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Mitochondrial DNA structure of Pyganodon grandis (Bivalvia: Unionidae) from the 
Lake Erie watershed and selected locations in its northern distribution

Robert A. Krebs1, Brian D. Allen1, Na’Tasha M. Evans1 and David T. Zanatta2

1 Department of Biological, Geological, and Environmental Sciences, Cleveland State University, 2121 Euclid Ave., Cleveland, Ohio 44115-
2406 U.S.A.
2Department of Biology, Institute for Great Lakes Research, Central Michigan University, 335 Brooks Hall, Mount Pleasant, Michigan 
48859 U.S.A.

Correspondence, Robert A. Krebs: r.krebs@csuohio.edu

Abstract: The distribution of Pyganodon grandis (Say, 1829) and the entire community of unionid freshwater mussels within the Laurentian 
Great Lakes became greatly reduced following invasion of dreissenid mussels. While some populations remain, how much gene fl ow still occurs 
is not known, nor has the level of population structure been examined within a large lake subsequent to dreissenid infestation. Pyganodon 
grandis is a common and relatively abundant lacustrine species that utilizes diverse host fi sh, and, therefore, it may disperse as much as or 
more than any other unionid species in the region. To test for population structure, we examined a fragment of the maternal mtDNA COI 
gene from 300 individuals encompassing shallow areas from Lake Erie’s western and central basins, Sandusky Bay, Lake St. Clair, and the 
upper Niagara River. Another 94 individuals from the upper Great Lakes and upper Mississippi River watersheds were added to the analysis. 
A total of 34 different haplotypes were found for P. grandis in the Lake Erie watershed, but just one was common and composed > 80% of all 
individuals. No other haplotype exceeded a frequency of 2% and most were found only once. Just thirteen haplotypes were found west of Lake 
Erie, and only the common haplotype and one other were shared with the Lake Erie watershed. However, structure in haplotype frequencies 
and the presence of one very different clade were limited to samples abutting the Red River of the North. Thus recent population declines in 
Lake Erie appear not to have signifi cantly impacted levels of genetic variation. 

Key words: conservation, driftless area, freshwater mussels, gene fl ow, glaciation, streams 

The diverse fauna of native freshwater mussels (Bivalvia: 
Unionidae) in Lake Erie (Graf 2002) has experienced habitat 
degradation, species invasions, and eutrophication (Hartman 
1973), but a precipitous decline began after the invasion of 
zebra and quagga mussels from the Black and Caspian Seas 
(Schloesser and Nalepa 1994, Schloesser et al. 1996), beginning 
with Dreissena polymorpha (Pallas, 1771) about 1986 followed 
by Dreissena rostriformis bugensis (Andrusov, 1897) in the early 
1990s (Hebert et al. 1989, Mills et al. 1993). Species that once 
would have littered beaches with their shells (Goodrich and 
Vander Schalie 1932) had largely disappeared by the 1990’s, yet 
in the last few years, surveys conducted along shorelines, in 
river mouths, marshes and shallow coastal areas suggest some 
recovery along the lake (Crail et al. 2011). 

The state of recovery of mussels is diffi cult to assess 
because populations are generally small and scattered (Sherman 
et al. 2013). Pyganodon grandis (Say, 1829) is a fast growing 
lacustrine species (Haag 2012) that is still considered wide-
spread and common in North America (www.natureserve.
org). The species possesses hooked glochidia that are typical of 
unionids described as generalists in host use (Hoggarth 1999). 
In P. grandis, the glochidia are held in a marsupium along the 
outer gills and released between October and February (Watters 
and O’Dee 1998) when they attach to the scales or gills of fi sh. 

Watters et al. (2009) list over 40 confi rmed and potential host 
fi sh species. Therefore, P. grandis may be better able than most 
native freshwater mussels to recolonize habitat and to main-
tain gene fl ow across great distances (Haag 2012).

To assess populations affected by dreissenid mussels, exten-
sive surveys focused on identifying potential refuges along Lake 
Erie’s American coast (Prescott 2014, Zanatta et al. pers. comm.), 
during which mantle tissue clips were collected. Targeted habitat 
were those areas likely to possess soft or fi ne sand sediments that 
allow unionids to burrow (Nichols and Wilcox 1997), areas of 
high productivity to reduce food competition with dreissenids 
(Higgins and Vander Zanden 2010), and regions where water 
level fl uctuations, wave action, offshore currents or other fea-
tures periodically produce shallow water depths (Schloesser et al. 
1997, McGoldrick et al. 2009, Sherman et al. 2013). Known ref-
uges have included Crane Creek (Bowers and de Szalay 2004, 
2005), Metzger Marsh (Nichols and Wilcox 1997, Nichols and 
Amberg 1999) and Presque Isle Bay (Schloesser and Masteller 
1999) of Lake Erie, and the delta region of Lake St. Clair (Zanatta 
et al. 2002, Sherman et al. 2013, Lucy et al. 2014). We collected 
across all of these areas as well as shallow zones of Sandusky Bay 
and river mouths along the American side of Lake Erie. 

We report genetic variation in Pyganodon grandis across 
a large lake system, as this species may be more resilient with 
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respect to maintaining genetic variation than species suffer-
ing greater population losses or those utilizing fewer and less 
vagile host fi sh (Krebs et al. 2010), and, thus, prove suitable 
for investigating lower limits of consequences from habitat 
change and population decline in the presence of dreissenid 
mussels. Thus, our goals were to fi rst, assess the genetic varia-
tion in the maternal COI mtDNA gene for this widespread 
species of freshwater mussel, second, estimate genetic con-
nectivity among these freshwater mussel populations across a 
large lake, and fi nally, contrast variation in Lake Erie to pub-
lished sequences of P. grandis from outside the Lake Erie 
watershed (Doucet-Beaupré et al. 2012). 

MATERIALS AND METHODS

As restricted by permit rules for small populations, man-
tle clips were made for Pyganodon grandis collected in shallow 
coastal areas and stream mouths across the Lake Erie water-
shed in the summers of 2010 and 2011 (Fig. 1): Lake St. Clair 

delta region (N =13), the western basin of Lake Erie (N = 
103), Sandusky Bay area (N = 54), the central basin of Lake 
Erie (N = 75), and the Niagara River (N = 55). These basins 
differ in depth, with a maximum in Lake St. Clair of 6 m, a 
maximum of 10 m in the western basin of Lake Erie, and of 
25 m in the central basin, an area also impacted by hypoxia 
(Zhou et al. 2013). Sandusky Bay is a shallow zone at only 1–3 m 
depth draining at the western edge of the central basin. A 
ridge and islands separate these basins, and another deeper 
ridge separates the central and eastern basins, the latter of 
which drops below 60 m. The lake drains east through the 
Niagara River. These differences in depth impact the struc-
ture of rivers, which once extended farther before Lake Erie 
rose to its present level at about 174 m elevation (Bolsenga 
and Herdendorf 1993). Streams in the western basin and 
Sandusky Bay are lake-infl uenced with low fl ow (sometimes 
called freshwater estuaries), supporting mussels (Prescott 
2014). Many eastern rivers drop off quickly and with high 
fl ow rates limiting sampling.

Additional sequences were derived from Doucet-
Beaupré et al. (2012). This material was 
broken into two groups, samples in the 
upper Mississippi River and upper 
Great Lakes watersheds, which included 
Michigan, Indiana, Wisconsin, and 
southern Minnesota as one clade 
(their Fig. 5), and samples from above 
Minneapolis as a second clade: Rice 
River (46.533°N, -93.320°W), Pfeiffer 
Lake (47.752°N, -92.477°W), Prairie 
River (47.239°N, -93.482°W), Deer 
Lake (47.825°N, -93.375°W) and the 
Minnesota River and several small lakes 
above Montevideo, MN (44.996°N, 
-95.691°W). 

Direct sampling in the lake is gen-
erally difficult because of low unio-
nid densities and high water depth, 
although 30 of the samples were juve-
niles collected in Maumee Bay of the 
Western Basin following a seiche in 
December, 2011 (Bryan et al. 2013). 
Mussel rakes were used to collect most 
samples, and brailing with hands and 
feet was applied in shallow river mouths 
and marshes adjacent to these basins, 
with sampling as close to the lake as 
possible. All tissue clips were preserved 
in 95% ethanol.

Total DNA was extracted using a 
Qiagen DNeasy extraction kit, except 
that only 1– 2 mg of mussel tissue was 

Figure 1. Filled circles represent sampling sites of Pyganodon grandis within the major bathy-
metric basins of the Lake Erie watershed within the Laurentian Great Lakes region of North 
America: Lake St. Clair delta region in (1) Pollet Bay, (2) Goose Bay, and (5) Little Muscamoot 
Bay; in the western basin of Lake Erie, (13) Maumee Bay-Bayshore, (49) North Maumee Bay, 
(15) Monroe Power Plant Discharge, (18) Cedar Creek Marina, (19) Crane Creek Marsh, (20) 
Turtle Creek Marsh, (21) Toussaint Creek mouth, (22) Portage River, and (23) Young Marsh; 
in Sandusky Bay, (24) Muddy Creek Bay, (25) Sandusky Bay and diverse small tributaries (Yel-
low Swale, South Creek, Raccoon Creek); in the central basin of Lake Erie, (PB) Plum Brook, 
(31) Old Woman Creek, (CC) Cranberry Creek, (36) Presque Isle Bay, (37) Thompson Bay, 
and the Duck Pond at Presque Isle; and in the Niagara River, (47) Strawberry Island and (48) 
Spicer Creek near Grand Isle. Collection areas from Doucet-Beaupré et al. (2012) and 7 addi-
tional specimens from the upper Mississippi River and the Red River of the North are indicat-
ed on the inset map. Open circles indicate areas surveyed where no P. grandis were obtained. 
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used in each extraction (Krebs et al. 2013). Any more tissue 
can cause extraction problems, as the exudate becomes vis-
cous (Liu and Mitton 1996). A segment of the female mito-
chondrial DNA cytochrome oxidase subunit 1 (COI) was 
amplifi ed using the primer pair LCOI490 5′-GGT CAA CAA 
ATC ATA AAG ATA TTG G; HCO2198 5′-TTA ACT TCA 
GGG TGA CCA AAA AAT CA (Folmer et al. 1994) in 25 μL 
volumes consisting of 10 μL of deionized water, 5.5 μL of 
GoTAQ buffer (Promega), 2.75 μL of 2.5 mM dNTPs, 2.75 μL 
of each primer at 2.5 mM, and 2.75 μL of 0.25 mM MgCl

2
. To 

this reaction mix, 0.15 μL per reaction GoTAQ polymerase 
was added, from which 24 μL were added to 1 μL DNA tem-
plate. The initial denaturation phase was 2 min at 94 °C, fol-
lowed by 35 cycles of DNA denaturation for 30 sec, primer 
annealing at 49 °C for 30 sec, and polymerization extension at 
72 °C for 45 sec. After amplifi cation, unused primers were 
degraded using 3 μl of a mixture of Exonuclease I (Amersham 
Biosciences cat# E70073X, 10 U/ml) and Shrimp Alkaline 
Phosphatase (SAP) (Amersham Biosciences cat# E70092X 
1 U/ml) combined as 78 μl ddH2O, 2 μl ExoI, and 20 μl SAP. 
Reactions were incubated at 37 °C for 40 min followed by 
80 °C for 20 min to denature enzymes. For sequencing at the 
Cleveland Clinic sequencing facility, 5 μl of each amplifi ed 
product was transferred to a 96-well plate with 3 μl of primer 
LCOI490 to provide 630 bp of readable 
sequence, as new technology has greatly 
reduced signal-to-noise ratios. Samples 
with ambiguities were sequenced in the 
reverse direction, except in a few sam-
ples where the fi rst few base pairs were 
not readable, but they otherwise matched 
an identifi ed haplotype. 

Sequences of individuals collected 
across the Lake Erie watershed were 
entered into DnaSP V 5.1 to defi ne hap-
lotypes from which phylogenetic rela-
tionships and haplotype networks were 
constructed in Network V 4.6.1 (Röhl 
2004), applying the median-joining 
algorithm (Bandelt et al. 1999) followed 
by the post-processing Steiner algorithm 
(Polzin and Daneschmand 2003) to 
remove unnecessary median vectors and 
non-parsimonious links. A weighted 
genetic distance, ε, was zero, the default 
value (Röhl 2004). Polymorphic sites, 
transitions, and transversions were 
weighted equally. Allele frequencies by 
regions were compared with rarefacted 
frequencies based on one less than the 
smallest sample size, or an N of 12, in 
PAST 3.0 (Hammer et al. 2001). Analysis 

of Molecular Variance (AMOVA), pairwise F
ST

 analyses and a 
test of neutrality, i.e., Tajima’s D (Tajima 1989), were run in 
ARLEQUIN version 3.5.1.2, using 30,000 permutations for 
tests of signifi cance (Excoffi er and Lischer 2010). Tajima’s D 
contrasts ϴ

s
, the estimation of 4Nμ based on the number of 

segregating sites, and ϴπ, the estimation of 4Nμ based on 
nucleotide differences, which are predicted to be the same 
under neutral evolution and a stable population size. Mismatch 
analysis was run to compare observed pairwise differences and 
the frequency of segregating sites to that predicted with popu-
lation expansion in ARLEQUIN and DnaSP 5.10 (Librado and 
Rozas 2009).

RESULTS

Haplotype frequencies were separated by area of origin 
within the network (Fig. 2) to show spatial dispersion and to 
identify differences among 34 haplotypes across Lake Erie 
(Table 1, accession numbers (KM262507- KM262540). The 
most common haplotype (H1) was observed for 250 of 300 
(83%) Pyganodon grandis sampled in the Lake Erie water-
shed, which included coastal refuges and stream mouths near 
Lake Erie, Lake St. Clair, and within the Niagara River above 

Figure 2. Haplotype network for a fragment of the COI gene amplifi ed for Pyganodon grandis 
collected across the Lake Erie watershed: Lake St. Clair, Western basin, Sandusky Bay, Central 
Basin and from the Niagara River off the Eastern Basin, as well as areas west of Lake Erie and 
Upper MN, including the upper Minnesota River and the Red River of the North. 
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Niagara Falls. The second most common haplotype from the 
Lake Erie region (H6, N = 6, or 2% of all individuals) occurred 
in 4 of 5 regions; H6 was not found in Lake St. Clair, although 
only 13 P. grandis were obtained for this lake. No other hap-
lotype was found more than 3 times (i.e., above a frequency of 
1%).Where three copies were observed (H14 and H21), each 
derived from more than one basin; even with haplotypes 
found twice, 2 of 8 came from different basins. The consis-
tency of haplotype sharing suggested little genetic differentia-
tion across this large watershed, a result confi rmed by 
AMOVA, in which the among-basin component of variation 
was almost non-existent (F

ST
 = 0.00), and neither were any 

pairwise F
ST

 values within the Lake Erie watershed signifi -
cantly different from zero (Table 2). The only pattern to 
genetic variation within the lake was less haplotype diversity 
at the edges of the survey range, Lake St. Clair (0.15) and the 
Niagara River (0.27) compared to that observed (0.30–0.37) 
in the western and central basins and Sandusky Bay, which 
was a pattern that held for nucleotide diversity (π) and rar-
efi ed allele numbers as well (Table 1). 

Within regions, the pattern of haplotype variation did 
not match that predicted under a mutation-drift or population-
size equilibrium. Tajima’s D differed signifi cantly (ϴ

s
 >> ϴπ) 

except in Lake St. Clair where sample numbers were small. 
A complementary test, mismatch analysis (in ARLEQUIN and 
DnaSP), indicated no signifi cant difference from predictions 
under population expansion (P > 0.05) either per site or 
when pooling data for all of Lake Erie; pairwise differences 
produced a unimodal plot and a plot of variation in segregat-
ing sites was overrepresented by small differences among 
individuals (results not shown).

Variation outside of Lake Erie comprised 13 haplotypes 
of which only two (H1 and H26) overlapped with haplotypes 
found in Lake Erie. Concordant with levels of variation across 
all of Lake Erie, 50 of 57, or 87% of individuals collected west 
of the Lake Erie watershed, but excluding those individuals 
from areas upstream of Minneapolis, MN (about 45° lat.) 
possessed the H1 haplotype. Pairwise F

ST
 for this group com-

pared with the fi ve Lake Erie regions suggested no signifi cant 
differences at an experiment-wise level, and only a possible 
difference with the farthest population, that from the Niagara 
River (Table 2).

However, haplotypes of Pyganodon grandis from above 
Minneapolis differed from those of all other areas. Only one 
of 37 individuals possessed the H1 haplotype, 4 others pos-
sessed related but private haplotypes, and those collected 
farthest north composed a separate lineage in the network 
(Fig. 2) that came out as basal in a phylogenetic tree (Fig. 3). 
Inclusion of these data produced signifi cant population 
structure (F

ST
 of 0.416, P < 0.001) with pairwise F

ST
 values 

ranging between 0.56 and 0.71 (Table 2, all P < 0.001). 
Furthermore, haplotype frequencies followed those expected T
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under neutrality, with Tajima’s D not significantly differ-
ent from zero (Table 1), and P values in mismatch analy-
sis closer to signifi cance than for any other population. 
Restricting mismatch analysis to the 32 most northern indi-
viduals (those at the very top of the Mississippi watershed 
or within the Red River watershed), suggested rejection of 
a hypothesis of demographic (P = 0.054) and spatial (P = 0.023) 
expansion.

All sequences in Fig. 2 are monophyletic and closely 
related members of Pyganodon grandis (Fig. 3) within clade B 
for this species (Doucet-Beaupré et al. 2012). The one anoma-
lous haplotype (identifi ed as H lac in Fig. 3) from an individual 
reported morphologically to be a P. grandis from the Lake St. 
Clair region differed from all P. grandis haplotypes and was just 
87.9% similar to the common haplotype, H1 (differing for 76 
of 630 bases). A blast search in GenBank identifi ed the mtDNA 
haplotype as 94% identical to a P. lacustris (Lea, 1852) sequence 
(GenBank accession # HM849110.1) and 96% identical to 
accession # EF418018.1, which Cyr et al. (2007) called 
Pyganodon species A, and which Doucet-Beaupré et al. (2012) 
placed within a P. lacustris haplotype lineage. 

DISCUSSION

The distribution of female COI mtDNA haplotype varia-
tion in the Lake Erie watershed provided no evidence of pop-
ulation structure; genetically, Pyganodon grandis in Lake Erie 
appears to be one panmictic population. However, the 
observed distribution was signifi cantly different from that 
expected under a neutral equilibrium model despite the often 
weak power of Tajima’s D (Zhai et al. 2009). Basically, while 
a neutral, infi nite-allele model is appropriate for assessing 
variation in this species, drift-mutation equilibrium was not 
indicated. For one, that process is predicted to generate a 
Poisson frequency distribution of haplotypes and not a star 
pattern of one common haplotype and many rare ones 
(Braverman et al. 1995). 

Instead, two alternative processes are likely occurring, 
which can generate the high number of rare haplotypes 
observed. First, an excess of low frequency variant haplotypes 
is consistent with strong purifying selection, especially for a 
large population within a continuous environment (Hedrick 
2011, p. 327, Bickel et al. 2013, Krebs et al. 2013); no observed 
variants changed the amino acid coded suggesting that a large 
proportion of the gene cannot be changed. Second, a sweep of 
a common haplotype, even independently of selection, may 
characterize a population that expands rapidly (Avise 2000, 
Śmietanka et al. 2009). Population expansion, a process sup-
ported by mismatch analysis as well as Tajima’s D, has been 
an explanation applied to star phylogenies in groups as 
diverse as alpine shrubs (Li et al. 2010), wild boar (Djan et al. 
2013) and domestic sheep (Arora et al. 2013). The star-
burst pattern appears in several widely dispersed freshwater 
mussel species: Fusconaia flava (Rafinesque, 1820) in the 
Mississippi watershed (Burdick and White 2007), Amblema 
plicata (Say, 1817) (Elderkin et al. 2007), Elliptio dilatata 
(Rafinesque, 1820), and Actinonaias ligamentina (Lamarck, 
1819) (Elderkin et al. 2008 ), and likewise for the less com-
mon Venustaconcha ellipsiformis (Conrad, 1836) across the 
upper Midwest (Zanatta and Harris 2013). Presumably, new 
variants arise but lack time to increase in frequency. As popu-
lations of P. grandis are likely recent (< 12,000 ybp) in this 
young lake (Lewis et al. 2012), and because glochidia of P. 
grandis can attach to scales of diverse fi shes (Watters et al. 
2009), this species is predicted to disperse easily, enabling 
high rates of gene fl ow and a likely original rapid population 
growth after entering the Great Lakes (Doucet-Beaupré et al. 
2012).

The 57 sequences from Michigan and the upper 
Mississippi watershed mirrored Lake Erie in diversity, 
expressing the same common haplotype and a few rare and 
related sequences. Variation appeared similar across most of 
the distribution except for the lower levels present in Lake St. 
Clair where the fewest individuals were collected, based on 
both actual allele number and rarefaction analysis. The only 

Table 2. Population pairwise-F
ST

 values among individuals collected from fi ve bathymetrically separate regions of the Lake Erie watershed, as 
well as areas west of Lake Erie, and Upper Minnesota, including the upper Minnesota River and the Red River of the North1.

Region Lake St. Clair Western Basin Sandusky Bay Central Basin Niagara River West of Lake Erie

Western Basin -0.033 
Sandusky Bay -0.019 0.007 
Central Basin -0.030 0.002 -0.000 
Niagara River -0.016 0.004 0.005 -0.004 
West of Lake Erie1 -0.003 0.006 0.007 0.001 0.010* 
Upper Minnesota1 0.559*** 0.707*** 0.627*** 0.658*** 0.664*** 0.677*** 

1 all samples outside the Lake Erie watershed except N = 7 from Doucet-Beaupré et al. (2012) 
* P < 0.05, *** P < 0.001
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structure among the Pyganodon grandis populations analyzed 
relates to the very top of the Mississippi River watershed 
where the Mississippi watershed abuts the tributaries of the 
Red River of the North. Although all of these sequences fall 
within the P. grandis clade B, and they differ sequentially by 
just one or two base changes (Fig. 2), they compose the base 
of clade B (Fig. 5 in Doucet-Beaupré et al. 2012). Allelic 

richness was largest and those haplotypes were not found in 
individuals collected farther south in the Mississippi or in the 
Great Lakes watershed. The genetic connection to this lineage 
was H45, found in northern Wisconsin (Annabelle Lake and 
the St. Germaine River). That related sequences of this lin-
eage occurred in Lake Erie (H8, N = 2, Sandusky Bay and 
H25, Central Basin), while H1 occurred high the Mississippi 
River watershed, suggests some historical or recent exchange 
across this region, but also signifi cant isolation. 

Prehistorically, the south end of Lake Traverse, MN 
(45.70°N, -96.75°W) was the southern outlet of glacial Lake 
Agassiz across the Traverse Gap, which drained south as 
Glacial River Warren up to 9400 ybp and carved out the val-
ley now occupied by the present-day Minnesota River 
(Ojakangas and Matsch 1982, pp. 109–110, Fisher 2003). 
Because present dikes exceed the height of the continental 
divide (299.9 m), fl oods potentially may allow water to fl ow 
from Traverse Lake into the Little Minnesota River, and the 
Little Minnesota River has fl ooded high enough to cross the 
Traverse Gap (Minnesota Department of Natural Resources 
2007), a result that may occasionally connect the fauna of 
these two drainages (Graf 1997). Because Fusconaia fl ava 
(Rafi nesque, 1820) from the Red River area possessed little 
genetic variation, Burdick and White (2007) argued for recent 
migration by mussels northward. The opposite pattern was 
found in Pyganodon grandis, as more genetic variation and 
many private alleles characterized the northern population. 
This result raises the intriguing possibility that P. grandis sur-
vived in a northern glacial refuge that remained largely sepa-
rate from the Mississippi River watershed. The “Driftless 
Area” of the upper Midwest (Rowe et al. 2004) is a possibility, 
with populations of this lacustrine species possibly expanding 
northward into Glacial Lake Agassiz. 

With respect to Lake Erie, the present results for genetic 
variation in Pyganodon grandis paint a simple and perhaps 
predictable pattern within the region, one of panmixis, or a 
population suffi ciently large that genetic drift following pop-
ulation declines even after invasion of dreissenid mussels 
(Schloesser et al. 1997) had little effect on patterns of varia-
tion. Corroborating these results with nuclear markers and 
male mtDNA is of interest, but collection of whole animals 
for gonadal tissue while assessing population presence in ref-
uges was not appropriate. In the future, primers may be 
derived from those reported to work in Anodonta cygnea 
(Linnaeus, 1758) (Chong et al. 2009) and Lasmigona costata 
(Rafi nesque, 1820) (Galbraith et al. 2011). Relevant to mito-
chondrial results, population structure is signifi cantly greater 
for maternal than paternal mtDNA haplotypes in Lampsilis 
siliquoidea (Barnes, 1823), and variation in allozymes for 
L. siliquoidea (Berg et al. 2007) was similar to patterns seen in 
male haplotypes (Krebs et al. 2013); few differences occurred 
among streams. Multiple studies show longer branch lengths 

Figure 3. A Neighbor Joining tree for the 45 haplotypes of a frag-
ment of the COI gene presented in the network in Fig. 2, and one 
anomalous haplotype identifi ed as “H lac” at the base of the tree, 
which was an individual from the Lake St. Clair region reported 
morphologically to be a Pyganodon grandis. This one sequence was 
just 87.9% similar to the common haplotype, H1 (differing for 76 
of 630 bases).
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within trees using male versus female mtDNA sequence data 
(Breton et al. 2007). However, while within-species diver-
gence in paternal mtDNA sequence exceeds that of maternal 
mtDNA in P. grandis (Liu, Mitton and Wu 1996, Krebs 2004), 
differences between mitotypes in P. grandis from two 
Colorado watersheds also could not be explained by gene 
fl ow, and both genetic forms suggested similar levels of isola-
tion (Liu, Mitton and Herrmann 1996). 

Sample sizes in the present study were comparable to 
other recent haplotype studies of unionids (Burdick and 
White 2007, Elderkin et al. 2007, 2008), providing the power 
to detect differences in haplotype variation among basins. 
Population size is thought to have remained greater in the 
shallow western basin (Herdendorf 1987, Metcalfe-Smith et al. 
1998), which often correlates with higher levels of genetic 
variation. No differences were suggested, however, even 
between samples from the Niagara River and those from the 
Lake St. Clair region, which are separated by ~500 km of 
water. The one caveat was that the most eastern site (Niagara 
River) differed most from samples west of the Lake Erie 
watershed. The only sample set differing from all of Lake Erie 
was for individuals 1000 km farther west, reaching an area 
with an abrupt haplotype transition.

Regionally, our results may provide a null model for 
other species within the Laurentian Great Lakes and the 
Upper Mississippi watershed. Most species in Lake Erie were 
historically numerous even if now they are reduced in abun-
dance (Crail et al. 2011). More work will be needed to identify 
whether extant populations have become genetically struc-
tured. Understanding what regulates their distribution is 
critical, as perhaps 70% of freshwater mussels in North 
America are listed as endangered, threatened, or as species of 
concern (Williams et al. 1993, Master et al. 2000). Here we 
show that even as the distribution of Pyganodon grandis has 
been reduced, bathymetric features may not appear to restrict 
gene fl ow in this lacustrine freshwater mussel, although the 
short number of generations since the decline has limited the 
time when alleles would be lost through lineage sorting. 
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