cygnea 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 1 0 0 1 0 0 1 0 0
A. kennerlyi 0 0 1 0 0 0 0 0 1 0 1 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 1 0 1 0 0
U. peggyae 0 0 1 0 0 1 0 0 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 ? 0 0 1 0 0 1 1 0 0
U. imbecillis 0 0 1 0 0 1 0 0 0 1 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 1 1 0 0
L. compressa• 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 1 0
L. complanata• 0 0 1 0 0 1 0 0 0 1 0 1 0 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0
L. costata• 1 1 0 0 1 1 0 0 1 0 0 1 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0

• Outgroup taxa.

1988; Bremer, 1994) by using AutoDecay v.4.0.2 (Eriksson,
1998) in combination with PAUP*.

RESULTS

The phylogenetic analysis yielded two EPTs.  The strict
consensus of these is presented in Fig 1A.  Both EPTs (50
steps, CI=0.54, RI=0.70, RC=0.38) supported the mono-
phyly of Pyganodon and Utterbackia.  However, the genus
Anodonta was paraphyletic with respect to both Pyganodon
and Utterbackia. The one Eurasian species (Anodonta
cygnea) was resolved as the sister of the remaining ingroup
taxa, including Pyganodon, Utterbackia, and the North
American Anodonta.  The relationships within the North

American Anodonta sensu stricto were fully resolved,
though the relationships among the species of Pyganodon
were not.

The topology constructed using Hoeh’s (1990)
allozyme data matrix (Fig. 1B; 156 steps, CI=0.43, RI=0.60,
RC=0.26) differed from the topology constructed using
mutation coding (Fig. 1A).  The most significant differences
between the two topologies were the relationships among
the species of Anodonta.  The analysis based on presence/
absence coding yielded a monophyletic Anodonta (Fig. 1B).
However, when using mutation coding, Anodonta was
paraphyletic with respect to both Pyganodon and
Utterbackia (Fig 1A). Additionally, the relationships within
Pyganodon were not resolved when using mutation coding
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Fig. 1. Consensus (A.) of two equally parsimonious trees using the locus as the character (50 steps, CI=0.54, RI=0.70, RC=0.38)
and (B.) the single most parsimonious tree using the allele (presence/absence) as the character (Hoeh, 1990) (156 steps, CI=0.43,
RI=0.60, RC=0.26).  Decay indices (Bremer, 1994) are shown below the nodes.
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(Fig. 1A), but were fully resolved in the topology based on
presence/absence coding (Fig. 1B).  The relationships among
species of Pyganodon recovered using presence/absence
coding (Fig. 1B) was not among the EPTs recovered using
mutation coding.  The relationships between the taxa of
North American Anodonta also differed.  With mutation
coding a sister relationship between A. heardi and A.
couperiana was recovered (Fig. 1A), while A. suborbiculata
was resolved as the sister group to A. couperiana using pres-
ence/absence coding (Fig. 1B).

The two phylogenies were not found to be significantly
different (P>0.05), although these tests may be limited due
to the low number of characters used.  The mutation coded
phylogeny is 50 steps and the Hoeh’s (1990) original phy-
logeny is 53 steps using the mutation coded dataset. The
phylogenies were statistically compared under a maximum
parsimony framework using the parametric Kishino-
Hasegawa (P=0.0828), non-parametric Templeton (0.0833),
and non-parametric winning-sites tests (P=0.2500) in
PAUP* v4.0b10.

DISCUSSION

The monophyly of both Pyganodon and Utterbackia
are supported by our analysis.  However, the paraphyly of
Anodonta with respect to both Pyganodon and Utterbackia
causes a taxonomic problem.  Because the Eurasian
Anodonta cygnea is the type species, the generic name is
tied to it, requiring either the elevation of the monophyletic
North American clade of Anodonta (Fig. 1A) to generic rank
or the demotion of Pyganodon and Utterbackia to subgeneric
rank and returning them to the Anodonta.  However, before
any taxonomic changes can be recommended, a phylogeny
with increased taxon sampling of both Eurasian and West-
ern North American Anodonta is required.

We recognize that allozymes are generally viewed as
outdated markers.  However, few highly taxon-inclusive
phylogenetic studies have been published for the
Anodontinae using DNA sequence data.  The new allozyme
topology presented herein does not conflict with the few
limited DNA sequence-based phylogenies available for com-
parison (e.g., Graf and O’Foighil 2000; Huang et al. 2002;
Köllersjö et al., 2005; King et al. 1999).  The only DNA
sequence-based phylogeny published that includes a mix
of North American and Eurasian anodontine taxa is by
Huang et al. (2002).  Using mitochondrial DNA (16S rRNA),
Huang, et al. (2002) resolved a topology that was most com-
patible with the tree besed on mutation coding (Fig. 1A).
Preferably, sequences from several genes should be evalu-
ated as single-gene phylogenies are more likely to be mis-
leading (Funk and Omland, 2003).  The DNA sequencing-
based phylogenies listed above also suggest that Lasmigona

spp. are inappropriate as outgroups for Anodonta as it seems
that Anodonta s. s. may not be monophyletic, with
Lasmigona spp. sharing a more recent common ancestor
with Pyganodon and Utterbackia.  Hence, we strongly rec-
ommend the construction of a complete phylogeny for all
Anodontinae using a combination of mitochondrial and
nuclear DNA sequences, with hypotheses being made for
morphological character evolution (e.g. loss of hinge denti-
tion).  This would provide a thorough test of the phyloge-
netic hypotheses suggested by both Hoeh (1990) and herein.
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