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CLOSED SYMMETRIC 3-DIFFERENTIALS ON COMPLEX SURFACES

FEDERICO BUONERBA AND DMITRY ZAKHAROV

Abstract. We give a necessary and sufficient condition for a non-degenerate symmetric

3-differential with nonzero Blaschke curvature on a complex surface to be locally rep-

resentable as a product of three closed holomorphic 1-forms. We give two versions of

this condition corresponding to different choices of coordinates, one of which defines a

coordinate-free differential operator, answering a question of Bogomolov and de Oliveira.

In [1], [2], [3] Bogomolov and de Oliveira initiated a systematic study of closed symmetric

differentials—that is, symmetric differentials that can be locally decomposed as a product

of closed 1-forms—on complex projective manifolds. This notion is a natural higher rank

extension of the notion of a closed differential 1-form.

The existence of nontrivial symmetric differentials on a projective variety is related to its

topology: a variety X has a nontrivial 1-form if and only π1(X) has infinite abelianization,

and it was recently shown in [5] that X has a nontrivial symmetric differential of some

degree if π1(X) has a finite-dimensional representation with infinite image. The existence

of closed symmetric differentials imposes much stronger topological restrictions on the

underlying manifold. Any closed symmetric differential of rank 2 on a projective variety

X is obtained as pullback under a morphism to a finite quotient of an abelian variety, and

in particular, π1(X) contains a finite-index subgroup with infinite abelianization (Thm.

3.2 in [1]). Furthermore, a global decomposition of a closed symmetric 2-differential into a

product of closed meromorphic 1-forms is induced by a fibration onto a curve of genus at

least two, implying in particular that the fundamental group is large (Thm. 3.3 [1]).

Due to the non-trivial topological restrictions implied by the existence of closed symmet-

ric differentials, a natural problem is to characterize them among all symmetric differentials.

This problem is most natural for a surface, since in dimension three or higher a symmetric

differential does not in general decompose as a product of 1-forms even pointwise. As

explained at the end of section 2.2 of [1], for X a complex surface, dimension estimates on

the jet bundle of sections of Sn(Ω1
X) imply that locally every non-degenerate closed sym-

metric differential satisfies a non-linear differential equation of order depending only on
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the rank n. However, these local differential equations are fully understood only for sym-

metric differentials of rank one or two, in which case they admit an elegant coordinate-free

description. A closed symmetric 1-differential is the same thing as a closed 1-form, so the

characterizing differential operator is the exterior derivative. A symmetric 2-differential on

a complex surface can be viewed as a complexified Riemannian metric, and the condition

that it is closed is equivalent to the existence of Euclidean coordinates, in other words the

metric must have vanishing curvature:

Theorem 1 ([1] 2.1, [2] 2.1). Let X be a complex projective surface, and ω ∈ H0(X,Sn(Ω1
X))

be a symmetric m-differential having maximal rank at the generic point. Then

(1) If n = 1 then ω is closed if and only if dω = 0.

(2) If n = 2 then ω is closed if and only if D2ω = 0 where D2 : H0(X,S2(Ω1
X)) →

H0(X,K4
X ) is the non-linear differential operator given by D2(ω) = det(ω)2R(ω),

where R is the natural complexification of the Riemannian curvature of ω viewed

as a metric.

In the higher rank case, although the local existence of differential operators detecting

closed symmetric differentials is clear, it is not clear at all how to explicitly represent them

in local coordinates, how to understand them in a global, coordinate-free fashion, and what

geometric meaning they may carry. The natural question is therefore, in analogy with the

rank 1 and 2 cases, whether global operators carrying interesting geometric information

exist in general, and whether there are enough of them to characterize closed symmetric

differentials:

Question ([1] p.10). Let X be a complex projective surface. Describe the set of non-linear

differential operators

Dm : H0(X,Sm(Ω1
X)) → H0(X,K

N(m)
X )

whose zero locus is the set of closed symmetric differentials.

The authors sketched an approach to the problem along the following lines: let Y ⊂

JkSm(Ω1
X) be the subvariety of the bundle of k-th jets of symmetric m-differentials defin-

ing closed symmetric differentials. This is a proper subvariety as long as k ≥ 2m − 2,

and it is naturally invariant under the fibrewise action of the X-torsor Gk of k-th jets of

reparametrization of sections of Sm(Ω1
X). Assume that there exists a non-zero function F
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vanishing on Y , which is semi-invariant under the action of Gk. Then F defines a differen-

tial operator of the expected form. The problem with this approach is that semi-invariant

functions are typically constructed profusely using geometric invariant theory of reductive

groups, while their existence in this setting is not granted: the group of jet automorphisms

of a complex ball is not reductive in general, more precisely Gk is an X-torsor under a

non-reductive group as long as k ≥ 1.

In this paper we give a complete answer to the above question in the case m = 3

by using a different method. The first step is a brute-force construction of differential

operators characterizing closed 3-differentials for a specific choice of local coordinates, this

is done in Theorem 3. Unfortunately the dependence on the choice of local coordinates

is not negligible, and the geometry behind the equations we get is rather mysterious.

The intuition on how to understand these equations in a coordinate-free fashion comes

from web theory (see [4]). A standard normalization for a choice of three 1-forms that

define a non-degenerate planar 3-web at the generic point is that they add to zero. The

advantage of this normalization is that it is symmetric in the indices, and it determines

the 1-forms uniquely up to multiplication by an invertible function. The second step

of our proof is thus to rewrite our local equations in terms of local 1-forms ω1, ω2, ω3,

satisfying ω1 + ω2 + ω3 = 0 and such that our 3-differential splits locally as η = ω1ω2ω3.

This normalization, in analogy with the case of planar 3-webs, removes the dependence of

our equations on the choice of local coordinates, and leads to the existence of canonical

differential operators, acting on symmetric 3-differentials, whose simultaneous vanishing

characterizes closed non-degenerate symmetric 3-differentials. More precisely, denoting by

H0(X,S3(Ω1
X))nd the Zariski open subset of H0(X,S3(Ω1

X)) consisting of non-degenerate

symmetric 3-differentials, and by KX(∗) the sheaf of forms with poles along a divisor, we

obtain a non-linear differential operator D : H0(X,S3(Ω1
X))nd → H0(X,KX(∗)) whose

zero locus is the set closed symmetric 3-differentials. This is the content of Theorem 4

1. Notation and results

Let X be a smooth complex manifold of dimension k. A symmetric n-differential η

on X is a holomorphic section of the n-th symmetric power of the cotangent bundle of

X. A symmetric n-differential η ∈ H0(X,Sn(Ω1
X)) determines at each point x ∈ X a

homogeneous degree n polynomial on the tangent space TxX. If X is a surface, then this

polynomial factors into linear terms, and hence η defines a holomorphic distribution of n
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lines on X, or an n-web. A distribution of lines is integrable and can be given by a 1-form,

hence on a surface a symmetric n-differential is locally the product of holomorphic 1-forms.

This is not true in general if k ≥ 3, because the cones that η defines on the tangent spaces

of X will not in general be unions of hyperplanes, and even if they are the corresponding

distributions may fail to be integrable.

A natural question to ask is which symmetric n-differentials on a surface can be locally

described as products of closed holomorphic 1-forms. We give a corresponding definition:

Definition 1. A symmetric n-differential η on a complex surface X is closed at x ∈ X if

in a neighborhood U of x there exist closed holomorphic 1-forms ζ1, . . . , ζn such that

(1) η = ζ1 · · · ζn.

Remark. In the terminology of [2], differentials having this property are said to have

a holomorphic closed decomposition at x ∈ X, and a closed differential is one that has

a holomorphic closed decomposition at a general point x ∈ X. We do not make this

distinction because we limit ourselves to studying the local existence question.

A symmetric 1-differential η is the same thing as a holomorphic 1-form, and it is closed

at x ∈ X if it is closed in the usual sense, namely if dη vanishes in a neighborhood of x. A

symmetric 2-differential can be viewed as a complexified Riemannian metric on X, and it

is closed if the corresponding Riemannian curvature tensor vanishes (see [2] 2.1). In this

paper, we give a necessary and sufficient condition for a generic symmetric 3-differential

to be closed. We first restrict ourselves to differentials that define distinct tangent lines at

each point:

Definition 2. A symmetric n-differential η ∈ H0(X,Sn(Ω1
X)) on a complex surface X is

called non-degenerate at x ∈ X if η determines n distinct lines on TxX, and it is called

non-degenerate if it is non-degenerate at every point of X.

A non-degenerate symmetric 3-differential η ∈ H0(X,S3(Ω1
X)) admits near any point

x ∈ X a decomposition

(2) η = ζ1ζ2ζ3, ζi ∧ ζj 6= 0 for i 6= j,
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where the ζi are holomorphic 1-forms. This decomposition is not unique, if η = ζ ′1ζ
′
2ζ

′
3 is

another such decomposition, then after a reordering ζ ′i = fiζi for some non-zero holomor-

phic functions fi that satisfy f1f2f3 = 1. We will state our main result in two different

forms, depending on how we choose this decomposition.

One possibility is to choose appropriate integrating factors f1 and f2 to make the 1-forms

ζ ′1 and ζ ′2 closed. We can then integrate them to obtain a coordinate system near a point

x ∈ X. This proves the following proposition:

Proposition 2. Let η be a non-degenerate symmetric 3-differential on X. Then near any

point x ∈ X there exist local coordinates (z, w), and non-zero holomorphic functions a(z, w)

and b(z, w), such that near x

(3) η = [a(z, w)dz + b(z, w)dw]dz dw.

We can now state our main result in terms of this representation.

Theorem 3. Let η be a non-degenerate symmetric 3-differential on a complex surface X,

which we represent in the form (3) near a point x ∈ X. Let

(4) A(z, w) = ∂z∂w log a, B(z, w) = ∂z∂w log b,

and suppose that A−B does not vanish near x. Define the function

(5) ξ(z, w) =
1

A−B

[

a

(

b

a
B

)

z

− b
(a

b
A
)

w

]

.

Then η is closed at x ∈ X if and only if the following conditions are satisfied:

(6)

(

ξ

a

)

z

= A,

(

ξ

b

)

w

= B.

Proof. Suppose that η = ζ1ζ2ζ3 near x ∈ X where the ζi are closed. These 1-forms are

closed and proportional to dz, dw and adz + bdw, so after reordering we can assume that

(7) ζ1 = Z(z)dz, ζ2 = W (w)dw, ζ3 = dH(z, w).

for some nonzero holomorphic functions Z(z), W (w) and H(z, w). Hence we see that η is

closed if and only if a and b can be represented in the following form:

(8) a(z, w) = Z(z)W (w)Hz(z, w), b(z, w) = Z(z)W (w)Hw(z, w).

Plugging this into the expression for ξ, we find that

(9) ξ(z, w) = Z(z)W (w)Hzw(z, w).
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It follows that

(10)

(

ξ

a

)

z

=

(

Hzw

Hz

)

z

= ∂z∂w logHz = A,

(11)

(

ξ

b

)

w

=

(

Hzw

Hw

)

w

= ∂w∂z logHw = B.

Conversely, suppose that a and b are nonzero functions such that A, B and ξ defined by

(5) satisfy equations (6). Comparing the equations, we see that

(12) A =
(aw

a

)

z
=

(

ξ

a

)

z

, B =

(

bz
b

)

w

=

(

ξ

b

)

w

.

Hence, we can integrate and find functions c(w) and d(z) such that

(13) aw(z, w) = ξ(z, w) + a(z, w)c(w), bz(z, w) = ξ(z, w) + b(z, w)d(z).

Define Z(z) and W (w) such that Z ′/Z = d and W ′/W = c, and let

(14) a(z, w) = Z(z)W (w)F (z, w), b(z, w) = Z(z)W (w)G(z, w).

Plugging this into the above equations, we get

(15) ZWFw = ξ = ZWGz,

hence we can integrate again and find H(z, w) such that F (z, w) = Hz(z, w) and G(z, w) =

Hw(z, w), as required. �

Theorem 3 gives a complete answer to the question that we pose, but this answer is

unsatisfactory on two counts. First of all, the nonlinear PDE (6) describing closed sym-

metric 3-differentials is given with respect to a specific choice of coordinate chart (3). It is

possible to represent this PDE in terms of the coefficients of η with respect to an arbitrary

choice of local coordinates, but that would involve using the Cardano formula to pass to

local coordinates of the form (3), and the resulting equations will be very unwieldy. More

importantly, there is no evident geometric meaning to any of the quantities defined in

Theorem 3. In order to give a coordinate-free version of Theorem 3, we instead use some

constructions coming from web theory (see [4]).

Let η ∈ H0(X,S3(Ω1
X)) be a non-degenerate symmetric 3-differential on a complex

surface X. For any point x ∈ X, there is an open neighborhood U of x and holomorphic

1-forms ω1, ω2, ω3 such that η admits the following decomposition on U :

(16) η = ω1ω2ω3, ω1 + ω2 + ω3 = 0.



CLOSED SYMMETRIC 3-DIFFERENTIALS ON COMPLEX SURFACES 7

The 1-forms ωi are well-defined up to permutation and global multiplication by a cube root

of unity. The non-degeneracy condition on η implies that the 2-form

(17) Ω = ω1 ∧ ω2 = ω2 ∧ ω3 = ω3 ∧ ω1,

which is well-defined by η up to a sixth root of unity, does not vanish on U . Therefore we

can define holomorphic functions hi on U as follows:

(18) dωi = hiΩ, h1 + h2 + h3 = 0.

We now define the 1-form γ as

(19) γ = h2ω1 − h1ω2 = h3ω2 − h2ω3 = h1ω3 − h3ω1, dωi = γ ∧ ωi.

It is easy to check that γ is independent of the choice of the cube root of unity and of the

ordering of the ωi.

Remark. A holomorphic 1-form on a complex surface X determines a dimension one

foliation, so a symmetric 3-differential determines a triple of foliations, or a 3-web on

X. Conversely, a 3-web determines three one-forms ω1, ω2, ω3, which are unique up to

multiplication by an invertible function if we impose the condition ω1 + ω2 + ω3 = 0. The

form γ is then independent of the choice of the function, and its exterior derivative dγ is

called the Blaschke curvature of the web. Geometrically, the Blaschke curvature measures

the non-closedness of a small hexagonal trajectory made by following the leaves of the

foliation around a given point.

We also remark that if η is closed, then its decomposition as a product of closed 1-forms

is not necessarily the same as the decomposition (16).

Theorem 4. Let η be a non-degenerate symmetric 3-differential on a complex surface X,

and let ωi, Ω, hi and γ be defined as above. Suppose that the Blaschke curvature dγ of η

does not vanish at x ∈ X. Define the following 1-forms:

(20) βijkl =
1

dγ

[

2
d(hiωj)

Ω
dωk + d

(

d(hiωj)

Ω

)

∧ ωk

]

ωl,

(21) α =
∑

i 6=j

hiωj, βs = −β2121 − β1212 + β2211 + β1122,

(22) βa = 2β1121 − 2β1211 + β2121 − β1212 + β1122 − β2211 + 2β2122 − 2β2212.
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Then η is closed if and only if the 1-forms βa − α and βs − γ are closed:

(23) dβa − dα = 0, dβs − dγ = 0.

Remark. The 1-form βs, like γ, does not depend on any of the choices made when defining

the ωi, while the 1-forms βa and α change sign if we transpose any two of the ωi. In other

words, the first and second equations in (23) are well-defined equations between sections

of (Ω2
X)⊗2 and Ω2

X , respectively.

Proof. The proof is essentially a long calculation that verifies that condition (23) is equiv-

alent to condition (6). Let dz and dw be closed 1-forms that are multiples of ω1 and ω2,

respectively, then (z, w) is a coordinate system near x ∈ X in terms of which the ωi have

the form

(24) ω1 = f(z, w)dz, ω2 = g(z, w)dw, ω3 = −f(z, w)dz − g(z, w)dw,

where f and g are nonzero holomorphic functions. Let

(25) F = ∂z∂w log f, G = ∂z∂w log g,

then η and the objects defined in (17)-(19) can be expressed in terms of f and g in the

following way:

(26) η = −f2gdz2dw − fg2dzdw2, h1 = −
fw
fg

, h2 =
gz
fg

, h3 =
fw − gz

fg
,

(27) Ω = fg dz ∧ dw, γ =
gz
g
dw +

fw
f
dw, dγ = (F −G)dz ∧ dw.

Comparing with a and b, we see that

(28) a = −f2g, b = −fg2, A = 2F +G, B = F + 2G.

Remark. The observation that the quantity A−B = F −G occurring in the denominator

of ξ in (5) is proportional to the Blaschke curvature of the web defined by η was what

originally led us to rephrase the problem in terms of web theory.

In order to phrase equations (6) in terms of the web data, we need to find an expression

for ξ. After some guesswork, we see that

(29) ξ = f2g2Ξ,
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where the function Ξ is defined as

(30) Ξ =
1

dγ

[

2
d(h1ω2 + 2h2ω1)

Ω
dω2 + 2

d(2h1ω2 + h2ω1)

Ω
dω1+

+d

(

d(h1ω2 + 2h2ω1)

Ω

)

∧ ω2 + d

(

d(2h1ω2 + h2ω1)

Ω

)

∧ ω1

]

.

Moreover, equations (6) can be rewritten as

(31) d(Ξω2) = d(2h1ω2 + h2ω1), −d(Ξω1) = d(h1ω2 + 2h2ω1).

We now observe that if we had instead picked ω2 and ω3 to be proportional to dx and dy,

we would have obtained an equivalent system of equations, because the condition that η

is closed does not depend on a choice of coordinate system. Therefore, we can symmetrize

the above equation with respect to a cyclic permutation of the ωi, and a calculation shows

that the resulting equations are precisely (23), which completes the proof.

�

Remark. Theorem 4 describes a necessary and sufficient condition for a symmetric 3-

differentials η to be closed as the vanishing of a certain tensor determined by η. This result

lines up with Theorem 1, which describes closed symmetric 1- and 2-differentials by the

vanishing of their exterior derivative and curvature tensor, respectively. However, the latter

two objects can be thought of more specifically as the curvatures of a connection on an

appropriate vector bundle. We do not know of a similar explicit geometric interpretation

of the tensor defined in Theorem 4.
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