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Abstract Understanding genetic diversity across

large spatial scales helps to reveal patterns of popu-

lation structure. Mitochondrial DNA sequences and

microsatellite loci were used to analyze the phylo-

geography of a common unionid species (Lasmigona

costata) from the Laurentian Great Lakes and histor-

ically connected river drainages. Phylogeographic

patterns were assessed to determine colonization

routes into the Great Lakes following glacial reces-

sion. A suite of seven microsatellite loci were

genotyped and a fragment of the mitochondrial gene

COI was sequenced. Multiple analyses using

microsatellite allele frequencies suggest at least two

distinct genetic populations for L. costata. A total of

seven hypothesized post-glacial dispersal scenarios

were compared using isolation by distance to test the

various dispersal models. Evidence was strongest for

two post-glacial dispersal routes into the Great Lakes:

one utilizing a connection between the Wabash and

Maumee River watersheds, and one utilizing a

connection between the Wisconsin River and Green

Bay watersheds. A highly differentiated and mono-

phyletic population of L. costata was identified in the

Ozark Highlands, which may constitute a unique

taxonomic entity.

Keywords Freshwater mussels � mtDNA �
Microsatellites � Glacial refugia � Population genetics

Introduction

Gaining an understanding of phylogeography and

population structure is important for the conservation

of imperiled species. Conservation and restoration

projects involving relocation and captive propagation

should be limited to areas with similar genetic profiles

when possible, and priority for conservation should be

assigned to populations and geographic regions with

higher and/or unique genetic diversity (Jones et al.,

2006; Fraser, 2008). Recent glaciation events have
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influenced the current distribution patterns and popu-

lation genetic structure ofNorthAmerican biodiversity

(Pielou, 1991; Hewitt, 1996; Soltis et al., 2006).

Phylogeographic studies on aquatic organisms have

led to increased understanding of shifting drainage

patterns following the last Pleistocene glacial reces-

sion (e.g., Roe et al., 2001; Soltis et al., 2006; Inoue

et al., 2013; Zanatta & Harris, 2013). Using the

population, genetic structure of common and wide-

spread species assists in the understanding of how

drainage patterns have changed over time, which will

help make inferences regarding the population genetic

structure of rare species (Berg et al., 1998; Galbraith

et al., 2015).

The Pleistocene epoch lasted from approximately

2.5 million years ago to 10,000 years ago (Pielou,

1991). Throughout this period, ice sheets advanced

and retreated across much of northern North America

with the Laurentide ice sheet covering much of eastern

and central North America and the Cordilleran ice

sheet in the west (Pielou, 1991). The scouring force of

the Laurentide ice sheet was responsible for creating

the Great Lakes basins. Glaciers covered the Lauren-

tian Great Lakes region at least six times in the last

million years (Larson & Schaetzl, 2001). After the

final glacial recession, approximately 10,000 years

ago, glacial meltwater filled these basins producing

large proglacial lakes. Isostatic rebound, channel

erosion, and shifting lake outlets caused dramatic

variations in lake size, water levels, and watershed

configuration before reaching their current state

(Pielou, 1991; Larson & Schaetzl, 2001; Calkin &

Feenstra, 1985; Hansel et al., 1985).

The Great Lakes and St. Lawrence River water-

sheds currently support 47 species of freshwater

mussel and the genetic structure among populations

should largely be influenced by historic range

expansion and contraction (Hewitt, 1996, 2000;

Excoffier, 2004; Haag, 2010). During peak glacia-

tions, the ranges of aquatic organisms were reduced

to smaller refugia (Soltis et al., 2006). In North

America, river systems in the Ozarks Highlands of

southeastern Missouri and northern Arkansas and

the Ohio, Tennessee, and Cumberland river systems

have been identified as potential refugia for mussels

in the glaciated portions of the Mississippi River

watershed, as well as the Great Lakes region

(Johnson, 1978; Zanatta & Murphy, 2008). Multiple

dispersal routes for colonization of the Great Lakes

have been suggested (van der Schalie, 1945; Man-

drak & Crossman, 1992; Graf, 2002; Elderkin et al.,

2007), however, understanding these pathways and

the genetic consequences that have resulted from

post-Pleistocene colonization often requires species-

specific data. The genetic diversity of mussel

populations found in previously glaciated areas is

typically lower than genetic diversity in non-

glaciated regions, presumably due to founder effects

(Hewitt, 1996; Zanatta & Murphy, 2007, 2008;

Inoue et al., 2013; Zanatta & Harris, 2013; Scott

et al., 2014). However, if a recently exposed

watershed is colonized via dispersal routes from

multiple refugia, genetic diversity may be higher

due to the mixing of divergent lineages.

Lasmigona costata (Rafinesque, 1820), fluted-

shell, is a relatively widespread and common mussel

found throughout the Mississippi and Ohio rivers

extending into the Great Lakes watershed (draining

to the Atlantic Ocean) and the Red River of the

North that drains into the Arctic Ocean (Watters

et al., 2009; Haag, 2010). Unionid populations in

the Great Lakes region have declined in large part

due to the introduction of dreissenid mussels

[Dreissena polymorpha (Pallas, 1771) and Dreissena

rostriformis bugensis (Andrusov, 1897)] beginning

in the late 1980s (Ricciardi & MacIsaac, 2000;

Carlton, 2008). Lasmigona costata is so named due

to the ridges found along the posterior of its dorsal

margin. This fast-growing unionid belongs to the

tribe Anodontini and can attain a large size, with a

maximum length of 150 mm, but is relatively thin

shelled and laterally compressed. Lasmigona costata

is known to have over 25 potential host fish species

from multiple different families, making this species

a host-fish generalist (Watters et al., 2009; Cum-

mings & Watters, 2010; Haag, 2012). The large

range and relatively high abundance make L.

costata an ideal species for understanding freshwa-

ter mussel genetic structure. Captive propagation

programs are an integral part of freshwater mussel

recovery plans, highlighting the need for large-scale

assessment of freshwater mussel genetic structure

(Haag & Williams, 2014).

Using microsatellite genotypes and mitochondrial

sequence data, this study analyzes the phylogeography

of L. costata to determine genetic structure and test

hypotheses of post-glacial colonization into the Great

Lakes.
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Methods

Sampling locations, species, and protocol

Lasmigona costata specimens were collected from 14

sites across eight major regions (Fig. 1): Lake Erie

tributaries (MI) [Black R. (BL) and Belle R. (BEL)],

Maumee River drainage [Auglaize R. (AU) and St. Joe

R. (EFWB)], Wabash River drainage [White R. (WH)

and Eel R. (EEL)], Lake Michigan and Lake Huron

tributaries (MI) [Grand R. (GR) and Saginaw R. (SA)],

Illinois River drainage [Kankakee River (IL)], Green

Bay drainage [(Red R. (RE) and Wolf R. (WO)],

Wisconsin River drainage [Upper Wisconsin R.

(UW)], and the Ozark highlands [Bourbeuse R. (BO)

and Gasconade R. (GA)]. These drainages were

chosen specifically to test three hypothesized post-

glacial colonization routes: (1) between the Maumee

and Wabash river watersheds (Hypothesis A), (2)

between the Illinois river and Lake Michigan water-

sheds (Hypothesis B), and (3) between the Wisconsin

River and Green Bay watersheds (Hypothesis C).

Mussels were sampled snorkeling or using tactile

search methods for at least 2.5 person hours. Each

individual was measured for length (mm) using

calipers and age was estimated using length-at-age

parameters (K = 0.25, Linf = 133.9, t0 = 0.049)

found in Haag & Rypel (2011).

DNA extraction

A non-lethal biopsy technique developed by Berg

et al. (1995) was performed to obtain a small

(*1 cm2) sample of mantle tissue. Biopsied tissue

samples were then stored in 95% ethanol until they

could be processed in the lab. Total genomic DNAwas

extracted from tissue samples using an alcohol

extraction method similar to Sambrook et al. (1989).

Fig. 1 Collection locations for unionids (green triangles) and

major watershed or region denoted by color. Approximate

location of the hypothesized connection between the Wabash

and Maumee River watersheds (A), approximate location of the

hypothesized connection between the Illinois River watershed

and Lake Michigan (B), and approximate location of the

hypothesized connection between the Wisconsin River and the

Green Bay watersheds (C). Inset is a map of North America

showing the location of the study area

Hydrobiologia

123

Author's personal copy



Tissue samples were placed in a 1.5-ml tube along

with 250 ll of 1 9 lysis buffer and 15 ll of proteinase
K (20 mg/ml). The samples were incubated for at least

16 h at 37�C. Following incubation, 500 ll of 80%
isopropanol and 10 ll of 5 M NaCl were added and

each sample was centrifuged for 45 min at

13,300 rpm. The supernatant was discarded and a

second alcohol wash was performed with 1,000 ll of
70% ethanol, centrifuging for 45 min, to further purify

the genomic DNA. The supernatant was discarded and

the DNA pellet was re-suspended in 150 ll ddH20.

Microsatellites

Seven microsatellite loci were amplified for L. costata

(LcoD10, LcoD48, LcoD50, LcoB114, LcoC75,

LcoD162, and LcoD158; Galbraith et al., 2011) with

reagent concentrations as in Galbraith et al. (2015).

Amplifications were run with the following condi-

tions: 94�C for 10 min followed by 40 cycles of 94�C
for 45 s, annealing temperature (48�C for C75; 50�C
for LcoD162; 52�C for LcoD10, LcoD50, LcoB114,

and LcoD158; and 52.8�C for LcoD48) for 1 min, and

72�C for 1 min. The samples were held at 72�C for

20 min for a final extension.

Microsatellite PCR fragments were stained with

SYBRGreen and visualized to verify PCR success and

fragment length using gel electrophoresis with a 1.5%

agarose gel. Using an Applied Biosystems (ABI) 3730

DNA analyzer, all microsatellite loci were genotyped

and alleles were scored using algorithms in GENE-

MARKER software (2010 SoftGenetics LLC, Penn-

sylvania) and subsequently proofread and confirmed

by eye.

Each microsatellite locus was assessed for likeli-

hood of null alleles using the method developed by

Brookfield (1996) and executed in MICRO-

CHECKER v 2.2.3 (Oosterhout et al., 2004). The

number of alleles, the number of private alleles,

observed and expected heterozygosity, and deviations

from Hardy–Weinberg equilibrium were calculated

for each locus-population combination using GENA-

LEX v.6.5 (Peakall & Smouse, 2012) and mean allelic

richness was calculated using FSTAT v. 2.9.3.2

(Goudet, 1995). One locus (LcoD48) was out of

HWE at 4 sampling locations. Analyses were run both

with and without this locus. Linkage disequilibrium

was calculated using GENEPOP v.4.2 (Raymond &

Rousset, 1995). Linkage disequilibrium was analyzed

using the log-likelihood ratio statistic with a demem-

orization number of 1,000 with 100 batches and 1,000

iterations per batch.

Microsatellite genotype data were compared at

multiple loci using a Bayesian clustering analysis,

implemented in STRUCTURE v.2.3.3 (Pritchard

et al., 2000). This analysis assessed the most likely

number of populations (K) ranging from 1 to 15 (i.e.,

for the 14 sampling locations) and using 200,000 burn-

in steps and an additional 200,000 Markov chain

Monte Carlo (MCMC) repeats. This analysis assumed

no a priori sampling location information, allowed for

admixture, and was iterated 7 times for each assumed

K. STRUCTURE HARVESTER (Earl & vonHoldt,

2012) was used to group individuals into the most

likely number of populations (K) using the Evanno

et al. (2005) DK method.

Analysis of Molecular Variance (AMOVA) was

implemented using GENALEX to test the significance

of genetic structure among sampling locations. Dif-

ferentiation among sampling locations was estimated

by calculating pairwise FST with P values obtained

using 9,999 permutations of the dataset.

A neighbor-joining (NJ) tree was created with the

program TREEFIT (Kalinowski, 2009) using Nei’s

genetic distance matrices (Nei, 1972). Genetic dis-

tances between populations were compared to genetic

distances in the tree to calculate an R2 value, assessing

overall fit of the distances to the topology.

Mantel tests were performed using GENALEX to

test for isolation by distance (Mantel, 1967). Lin-

earized FST [FST/(1 - FST)] was used as a measure of

genetic distance between sites. Geographic river

distances (km) between sites were calculated using

Google Earth v. 7.1 (Google Inc., 2009). Straight-line

distance was used when measuring across lakes.

Mantel tests were conducted under a variety of

scenarios utilizing different hypotheses regarding

post-glacial colonization routes (Fig. 1 and permuta-

tions among these routes; n = 7 hypotheses). Each

Mantel test was evaluated and compared based on

strength of regression and P value to determine which

model best explained the data.

Mitochondrial DNA

A fragment of the female lineage mitochondrial gene

cytochrome c oxidase subunit I (COI) was amplified

for a subset of individuals per site using the COI
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primers and polymerase chain reaction (PCR) condi-

tions described in Campbell et al. (2005). To confirm

amplifications, mitochondrial PCR fragments were

stained with SYBR Green and visualized using gel

electrophoresis with a 1.5% agarose gel. After veri-

fication of amplification, reactions were purified using

Exonuclease I (Amersham Biosciences cat#

E70073X, 10 U/ml) and Shrimp Alkaline Phosphatase

(Amersham Biosciences cat# E70092X 1 U/ml). A

solution was created with 78 ll ddH2O, 2 ll ExoI, and
20 ll SAP and then 1.5 ll of this mixture was added to

each PCR product. Reaction products were incubated

at 37�C for 40 min then 80�C for 20 min to denature

enzymes. The 50 end of the amplified COI region was

cycle sequenced using a ‘Big Dye’ Terminator Cycle

Sequencing Ready Reaction (Applied Biosystems,

Inc.) with the forward COI primer. The reaction was

visualized on an ABI 3100 automated DNA

sequencer.

Mitochondrial DNA sequences were proofread

using 4PEAKS v.1.7.1 (Griekspoor & Groothuis,

2006) and edited using MESQUITE v.3.0 (Maddison

& Maddison, 2008). Sequences were aligned using

CLUSTAL W v.2.1 (Larkin et al., 2007). Unique

haplotypes were identified for each species using

COLLAPSE v.1.2 (Posada, 2004). Missing nucleo-

tides and gaps were defined as missing data. The

number of polymorphic sites and nucleotide diversity

(p) were calculated using ARLEQUIN v. 2.0 (Sch-

neider et al., 2000). Mean uncorrected (p) genetic

distances between groups were calculated using

MEGA 6 (Tamura et al., 2013). TCS v.1.21 (Clement

et al., 2000) was used to create a haplotype network

using a 95% connection limit with gaps defined as

missing data. Haplotypes were categorized into hap-

logroups based on haplotype clusters (Elderkin et al.,

2008). Loops and reticulations in the haplotype

network were resolved using the method described

in Fetzner & Crandall (2003).

A phylogenetic analysis using Bayesian inference

was performed using MRBAYES v.3.2.2 (Ronquist

et al., 2012). The initial model of evolution

(HKY ? G) was determined by comparing 24 models

of evolution in MRMODELTEST v.2.2 (Nylander,

2004). MRBAYES was run using 1,000,000 genera-

tions and six concurrent Markov Chains and 2 hot

chains sampled at intervals of every 100 generations

for a total of 60,000 trees. A 25% burn-in (15,000

trees) was used to ensure stationary of the log-

likelihood values. Additional COI sequences were

obtained from GenBank for use as outgroups and

additional ingroups (Online Resource 1).

Results

A total of 451 L. costatawere collected at 14 sites from

14 rivers in 8 major watersheds (Table 1). Based on

shell lengths (�x = 104.5 ± 16.8 mm S.E.), all L.

costata specimens were estimated to be between 2

and 20 years old, with a mean age of 6.8 years.

Microsatellite DNA Genotypes

Genotypes from 444 L. costata were obtained, of

which 401 individuals amplified at more than 5 loci

and were used in all of the analyses (Table 1).

MICROCHECKER was implemented to evaluate the

probability of null alleles and scoring errors at each

locus using the Brookfield (1996) method. All loci had

low estimated probabilities (P\ 0.1) of null alleles.

No scoring errors due to stutter or large allele dropout

were found at any of the microsatellite loci. The

number of alleles, number of private alleles, mean

allelic richness, and the observed and expected

heterozygosity for each locus-population combination

were calculated (Table 2). Deviations from HWE for

L. costata using a Bonferroni adjusted a of 0.0005

showed that one locus, LcoD48, was out of HWE at 4

sampling locations. All analyses were performed both

with and without this locus and results were congruent,

therefore LcoD48 was included in the results reported.

No significantly linked loci were found at any

sampling locations.

Using the data generated from the STRUCTURE

analysis, the Evanno et al. (2005) DK method indi-

cated the most likely number of populations is 4, with

a probability of LnP(K) = -13525.1875 (DK = 3.45,

Fig. 2). STRUCTURE clustered most individuals

from the Wabash and Lake Erie drainages together.

The Grand R. and Saginaw R. were also clustered

together, as well as another strongly differentiated

group comprised of the Ozark individuals. The

Wisconsin R., Illinois R., and Green Bay samples

showed high admixture between these putative

populations.

AMOVAwas performed using all sample sites with

n[ 10. The global FST values for L. costatawas 0.037
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(P\ 0.001). Pairwise FST values for all site combi-

nations were calculated (Table 3). The majority of

pairwise FST values were highly significant

(P\ 0.001), however some notable exceptions were

between the St. Joseph R. and the Auglaize R. in the

Maumee R. watershed, and also between Wolf R. and

the Red R. in the Green Bay watershed. The NJ

network for L. costata explained 95.5% of the pairwise

genetic distance data used to calculate the NJ network

(Fig. 3). The results from the NJ network, AMOVA,

and STRUCTURE analyses were congruent.

Various hypotheses of post-glacial colonization

were tested using linear regression and Mantel tests

(Table 4). The model explaining the most genetic

differentiation by geographic distance was the model

including the Wabash R.-Maumee R. and Wisconsin

R.-Green Bay colonization routes (Hypothesis A ? C;

Fig. 4; R2 = 0.19; P = 0.001). However, the model

that included all hypothesized colonization routes

(Hypothesis A ? B ? C) also showed significant

isolation by distance (R2 = 0.17; P = 0.002), but

did not differ strongly from the results generated with

only hypothesis A ? C. No other models of isolation

by distance tested were statistically significant

(P[ 0.05).

Mitochondrial DNA sequences

Sequencing of the mitochondrial DNA (mtDNA) COI

gene produced consistent fragments of 481 bp for 59

L. costata (Table 5). Seventeen unique haplotypes

were found (Genbank Accession #KU985185-

KU985201). The number of individuals sequenced

(range 2–25), the number of haplotypes for each

population (range 1–5), the average number of pair-

wise differences (range: 0 to 4), the number of unique

haplotypes for each major watershed (range 0–3), and

the average nucleotide diversity (p) for each major

watershed or region (range: 0 to 0.00858) are found in

Table 5.

Phylogenetic analysis for L. costata (Fig. 5)

showed strong support for this species forming a

monophyletic clade (posterior probability = 0.999)

and three haplotypes found in the Ozark Highlands

(Hap 15, Hap 16, and Hap 17) formed a monophyletic

clade (posterior probability = 0.886). Mean uncor-

rected (P) genetic distance between the Ozark high-

land clade and all other L. costata COI haplotypes was

estimated at 2.82%. Three haplogroups were identified

(Fig. 6). The Ozark Highland region formed one

unique haplogroup and the other two haplogroups are

Table 1 Number of Lasmigona costata collected at each sampling site with corresponding site codes

Watershed/region Sites Site code Latitude Longitude n Number

genotyped

Lake Erie/St. Clair (MI)* Black R. BL 43�18055.7800N 82�38013.2200W 29 25

Belle R. BEL 42�52022.5000N 82�42030.2000W 31 24

Maumee River Auglaize R. AU 40�4100.0000N 84�1608.5000W 18 18

St. Joe R. EFWB 41�4509.9900N 84�39056.9000W 30 29

Wabash River White R. WH 40�10012.1800N 85� 8057.3000W 30 30

Eel. R. EEL 40�47049.6300N 86�13053.5400W 30 22

Lake Michigan/Huron (MI)a Grand R. GR 42�56039.4800N 85�29032.4900W 98 79

Saginaw R. SA 43�3603.7100N 84�49016.8600W 28 15

Illinois River Kankakee R. IL 41�19019.7000N 88� 9025.3900W 27 27

Green Bay Red R. RE 44�50029.3300N 88�45036.5400W 30 29

Wolf R. WO 44�2700.0000N 88�55058.2600W 30 29

Wisconsin River Upper Wisconsin R. UW 45�49058.4900N 89�32046.9500W 30 29

Ozark Highlands Bourbeuse R. BO 38�26041.0300N 90�54048.6200W 24 24

Gasconade R. GA 37�49017.4100N 92�20040.5100W 24 21

Sites are grouped together based on major watershed or region and GPS position of each site is displayed. Number genotyped

displays the number of L. costata genotyped at 5 or more loci per site
a Collected by Bergner (2013) in 2010
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found throughout the Great Lakes and Mississippi

drainages.

Discussion

Analyses of nuclear microsatellites for Lasmigona

costata revealed evidence for at least two post-glacial

dispersal routes into the Laurentian Great Lakes and

the mtDNA sequence data identified a unique popu-

lation in the Ozark Highlands. The Ozarks are well

known as a region of high endemism for aquatic

organisms (Mayden, 1988; Crandall & Templeton,

1999). Three similar haplotypes were found in the

Ozark Highlands for L. costata, constituting one

haplogroup. These haplotypes are on average 2.82%

divergent from other L. costata haplotypes found in

this study or those included in the analyses from

GenBank. The three unique haplotypes in the Ozarks

form a strongly supported monophyletic clade

(Fig. 5). This intraspecific divergence at COI is much

higher than has been observed for the related species

Lasmigona subviridis (0.17–0.35%; King et al., 1999).

These unique and divergent mtDNA haplotypes,

combined with genetic divergence found in the

microsatellite genotypes suggests that L. costata in

the Ozark Highlands may represent a distinct lineage

and merits further investigation.

Fig. 2 Output from STRUCTURE for Lasmigona costata

showing individual assignment to populations at K = 4

(LnP(K) = -13,525.1875; DK = 2.70). Simulation was per-

formed with 200,000 iterations and 200,000 burn-in iterations

while allowing for admixture. Individuals are along the x-axis

and posterior probabilities of assignment to populations are

along the y-axis. A, B, and C along the x-axis refer to the three

hypothesized post-glacial dispersal routes (Fig. 1)

Table 3 Pairwise FST values (below diagonal) and associated p values (above diagonal) for Lasmigona costata derived from 7

microsatellite loci (Galbraith et al., 2011)

BL AU EFWB WH EEL GR IL RE WO UW BO GA

Black R. – 0.003 * * * * * * * * * *

Auglaize R. 0.014 – 0.462 0.001 0.008 * 0.002 * 0.001 * * *

St. Joe R. 0.020 0.000 – 0.087 * * * * * * * *

White R. 0.020 0.011 0.005 – * * * * * * * *

Eel R. 0.025 0.016 0.022 0.020 – * * * * * * *

Grand R. 0.041 0.050 0.059 0.060 0.065 – * * * * * *

Kankakee R. 0.030 0.018 0.028 0.028 0.033 0.028 – 0.005 0.036 0.001 * *

Red R. 0.044 0.028 0.041 0.038 0.042 0.026 0.011 – 0.442 0.023 * *

Wolf R. 0.039 0.024 0.041 0.044 0.041 0.018 0.007 0.000 – 0.365 * *

Upper Wisconsin R. 0.029 0.024 0.036 0.030 0.033 0.019 0.015 0.008 0.001 – * *

Bourbeuse R. 0.050 0.045 0.050 0.030 0.060 0.079 0.046 0.050 0.063 0.051 – 0.071

Gasconade R. 0.051 0.047 0.056 0.032 0.061 0.084 0.052 0.058 0.069 0.051 0.005 –

* P\ 0.001
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Isolation by distance (IBD) of L. costata in the

Great Lakes region was statistically significant when

assuming connections between the Wabash and

Maumee R. watersheds and the Wisconsin R. and

Green Bay watersheds. Historical connections have

been suspected between the Wabash R. and Maumee

R. watersheds due to changes induced by Isostatic

rebound, glacial spillways, and headwater stream

capture event enabling dispersal for aquatic organ-

isms. Headwater capture likely played an important

role in the biogeographic patterns of aquatic organ-

isms present in Maumee R. and Lake Erie watersheds

(Krebs et al., 2013). The St. Joseph R. of the Maumee

and the St. Mary’s R., once headwaters of the Wabash

R., were captured by the Maumee R. following the

draining of the proglacial lakes (Van der Schalie,

1945; Calkin & Feenstra, 1985; Sunderman, 1987;

Pielou, 1991). In the 1830s, the Erie Canal was created

connecting the Wabash R. to the Lake Erie drainage

(Sunderman, 1987). This canal could have facilitated

dispersal between the Wabash and Maumee R.

watersheds at a much more recent timescale than

post-glacial connections or stream capture events.

Post-glacial connections between the Wisconsin R.

and the Green Bay watershed have also been hypoth-

esized (van der Schalie, 1945; Hansel et al., 1985;

Pielou, 1991; Clark et al., 2008). Proglacial Lake

Oshkosh formed over present day Green Bay and the

surrounding watershed around 13,600 years ago and

after the proglacial lake drained about 12,000 years

ago, the Green Bay watershed likely continued to

drain southwest into the Wisconsin R. for some time,

enabling dispersal of aquatic organisms into the Great

Lakes (Clark et al., 2008). The configuration of the

Wisconsin andWolf-Fox watersheds (i.e., adjacent to)

also suggests that the Wolf and Fox rivers were

captured into the Green Bay drainage as a result of

isostatic rebound following the draining of the

proglacial lakes.

The genetic structure observed for L. costata in

this study suggests northward range expansion from

at least two separate and isolated glacial refugia.

These patterns of genetic structure are similar to

suggestions by Elderkin et al. (2007) for Amblema

plicata (Say, 1817). Evidence for multiple glacial

refugia has been suggested for other species of

mussel, however post-glacial colonization patterns

often differ (Elderkin et al., 2007, 2008; Zanatta &

Murphy, 2008; Inoue et al., 2013). Multiple species

of fish, which are known hosts of L. costata, also

show similar phylogeographic patterns, including

darters (e.g., Etheostoma and Percina), northern

Fig. 3 Neighbor-joining (NJ) network of pairwise genetic

distances (Nei’s D) for Lasmigona costata collection locations

created using allele frequency data from seven microsatellite

loci (Galbraith et al., 2011). The R2 value of the NJ network is

0.96. Site codes as used in Table 1

Table 4 R2 values derived from the linear regression model

testing genetic distance (Linearized FST [FST/(1-FST)], calcu-

lated using microsatellite genotypes) and geographic river

distance (km) associated with all combinations of hypothesized

post-glacial dispersal routes (Fig. 1)

Dispersal routes P R2

Hypothesis A 0.123 0.027

Hypothesis B 0.489 0.000

Hypothesis C 0.199 0.018

Hypothesis A ? B 0.122 0.039

Hypothesis B ? C 0.198 0.016

Hypothesis A ? C 0.001 0.190

Hypothesis A ? B ? C 0.002 0.171

Associated P values calculated using Mantel test implemented

in GenAlEx
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hogsucker (Hypentelium nigricans; Lesuer, 1817),

and smallmouth bass (Micropterus dolomieu; Lacé-

pède, 1802) (Strange & Burr, 1997; Near et al., 2001;

Berendzen et al., 2003; Borden & Krebs, 2009;

Cummings & Watters, 2010).

We found weak evidence in support of a link

between Illinois R. and Lake Michigan populations

of L. costata. This lack of support may be due in

part to high amounts of intermixing in the Illinois R.

Another possible reason for this lack of evidence is

that the number of pairwise distances that are

different when comparing IBD in the hypotheses

A ? B?C model compared to only hypotheses

A ? C is small (14 out of 105) relative to the

number of pairwise distances that change when

comparing other models. The Illinois R. watershed

and Lake Michigan have had multiple historic

connections. During the end of the Pleistocene,

proglacial Lake Chicago formed over the southern

basin of present day Lake Michigan (Hansel et al.,

1985; Larsen, 1987; Pielou, 1991). This lake drained

to the southwest through the Chicago outlet into the

Illinois River valley. The Chicago outlet remained

an important outflow for proglacial lakes until

approximately 4,000 years ago (Hansel et al.,

1985; Larsen, 1987). Given the known shared

connections between Lake Michigan and the Illinois

R., it seems plausible that this outlet may have

facilitated dispersal for some aquatic organisms. A

canal constructed between Lake Michigan and the

Illinois R. in 1892 (Melching et al., 2015) continues

to exist as the Chicago Sanitary and Shipping Canal.

This dispersal route remains a pathway facilitating

dispersal between the Mississippi R. and Great

Lakes watersheds for native and invasive species

(Irons et al., 2006; Melching et al., 2015).

Fig. 4 Linear regressions of pairwise genetic distance [FST/

(1 - FST)] and geographic (by water) distance (km) between

sites for Lasmigona costata. The geographic distance matrix

assumes a connection between the Wabash River and the

Maumee River, and the Wisconsin River and the Wolf River

(R2 = 0.190, P = 0.001), calculated using a Mantel (1967) test

Table 5 Number of Lasmigona costata sequenced at each major watershed or region, the number of COI haplotypes found at each

sampling site, the mean number of pairwise differences among haplotypes, and the average nucleotide diversity (p)

Major watershed/region n No. of

haplotypes

No. of unique

haplotypes

Mean N of

pairwise

differences

p

Lake Erie/St. Clair (MI) 8 3 0 1.54 0.006022

Maumee R. 7 5 1 4.00 0.008584

Wabash R. 4 4 3 2.83 0.006159

Lake Michigan/Huron (MI) 25 5 0 3.91 0.008398

Illinois R. 2 2 1 2.00 0.004292

Green Bay 3 3 2 4.00 0.008333

Wisconsin R. 3 1 0 0.00 0.000000

Ozark Highlands 7 3 3 0.57 0.001190

The specific site locations included in each defined major watershed or region can be found in Table 1
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Conservation and management implications

This study expands on some previous studies (Elder-

kin et al., 2007; Galbraith et al., 2015), however large-

scale patterns of genetic structure occasionally dif-

fered among unionid species (Elderkin et al., 2008;

Zanatta & Murphy, 2008; Scott et al., 2014). There-

fore, elucidating the phylogeographic commonalities

among species may be necessary for conservation.

This requires more research to determine dispersal

capabilities during all life stages (e.g., Ferguson et al.

2013) and a clear understanding of the complex

phylogeographic patterns displayed by a variety of

freshwater mussel species.

Declines in freshwater mussel populations continue

in North America (Neves, 1999; Haag, 2012). Popu-

lations in the Great Lakes are especially vulnerable

and with drastic reductions in abundance and diversity

following the invasion of dreissenid mussels in the late

1980s (Metcalfe-Smith et al., 1998; Schloesser et al.,

2006; Lucy et al., 2014). Approximately 40% of

freshwater mussel species in the Great Lakes would

likely fall into extirpated, endangered, or threatened

status (Metcalfe-Smith et al., 1998). Conservation

Fig. 5 Bayesian phylogram of Lasmigona costata from 8major

watersheds or regions (Table 1) resolved using mitochondrial

gene COI sequences. Pyganodon grandis, Fusconaia flava,

Pleurobema rubellum, Arcidens wheeleri, Strophitus undulatus,

Lasmigona subviridis, and Lasmigona complanata sequences

were used as outgroups and the tree was rooted with

Margaritifera margaritifera. Accession numbers for sequences

obtained from Genbank are shown. Posterior probabilities,

indicating the proportion of trees created with the same

topology, are adjacent to nodes and were created using all

sequenced L. costata individuals. However, for visualization,

only collapsed haplotypes are shown in phylogram. Scale bar

represents the mean number of base pair substitutions per site
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efforts should attempt to keep individuals with similar

genetic profiles together (Morris & Burridge, 2006;

Hoftyzer et al., 2008; Galbraith et al., 2015). Reloca-

tion and propagation efforts in the Great Lakes should

avoid mixing stock from the Lake Erie watershed with

those from Lakes Huron or Michigan watersheds.

Galbraith et al. (2015) found similar patterns of

genetic structure in freshwater mussels in the Great

Lakes region independent of differences in host use or

life history or conservation status, suggesting that

genetic structure of common species could be useful

surrogates for predicting genetic structure of rare

species. This study further demonstrates the genetic

structure among the Great Lakes drainages reflect

divergent glacial refugia and post-glacial dispersal

routes. Cryptic genetic structure should be understood

to avoid erroneously mixing individuals from separate

populations.
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