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DENSE PGL-ORBITS IN PRODUCTS OF GRASSMANNIANS

IZZET COSKUN, MAJID HADIAN, AND DMITRY ZAKHAROV

Abstract. In this paper, we find some necessary and sufficient conditions on the dimension
vector d = (d1, . . . , dk;n) so that the diagonal action of PGL(n) on

∏k

i=1
Gr(di;n) has a

dense orbit. Consequently, we obtain some algorithms for finding dense and sparse dimension
vectors and classify dense dimension vectors with small length or size. We also characterize
the dense dimension vectors of the form (d, d, . . . , d;n).
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1. Introduction

Let {p1, p2, p3} and {q1, q2, q3} be two ordered sets of distinct points on P
1. Then there

exists a unique Möbius transformation M ∈ PGL(2) such that M(pi) = qi for 1 ≤ i ≤ 3.
Hence, the diagonal action of PGL(2) on P

1×P
1×P

1 has a dense orbit consisting of distinct
triples. More generally, given two ordered sets {p1, . . . , pn+2} and {q1, . . . , qn+2} of n + 2
points in general linear position in P

n, there exists a unique element M ∈ PGL(n + 1) such
that M(pi) = qi for 1 ≤ i ≤ n+ 2 (see [4, Section 1.6]). In this paper, we consider a natural
generalization of this classical fact.

Let V be an n-dimensional vector space. Then any ordered set S = {U1, . . . , Uk} of linear

subspaces of V corresponds to a point in
∏k

i=1 Gr(di;n), where di denotes the dimension of Ui

for 1 ≤ i ≤ k. Therefore, the GL(n)-action on V induces a PGL(n) action on
∏k

i=1Gr(di;n).
In this paper, we address the following question posed to us by János Kollár.

Question 1.1. For which dimension vectors (d1, . . . , dk;n) does the diagonal action of PGL(n)

have a dense orbit in
∏k

i=1Gr(di;n)?
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2 I. COSKUN, M. HADIAN, AND D. ZAKHAROV

In this paper, we characterize the dimension vectors of length k ≤ 4 that have a dense
PGL(n) orbit (Theorem 5.1), the dimension vectors of size di ≤ 4 (for all i) that have a
dense PGL(n) orbit (Section 6) and equidimensional vectors di = d (for all i) that have a
dense PGL(n) orbit (Theorem 7.1). More importantly, we prove reduction lemmas that allow
to reduce the density of a dimension vector to one with smaller ambient dimension under
suitable assumptions. For many dimension vectors, our results give an efficient algorithm for
checking the density of the PGL(n) action (see Section 8).

If PGL(n) acts with a dense orbit on
∏k

i=1Gr(di;n), then the dimension of PGL(n) has

to be greater than or equal to the dimension of
∏k

i=1 Gr(di;n). We thus obtain a necessary
inequality

(1)

k∑

i=1

di(n− di) ≤ n2 − 1.

However, as the following example shows, this inequality is not sufficient.

Example 1.2. Consider the dimension vector (1, 1, 2, 2; 3). Geometrically, this dimension
vector represents a configuration (p1, p2, l1, l2) consisting of a pair of points (p1, p2) and a pair
of lines (l1, l2) in P

2. Note that we have

dim(P2 × P
2 × P

2∗ × P
2∗) = 8 = dim(PGL(3)).

However, PGL(3) does not act with a dense orbit. Briefly, the points p1 and p2 span a line
l in P

2 and the lines l1 and l2 intersect l in two points q1 and q2. The cross-ratio of the four
points p1, p2, q1, and q2 on l is an invariant of the PGL(3) action. Furthermore, by fixing p1,
p2, and l1 and varying l2, we can get every cross-ratio. Hence, all orbits of the PGL(3)-action
in this case have codimension at least 1.

There are several things to notice about Example 1.2. First, it can be generalized to the
dimension vector (1, 1, n − 1, n − 1;n). Geometrically, this dimension vector represents a
configuration (p1, p2,H1,H2) consisting of a pair of points (p1, p2) and a pair of hyperplanes
(H1,H2) in P

n−1. Again, the hyperplanes H1 and H2 intersect the line l spanned by the
points p1 and p2 in two points q1 and q2 and the cross-ratio of the four points p1, p2, q1, and
q2 on l is an invariant of the PGL(n) action. Therefore, PGL(n) does not act with a dense
orbit in this case. On the other hand, dim(Pn−1 × P

n−1 × P
n−1∗ × P

n−1∗) = 4(n− 1) can be
arbitrarily smaller than dim(PGL(n)) = n2 − 1.

More importantly, in all the above examples there is a smaller configuration of linear spaces
(the points p1, p2, q1, and q2 on l) obtained by taking spans and intersections of the original
linear spaces, that trivially cannot be dense, as it fails the inequality (1). This smaller con-
figuration of linear spaces is the obstruction for the density of the original dimension vector.
In this paper, we will produce many classes of examples which show that this phenome-
non is typical. In fact, we expect that whenever PGL(n) fails to act with a dense orbit on∏k

i=1Gr(di;n), there is a configuration of vector spaces, obtained by repeatedly taking spans
and intersections of the original ones, which does not satisfy the inequality (1) and accounts
for this failure.

Knowing the density of a dimension vector has many applications. We close the introduc-
tion by briefly mentioning simple examples of two general applications. First, it allows one to
choose convenient coordinates. Many geometric problems, such as enumerative problems and
interpolation problems, become simpler to solve if the constraints have special coordinates.
For example, it is easy to see that the unique quadric surface in P

3 that contains the three
lines x = y = 0, z = w = 0, x − z = y − w = 0 is xw − yz = 0. Since (2, 2, 2; 4) is dense and
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these three lines belong to the dense orbit (see proof of Theorem 5.1), we conclude that three
general lines in P

3 impose independent conditions on quadrics in P
3 and there is a unique

quadric surface containing three general lines (see [4]). More generally, (k, k, k; 2k) is dense
and x1 = · · · = xk = 0, xk+1 = · · · = x2k = 0 and x1 − xk+1 = · · · = xk − x2k = 0 is in the
dense orbit of PGL(2k). It is then easy to see that there is a unique Segre image of P1×P

k−1

containing these three P
k−1’s in P

2k−1 (see [4]). This simple classical calculation is the basis
for the study of the genus zero Gromov-Witten invariants of Grassmannians (see [2]).

Second, knowing the density of dimension vectors allows one to determine automorphism
groups of blowups of Grassmannians. For example, the dimension vector (2, 2, 2, 2; 5) is dense
(see Theorem 5.1). Hence, any 4 general points in G(2, 5) can be taken to any other 4 general
points by an action of PGL(5). By Lemma 2.2, if a 4-tuple of points is in the dense orbit
of PGL(5), then any ordering of the 4 points is also in the dense orbit. Hence, there is an
S4-symmetry of the blowup of G(2, 5) at 4 general points. More interestingly, the blowup
X of G(2, 5) at a general P

3 section under the Plücker embedding has an S5-symmetry
(arising from the S4-symmetry) that plays an important role in the Kawamata-Morrison
cone conjecture for the log Calabi-Yau variety X (see [3]).

Organization of the paper: In §2, we will prove a useful criterion for checking density in
terms of dimensions of stabilizer groups. In §3, we will collect some numerical lemmas. In
§4, we will prove several lemmas that allow us to reduce checking the density of a dimension
vector to simpler dimension vectors. In §5, we will characterize dense dimension vectors of
length at most four. In §6, we will characterize dense dimension vectors of size at most four.
In §7, we characterize the dense equidimensional vectors. Finally, in §8, we discuss several
additional examples and further questions.

Acknowledgments: We would like to thank János Kollár for bringing the question to our
attention. We are grateful to Samuel Grushevsky, Joe Harris, Brendan Hassett, János Kollár
and Ravi Vakil for many enlightening conversations.

2. Setup and the main lemma

In this section, we prove a basic criterion for the density of the PGL(n) action in terms of
stabilizers.

Let (U1, . . . , Uk) be a configuration of linear subspaces of an n-dimensional vector space
V . The corresponding dimension vector will be denoted by d = (d1, . . . , dk;n), where di is
the dimension of Ui for all i. The number of subspaces k is called the length of the dimension
vector d and will be denoted by l(d). The value maxi di is called the size of d and will be

denoted by |d|. The number n is the ambient dimension, while the sum
∑k

i=1 di is the total

dimension and the difference
∑k

i=1 di − n is the excess dimension. When convenient, we will
express a dimension vector in exponential notation d = (1e1 , . . . , (n− 1)en−1 ;n). Finally, the

stabilizer of the point (U1, . . . , Uk) ∈
∏k

i=1 Gr(di;n) will be denoted by Stab(U1, . . . , Uk).

Definition 2.1. We say that a dimension vector d = (d1, . . . , dk;n) is dense if the diago-

nal action of PGL(n) on
∏k

i=1 Gr(di;n) has a Zariski dense orbit. Otherwise, d is sparse.
Furthermore, we say d is trivially sparse if it does not satisfy the dimension inequality (1).

The following basic lemma is going to be the main tool in this article.

Lemma 2.2. Let (U1, . . . , Uk) ∈
∏k

i=1Gr(di;n) be a tuple of vector spaces with dimension

vector d = (d1, . . . , dk;n). The PGL(n) orbit of this point is dense in
∏k

i=1Gr(di;n) if and
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only if

dim(Stab(U1, . . . , Uk)) = (n2 − 1)−

k∑

i=1

di(n− di).

Proof. If an algebraic group G acts on an irreducible projective variety X, the orbit G.x of
any point x ∈ X under G is open in its Zariski closure G.x [1, I.1.8]. On the other hand, the
orbit G.x is isomorphic to G/H, where H is the stabilizer of x. Consequently, the dimension
of the Zariski closure of the orbit of x is

dim(G.x) = dim(G)− dim(H).

Hence, the orbit G.x is dense in X if and only if dim(X) = dim(G)−dim(H). Specializing to

the case G = PGL(n) and X =
∏k

i=1Gr(di;n), we obtain the lemma since dim(PGL(n)) =
n2 − 1 and

dim

(
k∏

i=1

Gr(di;n)

)
=

k∑

i=1

di(n− di).

�

Remark 2.3. Observe that dim(Stab(U1, . . . , Uk)) ≥ (n2−1)−
∑k

i=1 di(n−di). A dimension

vector d is dense if there is a k-tuple (U1, . . . , Uk) ∈
∏k

i=1G(di;n) where equality is achieved.

Let us conclude this section with the following two evident but useful observations.

Definition 2.4. Let d = (d1, . . . , dk;n) be a dimension vector. Then the complement of d is
the dimension vector dc = (n − d1, . . . , n− dk;n).

Lemma 2.5. A dimension vector d is dense if and only if the complement dimension vector
dc is dense.

Proof. Consider the ambient vector space V and its dual V ∗ with the dual PGL(n) action.

Taking quotient spaces and passing to the dual defines an isomorphism
∏k

i=1 Gr(di;n) and∏k
i=1Gr(n− di;n), which respects the PGL(n) action. Therefore, PGL(n) has a dense orbit

on one if and only if it does on the other. �

Definition 2.6. We say that a dimension vector d = (d1, . . . , dk;n) dominates a dimension
vector d′ = (d′1, . . . , d

′
k′ ;n) if for every 1 ≤ d ≤ n − 1 the number of times that d appears in

d is greater than or equal to the number of times it appears in d′.

Lemma 2.7. Let d and d′ be two dimension vectors such that d dominates d′. Then if d′

is sparse, so is d. Equivalently, if d is dense, so is d′.

Proof. The lemma immediately follows by comparing dimensions of stabilizers. �

3. A numerical lemma

In this section, we prove a numerical lemma which will be very useful in the next section
in reducing the density problem of a dimension vector to a smaller one.

Lemma 3.1. Let d = (d1, . . . , dk, dk+1, dk+2;n) be a dimension vector listed in increasing

order d1 ≤ d2 ≤ · · · ≤ dk+2 and with |d| ≤ n
2 . Then either d is trivially sparse or

∑k
i=1 di < n.
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Proof. First, if all di are between 1 and n
2 , then di(n− di) is a strictly increasing function of

di. Hence, by decreasing the di’s if necessary, it suffices to show that if
∑k

i=1 di = n, then∑k+2
i=1 di(n− di) ≥ n2. Second, by decreasing dk+1 and dk+2 if necessary, we can assume that

dk = dk+1 = dk+2 = |d|. Finally, if there are at least two dimension values a ≤ b strictly
between 1 and |d|, then replacing a and b by a− 1 and b+ 1, respectively, changes the sum∑k+2

i=1 di(n− di) by

(a− 1)(n − a+ 1) + (b+ 1)(n − b− 1)− a(n− a)− b(n− b) = 2(a− b)− 2,

which is a negative number. Thus, we may assume that d consists of r-many 1’s, (s+2)-many
|d|’s (with s ≥ 1), and at most one number a between 1 and |d|. Let ǫ ∈ {0, 1} be the number
of times a appears in d.

Now, assuming
∑k

i=1 di = r + ǫa+ s|d| = n, we have
∑k+2

i=1 di = n+ 2|d|, and thus

k+2∑

i=1

di(n− di) = n2 + 2n|d| −

k+2∑

i=1

d2i = n2 + (s− 2)|d|2 + ǫa(2|d| − a) + r(2|d| − 1).

Since |d| > a > 1, if s ≥ 2, then the right hand side is evidently at least n2. On the other
hand, if s = 1, r + ǫa = n− |d| ≥ |d| and

−|d|2 + (ǫa+ r)|d|+ ǫa(|d| − a) + r(|d| − 1) ≥ 0.

We thus conclude that
∑k+2

i=1 di(n− di) ≥ n2 as desired. �

4. Reduction techniques

In this section, we prove a series of lemmas that reduce the density/sparsity problem for
certain dimension vectors to the same problem for smaller ones.

Lemma 4.1. The dimension vector d = (d1, . . . , dk;n) is dense if
∑k

i=1 di ≤ n.

Proof. Let X be an n-dimensional vector space and B = {e1, . . . , en} be a basis for X. For

any 1 ≤ i ≤ k, let αi :=
∑i−1

j=1 di and consider the subspace Vi = 〈eαi+1, . . . , eαi+1
〉 of X.

Then, in the basis B, the stabilizer of the configuration (V1, . . . , Vk;X) has the form



M1 0 . . . 0 A1

0 M2 . . . 0 A2
...

...
. . .

...
...

0 0 . . . Mk Ak

0 0 . . . 0 B




,

where B is an (n −
∑k

i=1 di)× (n−
∑k

i=1 di) matrix and, for each 1 ≤ i ≤ k, Mi is a di × di
matrix and Ai is a di × (n−

∑k
i=1 di) matrix. Therefore, we have

dim(Stab(V1, . . . , Vk;X)) =

k∑

i=1

d2i + n(n−

k∑

i=1

di)− 1 = n2 − 1−

k∑

i=1

di(n− di).

Hence, by Lemma 2.2, we conclude that d is dense. �

Lemma 4.2. Let d = (a1, . . . , ar, b1, . . . , bs;n) be a dimension vector such that
∑r

i=1 ai =
n−k < n and

∑s
j=1(n−bj) ≤ n−k. Then d is dense if d′ = (a1, . . . , ar, b1−k, . . . , bs−k;n−k)

is dense.
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Proof. Let (V1, . . . , Vr, U1, . . . , Us;X) be a generic configuration of vector spaces correspond-
ing to the dimension vector d. Set W := V1 + · · ·+ Vr and Tj := W ∩ Uj , 1 ≤ j ≤ s. By our
numerical assumptions, we have dim(W ) = n − k and dim(Tj) = bj − k, for all j. Observe
that this construction yields a generic configuration with dimension vector d′. Every element
M of PGL(n) that stabilizes the configuration (V1, . . . , Vr, U1, . . . , Us;X), preserves the sub-
spaceW and the restriction ofM toW stabilizes the configuration (V1, . . . , Vr, T1, . . . , Ts;W ).
Hence, we get a group homomorphism

f : Stab(V1, . . . , Vr, U1, . . . , Us;X) → Stab(V1, . . . , Vr, T1, . . . , Ts;W ).

We are going to bound the dimension of Stab(V1, . . . , Vr, U1, . . . , Us;X) by the sum of the
dimensions of the kernel and the image of f .

Set Y = ∩s
j=1Uj and note that dim(Y ) = n −

∑s
j=1(n − bj) ≥ k. We may choose a basis

B = {e1, . . . , en} for X such that

W = 〈e1, . . . , en−k〉, Y = 〈en−dim(Y )+1, . . . , en〉.

Then, with respect to the basis B, the kernel of f consists of matrices of the form



In−dim(Y ) 0 0
0 Idim(Y )−k A
0 0 B




where A is a (dim(Y )−k)×k matrix and B is a k×k matrix. Hence, dim(Ker(f)) = dim(Y )×
k. On the other hand, the dimension vector d′ is dense by our assumption. Therefore,

dim(Stab(V1, . . . , Vr, T1, . . . , Ts;W )) = (n− k)2 − 1−

r∑

i=1

ai(n− k− ai)−

s∑

j=1

(bj − k)(n− bj).

We conclude that

dim(Stab(U1, . . . , Ur, V1, . . . , Vs;X)) ≤ dim(Stab(V1, . . . , Vr, T1, . . . , Ts;W )) + dim(Ker(f))

= n2 − 1−

r∑

i=1

ai(n− ai)−

s∑

j=1

bj(n− bj).

The lemma now follows from Lemma 2.2. �

Lemma 4.3. Let d = (a11, . . . , a1s1 , a21, . . . , a2s2 , . . . , ar1, . . . , arsr ;n) be a dimension vec-
tor such that

∑si
j=1 aij ≤ n for all 1 ≤ i ≤ r. Then d is sparse if the dimension vector

(
∑s1

j=1 a1j , . . . ,
∑sr

j=1 arj;n) is sparse.

Proof. By induction on r and on sr, it suffices to prove that the dimension vector d =
(a1, . . . , at, b, c;n) is sparse if d′ = (a1, . . . , at, b + c;n) is sparse. By Lemma 2.2, this would
follow from the inequality

(2) dim(Stab(d′)) ≤ dim(Stab(d)) + 2bc.

Let (V1, . . . , Vt, U,W ;X) be a generic configuration of vector spaces corresponding to d.
Then, the configuration (V1, . . . , Vt, U + W ;X) corresponds to d′. Every element M of
PGL(n) that stabilizes (V1, . . . , Vt, U,W ;X), also stabilizes (V1, . . . , Vt, U+W ;X). Therefore,
Stab(V1, . . . , Vt, U,W ;X) is a subgroup of Stab(V1, . . . , Vt, U + W ;X). On the other hand,
the map

f : Stab(V1, . . . , Vt, U +W ;X)/Stab(V1, . . . , Vt, U,W ;X) →֒ Gr(b, U +W )×Gr(c, U +W ),

which sends an element M to (M|U+WU,M|U+WW ) is injective. This proves the desired
inequality (2) since dim(Gr(b, U +W )) = dim(Gr(c, U +W )) = bc. �
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This result allows us to improve slightly on Lemma 4.1:

Lemma 4.4. The dimension vector d = (d1, . . . , dk;n) is dense if
∑k

i=1 di ≤ n+ 1.

Proof. Indeed, we know that the dimension vector (1r;n) is dense for r ≤ n+ 1 (see §1 and

[4, Section 1.6]), so the dimension vector d = (d1, . . . , dk;n) is dense when
∑k

i=1 di ≤ n + 1
by Lemma 4.3. �

Lemma 4.5. Suppose that an element M of PGL(n) stabilizes a generic configuration

(V1, . . . , Vr;X)

corresponding to a dimension vector d = (a1, . . . , ar;n) with
∑r

i=1 ai = n − k ≤ n. Suppose
moreover that M preserves a generic subspace U of X with dim(U) ≥ |d|+ k and acts on it
as the identity. Then M is the identity element.

Proof. For every 1 ≤ i ≤ r, set αi :=
∑i

j=1 ai, and choose a basis B = {e1, . . . , en} for X
such that

Vi = 〈eαi−1+1, . . . , eαi
〉, ∀1 ≤ i ≤ r,

and that U = 〈f1, . . . , fdim(U)−k, en−k+1, . . . , en〉, with fj ∈ 〈e1, . . . , en−k〉. We can express
the vectors fj, 1 ≤ j ≤ dim(U)− k, in terms of the vectors ei, 1 ≤ i ≤ n− k, in the form

(f1, . . . , fdim(U)−k) = (E1, . . . , Er)




A1
...
Ar


 ,

where Ei = (eαi−1+1, . . . , eαi
) and Ai is an ai×(dim(U)−k) matrix. Since U is assumed to be

a generic subspace, each Ai has an invertible full minor. Thus, after suitable change of basis
for each Vi, we may assume that for all 1 ≤ i ≤ r, the matrix Ai has the form Ai = (Iai ∗).
Then, for an element M ∈ Stab(V1, . . . , Vr;X), M(fj) = fj for all 1 ≤ j ≤ dim(U) − k,
implies that M(ei) = ei for all 1 ≤ i ≤ n − k. Therefore, if M stabilizes the configuration
(V1, . . . , Vr;X) and acts as identity on U , M has to be the identity element. �

Lemma 4.6. Consider the dimension vector d = (a1, . . . , ar, b, b;n) with b +
∑r

i=1 ai = n
and b ≤ n

2 . Then d is dense if the dimension vector d′ = (a1, . . . , ar, b;n − b) is dense.

Proof. Let (V1, . . . , Vr, U1, U2;X) be a generic configuration of vector spaces corresponding
to d. Set W := V1 + · · · + Vr and U ′ := W ∩ (U1 + U2). Then dim(W ) = n − b and
dim(U ′) = b. Observe that this construction yields a generic configuration with dimension
vector d′. Consider the map induced by restriction

f : Stab(V1, . . . , Vr, U1, U2;X) → Stab(V1, . . . , Vr, U
′;W ).

If the dimension vector d′ is dense, then by Lemma 2.2,

dim(Stab(V1, . . . , Vr, U
′;W )) = (n− b)2 − 1−

r∑

i=1

ai(n− b− ai)− b(n − 2b)

= n2 − 1−

r∑

i=1

ai(n− ai)− 2b(n − b).

By another application of Lemma 2.2, it suffices to prove that the map f is injective. An
element M ∈ Ker(f) preserves U1 and U2 and acts as the identity on W , and thus has to be
the identity element by Lemma 4.5. �
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Lemma 4.7. Let d = (a1, . . . , ar, b;n) be a dimension vector with
∑r

i=1 ai = n, |d| = b, and
ai + b ≤ n for all 1 ≤ i ≤ r. Then d is dense if the dimension vector d′ = (a1, . . . , ar; b) is
dense.

Proof. Let (V1, . . . , Vr, U ;X) be a generic configuration of vector spaces corresponding to d.

For any 1 ≤ i ≤ r, set Wi := V1+ · · ·+ V̂i+ · · ·+Vr and Ui := Wi∩U . Then dim(Wi) = n−ai,
dim(Ui) = b− ai, and we have a homomorphism induced by restriction

f : Stab(V1, . . . , Vr, U ;X) → Stab(U1, . . . , Ur;U).

By Lemma 4.5, f has trivial kernel. On the other hand, if d′ is dense, so is its complement
d′c = (b− a1, . . . , b− ar; b), and thus we have:

dim(Stab(U1, . . . , Ur;U)) = b2 − 1−

r∑

i=1

ai(b− ai)

= n2 − 1−

r∑

i=1

ai(n− ai)− b(n− b).

Therefore, by Lemma 2.2, d is dense as well. �

Lemma 4.8. Let d = (a1, . . . , ar, b1, b2;n) be a dimension vector with
∑r

i=1 ai = n− k < n,
k ≤ b1, b2, and b1 + b2 = n. Then d is dense if the dimension vector d′ = (a1, . . . , ar, b1 −
k, b2 − k;n − k) is dense.

Proof. Let (V1, . . . , Vr, U1, U2;X) be a generic configuration of vector spaces corresponding
to d and set W := V1 + · · · + Vr and U ′

i := W ∩ Ui for i = 1, 2. Then dim(W ) = n − k,
dim(U ′

i) = bi − k for i = 1, 2. Observe that this construction yields a generic configuration
with dimension vector d′. We have the homomorphism induced by restriction

f : Stab(V1, . . . , Vr, U1, U2;X) → Stab(V1, . . . , Vr, U
′
1, U

′
2;W ).

Since any element M ∈ Ker(f) preserves U1 and U2 and acts as identity on W , by Lemma
4.5, f is injective. Therefore, if d′ is dense, we have

dim(Stab(V1, . . . , Vr, U1, U2;X)) ≤ dim(Stab(V1, . . . , Vr, U
′
1, U

′
2;W ))

= (n− k)2 − 1−
r∑

i=1

ai(n− k − ai)−
2∑

j=1

(bj − k)(n − bj)

= n2 − 1−

r∑

i=1

ai(n− ai)−

2∑

j=1

bj(n− bj).

This, together with Lemma 2.2, implies that the dimension vector d is dense. �

Lemma 4.9. Let d = (a1, . . . , ar, b1, b2;n) be a dimension vector with
∑r

i=1 ai = n− k < n,
k ≤ b1, b2, and b1 + b2 < n. Set m = b1 + b2 − k. Then d is dense if the dimension vector
d′ = (a1, . . . , ar, b1, b2;m) is dense.

Proof. We prove the assertion in two steps. Let (V1, . . . , Vr, U1, U2;X) be a generic configu-
ration of vector spaces corresponding to d and set W := V1 + · · · + Vr and U := U1 + U2.
Also, let T = U ∩ W and U ′

i = Ui ∩ W for i = 1, 2. Note that dim(W ) = n − k and
dim(T ) = b1 + b2 − k = m. Any element in the stabilizer of (V1, . . . , Vr, U1, U2;X) stabilizes
W , T , U ′

1, and U ′
2, and thus we get a homomorphism:

f : Stab(V1, . . . , Vr, U1, U2;X) → Stab(V1, . . . , Vr, U
′
1, U

′
2, T ;W ).
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The new twist in this argument is that we are considering a configuration of vector spaces
which are not in general position, as T contains U ′

1 and U ′
2.

Lemma 4.5 implies that f has trivial kernel. Now assume that Stab(V1, . . . , Vr, U
′
1, U

′
2, T ;W )

has the expected dimension. Since T contains U ′
1 and U ′

2, this expected dimension is

(3) (n− k)2 − 1−

r∑

i=1

ai(n− k − ai)−m(n− k −m)−

2∑

j=1

(bj − k)(m+ k − bj).

Using the equalities m = b1 + b2 − k and
∑r

i=1 ai = n− k, the expression (3) equals

n2 − 1−

r∑

i=1

ai(n− ai)−

2∑

j=1

bj(n− bj).

Then Lemma 2.2 would imply that d is dense.
Hence, it suffices to prove that Stab(V1, . . . , Vr, U

′
1, U

′
2, T ;W ) has the expected dimen-

sion. For every 1 ≤ i ≤ r, let Wi := V1 + · · · + V̂i + · · · + Vr and V ′
i := T ∩ Wi. Then

(V ′
1 , . . . , V

′
r , U

′
1, U

′
2;T ) is a generic configuration of vector spaces corresponding to the com-

plement of the dimension vector d′. Restricting from W to T , induces a homomorphism

g : Stab(V1, . . . , Vr, U
′
1, U

′
2, T ;W ) → Stab(V ′

1 , . . . , V
′
r , U

′
1, U

′
2;T ),

whose kernel is trivial by Lemma 4.5. If d′ is dense, then so is its complement, and hence
the dimension of the image of g is at most

m2 − 1−
r∑

i=1

ai(m− ai)−
2∑

j=1

(bj − k)(m+ k − bj),

which using m = b1 + b2 − k and
∑r

i=1 ai = n− k simplifies to

n2 − 1−

r∑

i=1

ai(n− ai)−

2∑

j=1

bj(n− bj)

as desired. �

Lemma 4.10. Consider the dimension vector d = (a1, . . . , ar;n). Assume that there are k

elements i1, . . . , ik ∈ {1, . . . , r} such that
∑k

j=1 aij = (k − 1)n and let d′ be the dimension

vector obtained from d after replacing aij with bij :=
∑k

t=1

t6=j
ait − (k− 2)n. Then d is dense if

and only if d′ is dense.

Proof. Let (V1, . . . , Vr;X) be a generic configuration of vector spaces corresponding to d. For
every 1 ≤ t ≤ r, set Ut := Vt if t 6= i1, . . . , ik, and Ut := ∩k

s=1

s 6=j

Vis if t = ij for some 1 ≤ j ≤ k.

Then, by our numerical assumptions, the configuration (U1, . . . , Ur;X) corresponds to the
dimension vector d′ and the original vector spaces Vi can be recovered from the vector spaces
Uj . Indeed, for any 1 ≤ j ≤ k, we have

k∑

t=1

t6=j

bit = aij + (k − 2)

k∑

t=1

ait − (k − 1)(k − 2)n = aij

and thus

Vij = ∪k
t=1

t6=j

Uit .
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This implies that the density/sparsity of d is equivalent to that of d′. �

Remark 4.11. The converses of Lemmas 4.2, 4.6, 4.7, 4.8 and 4.9 are easily seen to hold.
In each case, the generic subspaces with invariants d′ can be obtained via the construction
in the proof. Hence, if d′ is not dense, d is certainly not dense.

5. Dimension vectors with small length

Our goal in this section is to characterize dense dimension vectors of small length. Recall
that the length of a dimension vector d = (d1, . . . , dk;n) is defined to be the number k.
Every dimension vector of length one is dense since the Grassmannian Gr(k, n) is a quotient
of PGL(n). In the following result, we show that most dimension vectors with length at most
four are dense.

Theorem 5.1. Let d be a dimension vector with length k ≤ 4. Then d is sparse if and only
if k = 4 and d = (a, b, c, d;n) with a+ b+ c+ d = 2n.

Proof. First, we show that all dimension vectors of length two and three are dense. Let
d = (a, b;n) be a dimension vector of length two. By taking the complement if necessary (see
Lemma 2.5), we can assume that a+ b ≤ n. Then d is dense by Lemma 4.1.

Now let d = (a, b, c;n) be a dimension vector of length 3. We consider the following two
cases.

• If n = 2k and a = b = c = k, then let (V1, V2, V3;X) be the vector spaces

V1 = 〈e1, . . . , ek〉, V2 = 〈ek+1, . . . , e2k〉, V3 = 〈e1 + ek+1, . . . , ek + e2k〉,

where B = {e1, . . . , e2k} is a basis for X. Then, in this basis B, Stab(V1, V2, V3;X)
consists of matrices of the form

M =

(
A 0
0 A

)
.

Hence,

dim(Stab(V1, V2, V3;X)) = k2 − 1 = (2k)2 − 1− 3k(2k − k).

Therefore, Lemma 2.2 implies that d is dense.
• If a, b, and c are not all equal to n/2, by taking the complement and rearranging if
necessary, we can assume that a + b = n − k < n. If c ≤ k, d is dense by Lemma
4.1. If c > k, then, by Lemma 4.2, the density of d follows from the density of
(a, b, c− k;n− k). We are done since either we are in the first case and d is dense, or
we can inductively continue reducing the ambient dimension n.

Finally, let d = (a, b, c, d;n) be a dimension vector of length four. We will show that d is
dense if and only if a+ b+ c+ d 6= 2n. We begin by studying the case a+ b+ c+ d = 2n.

• First, consider the case n = 2k and a = b = c = d = k. The dimension vector
(k, k, k, k; 2k) is trivially sparse by Lemma 2.2 since

4k(2k − k) = 4k2 > 4k2 − 1 = dim(PGL(2k)).

• Now assume a + b + c + d = 2n, but a, b, c, and d are not all equal. Then, by
taking the complement and rearranging if necessary, we can assume that a + b <
n. We apply Lemma 4.2. Let (V1, . . . , V4;X) be any configuration of vector spaces
corresponding to d, and consider the (a+ b)-dimensional space W := V1 + V2. Then
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the configuration (V1, V2,W ∩ V3,W ∩ V4;W ) corresponds to the dimension vector
d′ = (a, b, a + b+ c− n, a+ b+ d− n; a+ b). Since

a+ b+ (a+ b+ c− n) + (a+ b+ d− n)

= (a+ b+ c+ d− 2n) + 2(a+ b) = 2(a+ b),

by induction on the dimension of the ambient space, d′ is sparse and, therefore, so is
d.

Now we suppose that a+ b+ c+ d 6= 2n and show by induction on n that d is dense. By
taking the complement if necessary, we can assume that a+ b+ c+ d < 2n.

• If a+ b+ c+ d ≤ n, then d is dense by Lemma 4.1.
• If sum of the two larger dimensions is bigger than n, we take the complement and
rearrange so that a+ b+ c+ d > 2n and a+ b = n− k < n. This implies that

(n− c) + (n− d) = 2n− (c+ d) < a+ b = n− k.

Thus, by Lemma 4.2, d is dense if d′ = (a, b, c− k, d− k;n − k) is dense. Since

a+ b+ (c− k) + (d− k) = (a+ b+ c+ d)− 2k > 2(n − k),

by induction on n, d′ is dense and we are done. In the remaining cases, we may
assume that n < a+ b + c+ d < 2n, a + b = n− k < n, and c + d ≤ n (suppose for
simplicity that we have ordered the dimensions so that a ≤ b ≤ c ≤ d).

• If c < k, then a + b + c = n − t < n. Lemma 4.2 implies that d is dense if d′ =
(a, b, c, d − t;n− t) is dense. Since

a+ b+ c+ (d− t) = (n− t) + (d− t) < 2(n − t),

d′ is dense by induction. Therefore, in the following cases we may assume that
k ≤ c, d.

• If c+ d = n, then by Lemma 4.8, d is dense if d′ = (a, b, c− k, d− k;n− k) is dense.
Since

a+ b+ (c− k) + (d− k) = (a+ b+ c+ d)− 2k < 2(n − k),

d′ is dense by induction.
• Finally, assume that c + d < n. Then Lemma 4.9 implies that d is dense if d′ =
(m− a,m− b, c− k, d − k;m) is dense, where m = c+ d− k. Since

(m− a) + (m− b) + (c− k) + (d− k) = 2m− (a+ b) + (c+ d)− 2k

< 2m− (n− k) + n− 2k = 2m− k < 2m,

by induction, we conclude that d′ is dense.

�

Corollary 5.2. Let d = (d1, . . . , dk;n) be a dimension vector such that there is a subsequence
of d1, . . . , dk with total sum 2n. Then d is sparse.

Proof. This follows from Theorem 5.1 and Lemma 4.3. �
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6. Dimension vectors with small size

In the previous section we characterized all dense dimension vectors of length at most
four. In this section we study dimension vectors of a given size, without any restriction on
the length. We illustrate how the techniques we developed in Section 4 can be employed in
classifying dense dimension vectors, and fully classify dense dimension vectors with size at
most four. We begin by the following useful consequence of Lemma 3.1.

Proposition 6.1. Let d = (d1, . . . , dr;n) be a dimension vector of size |d| = k with 2k ≤ n.
Then d is either trivially sparse, or is dense by Lemma 4.1, or the density/sparsity problem
for d can be reduced to the density/sparsity problem for a dimension vector in a smaller
dimensional ambient space.

Proof. Let d be as in the statement of the proposition and suppose that it is not trivially
sparse. Then, assuming that the di’s are arranged in increasing order, by Lemma 3.1, we
have

r−2∑

i=1

di < n.

This leads to the following cases:

(I) If
∑r

i=1 di ≤ n, then d is dense by Lemma 4.1.

(II) If
∑r−1

i=1 di = n − k < n and k < dr, then we can apply Lemma 4.2 to reduce the
density problem for d to the density problem for (d1, . . . , dr−1, dr − k;n − k).

(III) If
∑r−2

i=1 di = n−k < n and k ≤ dr−1, dr, then by Lemma 4.8 or Lemma 4.9 (depending
on whether dr−1 + dr is equal to or less than n), we reduce the density problem of d
to one with smaller ambient dimension.

�

Suppose we want to determine if a dimension vector d = (d1, . . . , dr;n) with |d| ≤ t is
dense or sparse. By Proposition 6.1, if n ≥ 2|d| and the problem is not trivially answered,
this problem can be reduced to one with smaller ambient dimension. Lemmas 4.1, 4.2, 4.8
and 4.9 used in the proof of Proposition 6.1 preserve the size of the dimension vectors. Hence,
we may assume that |d| < n < 2|d|. On the other hand, as the minimum value for di(n−di),
with 1 ≤ di ≤ n− 1, is n− 1, if r > n+ 1 we have:

r∑

i=1

di(n− di) > (n− 1)(n + 1) = n2 − 1,

and hence d is trivially sparse. Therefore, we may assume that r ≤ n + 1. Furthermore, if
r = n + 1, the same calculation shows that if any of di’s are not equal to 1 or n − 1, then
d is trivially sparse. Hence, the density/sparsity problem for dimension vectors of bounded
size is reduced to a finite collection of low-dimensional cases. Here we will demonstrate how
to use the results of the previous sections to classify all dense vectors with |d| ≤ 4.

In the following, we will frequently use the exponential notation for dimension vectors (for
example the dimension vector (1, 1, 2, 2, 2, 4; 7) will be denoted as (12, 23, 4; 7)). We will also
use the following simple observation.

Lemma 6.2. For any n ≥ 2, the dimension vector (1n, n − 1;n) is dense.

Proof. Let X be an n-dimensional vector space with basis B = 〈e1, . . . , en〉. Consider
the configuration (V1, . . . , Vn, U ;X) of vector spaces with Vi = 〈ei〉 for 1 ≤ i ≤ n, and
U = {(x1, . . . , xn) :

∑n
i=1 xi = 0} (the coordinates are with respect to the basis B). Then
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(V1, . . . , Vn, U ;X) corresponds to the dimension vector (1n, n − 1;n) and it is easy to check
that Stab(V1, . . . , Vn, U ;X) is trivial. Hence, we are done by Lemma 2.2. �

We now begin the classification of dimension vectors of size |d| at most four.

|d| = 1: This case is trivial. The dimension vector has the form d = (1r;n), which is trivially
sparse if r > n+ 1 and is dense otherwise (see §1 and [4, Section 1.6]).

|d| = 2: We first consider the case n = 3, where Proposition 6.1 does not apply. In this case
r ≤ 4, and by Theorem 5.1 all vectors of the form (1a, 2b; 3) with a+ b ≤ 4 are dense except
for (12, 22; 3).

Now assume that n ≥ 4. A dimension vector (1a, 2b;n) is dense if a+2b ≤ n+1 by Lemma
4.4 and trivially sparse if a+2b ≥ n+4 by Lemma 3.1. If a+2b = n+2, then we check that
(1a, 2b;n) is trivially sparse unless a ≤ 3. If this holds, we use either Lemma 4.8 (if b ≥ 2
and n = 4) or Lemma 4.9 (if b = 1 or b ≥ 2 and n ≥ 5) to reduce to the dimension vector
(1a; 2), which is dense if a ≤ 3. If a + 2b = n + 3, then (1a, 2b;n) is trivially sparse unless
a ≤ 5−n, so n ≤ 5 and we get only two vectors (1, 23; 4) and (24; 5), both of which are dense
by Theorem 5.1.

Putting all this together, we obtain the following list of all dense vectors of size 2, listed
by excess dimension:

• (1a, 2b;n) with a+ 2b ≤ n+ 1.
• (1a, 2b;n) with a+ 2b = n+ 2 and a ≤ 3.
• Finitely many vectors with a + 2b ≥ n + 3: (23; 3), (1, 23; 3), (24; 3), (1, 23; 4) and
(24; 5).

|d| = 3: We first consider the cases n = 4 and n = 5 where Proposition 6.1 does not apply.
We have the following cases:

• n = 4, r ≤ 4: By Theorem 5.1, all dimension vectors are dense except for (12, 32; 4)
and (1, 22, 3; 4).

• n = 4, r = 5: Since r = n + 1, d is trivially sparse unless it is of the form (1a, 3b; 4)
with a+ b = 5. On the other hand, if 2 ≤ a, b, then d dominates (12, 32; 4) and hence
is sparse. The remaining cases are (14, 3; 4) (dense by Lemma 6.2), (1, 34; 4) (dense
by taking the complement), and (35; 4) (dense by taking the complement).

• n = 5, r ≤ 4: Theorem 5.1 implies that all dimension vectors are dense except for
(1, 33; 5) and (22, 32; 5).

• n = 5, r = 5: All dimension vectors in this case are trivially sparse except for the
following three, which can be reduced to smaller dimension vectors that are considered
in the previous cases:

(14, 3; 5)
Lemma 4.2
−−−−−−−→ (14, 2; 4) (trivially sparse),

(13, 2, 3; 5)
Lemma 4.8
−−−−−−−→ (14; 3) (dense),

(13, 32; 5)
complement
−−−−−−−→ (22, 43; 5)

Lemma 4.2
−−−−−−−→ (22, 33; 4) (trivially sparse).

• n = 5, r = 6: All dimension vectors in this case are trivially sparse.

We now assume that n ≥ 6. A dimension vector (1a, 2b, 3c;n) is dense if a+2b+3c ≤ n+1
by Lemma 4.4 and trivially sparse if a+ 2b + 3c ≥ n + 6 by Lemma 3.1. Hence we need to
consider the following cases:
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• a + 2b + 3c = n + 2. Here the dimension vector (1a, 2b, 3c;n) is not trivially sparse
if a ≤ 3c + 3. In this case we apply Lemma 4.2 to reduce to the dimension vector
(1a, 2b+1, 3c−1;n− 1), and hence by induction to the vector (1a, 2b+c;n− c), which is
dense if and only if a ≤ 3.

• a + 2b + 3c = n + 3. In this case the dimension vector (1a, 2b, 3c;n) is not trivially
sparse if a+ b ≤ 4. If this holds, then we use Lemma 4.8 (when c ≥ 2 and n = 6) or
Lemma 4.9 (when c = 1 or n ≥ 7) to reduce to the dimension vector (1a, 2b; 3), which
is dense if a+ b ≤ 4 and (a, b) 6= (2, 2).

• a + 2b + 3c = n + 4. The dimension vector (1a, 2b, 3c;n) is not trivially sparse if
3a + 4b + 3c ≤ 15, so there are only finitely many possibilities. If the length r =
a+b+c ≤ 4, then the only possibilities are (1, 33; 6), (22, 32; 6) (2, 33; 7), (34; 8), which
are all dense by Theorem 5.1. If a + b + c = 5 then b = 0, giving the three vectors
(12, 33; 7), (1, 34; 9) and (35; 11). By Lemma 4.9 these vectors reduce to (12, 33; 4),
(1, 34; 4) and (35; 4), respectively, so (12, 33; 7) is sparse and (1, 34; 9) and (35; 11) are
dense.

• a+2b+ 3c = n+ 5. In this case the dimension vector (1a, 2b, 3c;n) is trivially sparse
unless a+ b ≤ 7−n, so the only possibilities are (2, 33; 6) and (34; 7), which are dense
by Theorem 5.1.

Putting all this together, we obtain a complete list of dense vectors of size 3, listed by
excess dimension.

• (1a, 2b, 3c;n) with a+ 2b+ 3c ≤ n+ 1.
• (1a, 2b, 3c;n) with a+ 2b+ 3c = n+ 2 and a ≤ 3.
• (1a, 2b, 3c;n) with a+ 2b+ 3c = n+ 3, a+ b ≤ 4 and (a, b) 6= 2, 2.
• Finitely many vectors with a+2b+3c ≥ n+4: (2, 32; 4), (23, 3; 4), (1, 2, 32; 4), (33; 4),
(1, 33; 4), (2, 33; 4), (34; 4), (1, 34; 4), (23, 3; 5), (1, 2, 32; 5), (33; 5), (1, 33; 5), (2, 33; 5),
(34; 5), (1, 33; 6), (22, 32; 6), (2, 33; 6), (2, 33; 7), (34; 8), (1, 34; 9) and (35; 11).

Before proceeding further, we generalize the method that we used above. For a dimension

vector of the form (1e1 , . . . , kek ;n) with excess dimension
∑k

i=1 iei −n ≤ k, we can reduce to
a vector of smaller size.

Theorem 6.3. Let d = (1e1 , . . . , kek , n) be a dimension vector with total dimension
∑k

i=1 iei =
n + l + 1, where l < k and ek > 0. Then d is dense if and only if the dimension vector
(1e1 , . . . , lel ; l + 1) is dense.

Proof. First assume that k ≥ l+2. In this case we can repeatedly apply Lemma 4.2 to replace
each such k with l + 1, without changing the excess dimension. Hence we can assume that
k = l + 1, and we have reduced d to the dimension vector (1e1 , . . . , lel , (l + 1)f ;m), where

f =
∑k

i=l+1 ei > 0 and
∑l

i=1 iei + (l + 1)f = m + l + 1. If f ≥ 2 and m = 2l + 4, then
Lemma 4.8 reduces to the dimension vector (1e1 , . . . , lel ; l + 1) (we drop extra components
of dimensions 0 and l + 1). If f ≥ 2 and m ≥ 2l + 5, then Lemma 4.9 also reduces to the
dimension vector (1e1 , . . . , lel ; l + 1). Finally, if f = 1, then either d has no more than two
components (in which case the theorem holds trivially), or we can use Lemma 4.9 to reduce
to the dimension vector (1e1 , . . . , lel ; l + 1), which completes the proof.

�

It follows that we’ve reduced the classification problem of dense dimension vectors d =
(a1, . . . , ar;n) of size |d| = l and total dimension

∑r
i=1 ai ≤ n+ l + 1 to the classification of

all dense vectors in ambient dimension l + 1. The following lemma shows that there is only
a finite number of additional cases to consider.
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Lemma 6.4. For a given l, there are finitely many dense dimension vectors (1e1 , . . . , lel ;n)

having excess dimension
∑l

i=1 iei − n ≥ l + 1.

Proof. We can assume that n ≥ 2l, since there are finitely many dense dimension vectors in

a given ambient dimension. Assume that
∑l

i=1 iei = n + k + 1 where k ≥ l. By Lemma
3.1, if k ≥ 2l, the dimension vector is trivially sparse. Hence, it suffices to prove that
there are finitely many dense dimension vectors for each l ≤ k < 2l. The dimension vector
(1e1 , . . . , lel ;n) is trivially sparse unless

l∑

i=1

eii(n − i) ≤ n2 − 1.

Using
∑l

i=1 iei = n+ k + 1, we can reexpress this inequality as

n(n+ k + 1)−

l∑

i=1

i2ei = n2 − (k + 1)2 +

l∑

i=1

(k + 1− i)iei ≤ n2 − 1.

Hence,
l∑

i=1

(k + 1− i)iei ≤ k(k + 2).

Since the coefficient of each ei is positive, there are finitely many such dense dimension
vectors. �

We now give the full classification of dense dimension vectors of size 4.
|d| = 4: We first consider all cases for which Proposition 6.1 does not apply, namely when
the ambient dimension n is 5, 6, or 7. Then we consider all possibilities for the length r of d.

• n = 5, r ≤ 4: Theorem 5.1 implies that in this case all dimension vectors are dense
except for (12, 42; 5), (1, 2, 3, 4; 5), and (23, 4; 5).

• n = 5, r = 5: We consider those dimension vectors that are not trivially sparse (up
to taking complement) one at a time in the following list and show how they can be
reduced to smaller vectors.

(14, 4; 5)
Lemma 4.2
−−−−−−−→ (14, 3; 4) (dense),

(13, 2, 4; 5)
complement
−−−−−−−→ (1, 3, 43; 5)

Lemma 4.2
−−−−−−−→ (1, 34; 4) (dense),

(13, 3, 4; 5), (12 , 22, 4; 5)
Lemma 4.3
−−−−−−−→ (12, 42; 5) (sparse),

(12, a, 42; 5), for 1 ≤ i ≤ 4, dominate (12, 42; 5) (sparse),

(12, 2, 3, 4; 5)
Lemma 4.2
−−−−−−−→ (12, 22, 3; 4) (trivially sparse),

(12, 32, 4; 5)
Lemma 4.10
−−−−−−−→ (13, 22; 5) (dense),

• n = 5, r = 6: All dimension vectors in this case are trivially sparse unless they have
the form (1a, 4b; 5) for a + b = 6. Also, if 2 ≤ a, b, then the resulting dimension
vector dominates (12, 42; 5) and hence is sparse. Thus the only dense dimension
vectors in this case are (15, 4; 5) (by Lemma 6.2), (1, 45; 5), and (46; 5) (consider the
complement).

• n = 6, r ≤ 4: By Theorem 5.1, all dimension vectors in this case are dense except for
(1, 3, 42; 6), (22, 42; 6), and (2, 32, 4; 6).
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• n = 6, r = 5: Here is a list of dimension vectors that are not trivially sparse (up to
taking complement) and how to reduce them to smaller ones which are considered in
previous cases.

(14, 4; 6)
Lemma 4.2
−−−−−−−→ (14, 2; 4) (trivially sparse),

(13, 2, 4; 6)
Lemma 4.2
−−−−−−−→ (13, 2, 3; 5) (dense by the case (|d|, n, r) = (3, 5, 5)),

(13, 3, 4; 6)
complement
−−−−−−−→ (2, 3, 53; 6)

Lemma 4.2
−−−−−−−→ (2, 3, 43; 5) (dense by taking complement),

(13, 42; 6)
complement
−−−−−−−→ (22, 53; 6)

Lemma 4.2
−−−−−−−→ (22, 33; 4) (trivially sparse),

(12, 22, 4; 6)
Lemma 4.8
−−−−−−−→ (12, 22; 4) (dense by Theorem 5.1),

(12, 2, 3, 4; 6)
complement
−−−−−−−→ (2, 3, 4, 52 ; 6)

Lemma 4.2
−−−−−−−→ (2, 32, 42; 5) (trivially sparse),

(12, 2, 3, 4; 6), (12 , 32, 4; 6) (sparse by Corollary 5.2),

(12, 3, 42; 6)
Lemma 4.2
−−−−−−−→ (12, 33; 5) (trivially sparse),

(12, 43; 6)
Lemma 4.10
−−−−−−−→ (12, 23; 6)

Lemma 4.6
−−−−−−−→ (12, 22; 4) (dense by Theorem 5.1).

• n = 6, r = 6: All dimension vectors in this case are trivially sparse except for (15, 4; 6)
which can be reduced by Lemma 4.2 to the smaller vector (15, 3; 5).

• n = 6, r = 7: All dimension vectors in this case are trivially sparse.
• n = 7, r ≤ 4: We know by Theorem 5.1 that all dimension vectors in this case are
dense except for (2, 4, 4, 4; 7) and (3, 3, 4, 4; 7).

• n = 7, r = 5: Let d = (d1, . . . , d4, 4; 7), with 1 ≤ di ≤ 4, be a vector in this category.

It can be easily seen that either
∑3

i=1 di < 7 or d is trivially sparse. If
∑3

i=1 di < 7,
an argument analogous to the proof of Proposition 6.1 implies that the dimension
vector d can be reduced to a smaller one.

• n = 7, r = 6: All dimension vectors in this category are trivially sparse except for
the following ones:

(15, 4; 7)
Lemma 4.2
−−−−−−−→ (15, 2; 5) (trivially sparse),

(14, 2, 4; 7)
Lemma 4.2
−−−−−−−→ (14, 2, 3; 6) (trivially sparse),

(14, 3, 4; 7)
Lemma 4.8
−−−−−−−→ (15; 4) (dense),

(14, 42; 7)
complement
−−−−−−−→ (32, 64; 7)

Lemma 4.2
−−−−−−−→ (32, 54; 6) (trivially sparse).

• n = 7, r = 7: All dimension vectors in this case are trivially sparse except for (16, 4; 7)
which can be reduced by Lemma 4.2 to the smaller dimension vector (16, 3; 6).

• n = 7, r = 8: All dimension vectors in this category are trivially sparse by Lemma
6.2.

We can now use Theorem 6.3 and Lemma 6.4 to give a complete list of dense dimension
vectors of size 4, listed by excess dimension:

• (1a, 2b, 3c, 4d;n) with a+ 2b+ 3c+ 4d ≤ n+ 1.
• (1a, 2b, 3c, 4d;n) with a+ 2b+ 3c+ 4d = n+ 2 and a ≤ 3.
• (1a, 2b, 3c, 4d;n) with a+ 2b+ 3c+ 4d = n+ 3, a+ b ≤ 4 and (a, b) 6= (2, 2).
• (1a, 2b, 3c, 4d;n) with a + 2b + 3c + 4d = n + 4 and such that (1a, 2b, 3c; 4) is dense.
This means that either a+ b+ c ≤ 3, or a+ b+ c = 4 and a+2b+3c 6= 8, or a+ c = 5
and b = 0 with either a ≤ 1 or c ≤ 1.
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• A finite set of dimension vectors (1a, 2b, 3c, 4d;n) with a+ 2b+ 3c + 4d ≥ n+ 5. For
n ≤ 7 all these vectors are given above, and for n ≥ 8 these vectors can be found by
solving the inequality in Lemma 6.4 and using Proposition 6.1 to reduce to known
cases.

We summarize the results of this section. To classify all dense vectors of size l, it is
necessary to first classify all dense vectors of ambient dimension up to l + 1. These vectors
generate infinite families of dense vectors of size l by Theorem 6.3, having excess dimension at
most l. There are finitely dense vectors having excess dimension greater than l. For ambient
dimensions between l+1 and 2l− 1 these need to be found by hand, and the remaining ones
can be found by Lemma 6.4 and Proposition 6.1.

7. The equidimensional case

In this section, using the reduction lemmas of Section 4, we characterize the density of the
equidimensional vectors d = (kt;n). We will use the exponential notation for our dimension
vectors. By taking complements if necessary, we can always assume that n ≥ 2k. By the
division algorithm, write n = mk+ r, where 0 ≤ r < k. We then have the following theorem.

Theorem 7.1. Let k > 0, m ≥ 2 and 0 ≤ r < k be nonnegative integers.

(I) The dimension vector d = (kt;mk + r) is dense if t ≤ m+ 1.
(II) The dimension vector d = (kt;mk+ r) is trivially sparse if t ≥ m+3 or if t = m+2

and (m− 2)k(k − r) > r2 − 1.
(III) The dimension vector d = (km+2;mk+r) is dense if and only if the dimension vector

d′ = ((k − r)m+2; 2k − r) is dense.

Proof. Suppose t ≥ m+ 3, then

(4) tk(k(m− 1) + r) ≥ (m+ 3)k(km− k + r) ≥ m2k2 + (2m− 3)k2 + (m+ 3)kr.

If m = 2, the right hand side of (4) is equal to 5k2 + 5kr > 4k2 + 4kr + r2 − 1 since k > r.
Hence, the vector is trivially sparse. If m ≥ 3, since (m−3)k2+(m+3)kr ≥ 2mkr, the right
hand side of (4) is greater than

m2k2 + 2mkr +mk2 > m2k2 + 2mkr + r2 − 1.

Hence, if t ≥ m+ 3, the dimension vector d = (kt;mk + r) is trivially sparse. If t = m+ 2,

(m+ 2)k(mk − k + r) = m2k2 + (m− 2)k2 + (m+ 2)kr = m2k2 + 2mkr + (m− 2)k(k − r).

Hence, the dimension vector d = (kt;mk+ r) is trivially sparse if t = m+2 and (m−2)k(k−
r) > r2 − 1. This concludes the proof of part (2) of the theorem.

When t = m+2, we may assume that r > 0. By Lemma 4.9, d = (km+2;mk+ r) is dense
if the dimension vector d′ = ((k − r)m+2; 2k − r) is dense. On the other hand, the converse
is immediate. Therefore, we deduce part (3) of the theorem.

Finally, to prove part (1) of the theorem, consider the dimension vector (1r, km+1;mk+r).
By Lemma 4.7, this vector is dense if (1r, km;mk − k + r) is dense. By induction on m,
we conclude that it suffices to check the density of (1r, k2; k + r). By another application of
Lemma 4.7, this vector is dense if (1r; k) is dense. The latter vector is clearly dense since
r < k. We conclude that (1r, km+1;mk+ r) is dense. Since this vector dominates (kt;mk+ r)
when t ≤ m+ 1, we conclude part (1) of the theorem. �

Remark 7.2. Theorem 7.1 leads to a complete characterization of equidimensional vectors.
By Theorem 7.1, the vector (kt;mk+ r) is dense if t ≤ m+1 and trivially sparse if t ≥ m+3.
Hence, we only need to consider the case t = m+ 2. Since Theorem 5.1 characterizes dense
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dimension vectors of length 4, we may assume m ≥ 3. By Theorem 7.1 (2), (km+2,mk + r)
is trivially sparse if (m − 2)k(k − r) > r2 − 1. In particular, if r = 0, the dimension vector

is trivially sparse. In fact, unless r ≥
√
5−1
2 k, then the dimension vector is trivially sparse.

Hence, Theorem 7.1 replaces checking the density of (km+2;mk + r) to checking the density
of ((k− r)m+2; 2k− r), which is also an equidimensional vector where the dimensions are less
than half the original dimension. Hence, Theorem 7.1 gives a very fast algorithm for checking
the density of (km+2;mk + r).

8. Further examples and questions

In the previous three sections, using the reduction techniques of Section 4, we classified
dense and sparse dimension vectors of small length or size and dense equidimensional vectors.
In this section, we show how these techniques produce examples of dense dimension vectors
of large length and size. Lemma 4.6 and Lemma 4.7 proved in Section 4 have the special
feature of reducing the length and the ambient dimension at the same time. This allows us
to employ these lemmas in reverse and produce sequences of dense dimension vectors with
large length and size out of a given dense dimension vector.

We start by applying Lemma 4.7. Recall that the Fibonacci sequence {Fi}i≥0 is the
sequence of nonnegative integers recursively defined by acquiring F0 = 0, F1 = 1, and Fi+2 =
Fi+1 + Fi for all 0 ≤ i.

Proposition 8.1. Let (a1, . . . , ar; b) be a dense dimension vector such that for any 1 ≤ t ≤ r,
b+ at ≤ n :=

∑r
i=1 ai. Then for every k ≥ 0, the dimension vector

dk := (a1, . . . , ar, b, F1.n+ F0.b, F2.n+ F1.b, . . . , Fk.n+ Fk−1.b;Fk+1.n+ Fk.b),

where {Fi}0≤i is the Fibonacci sequence, is dense.

Proof. The proof is by induction on k. For the base case of the induction, we need to show
that the dimension vector d0 = (a1, . . . , ar, b;n) is dense, which follows from our assumptions
and Lemma 4.7. Assume that dk is dense. Lemma 4.7 implies that the dimension vector

(a1, . . . , ar, b, F1.n+ F0.b, . . . , Fk+1.n+ Fk.b; (1 +

k∑

i=0

Fi).n+ (1 +

k−1∑

i=0

Fi).b)

is dense. Hence, it suffices to show that

(5) Ft+2 = 1 +

t∑

i=0

Fi

for any t ≥ 0. We verify the identity (5) by induction on t. The case t = 0 is evident as
F2 = 1 = 1 + F0. Assuming (5), we can compute

Ft+3 = Ft+2 + Ft+1 = 1 +

t∑

i=0

Fi + Ft+1 = 1 +

t+1∑

i=0

Fi.

This concludes the induction and the proof of the proposition. �

Example 8.2. If we apply the above proposition to the dense dimension vector (1, 1, 1; 2),
with n = 3 and b = 2, we get the sequence

dk = (1, 1, 1, 2, 3F1 + 2F0, 3F2 + 2F1, . . . , 3Fk + 2Fk−1; 3Fk+1 + 2Fk)
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of dense dimension vectors. On the other hand, one can easily check by induction on k that
3Fk + 2Fk−1 = Fk+3 (in fact, more generally, FtFk + Ft−1Fk−1 = Ft+k−1 for all natural
numbers t and k). Therefore, we obtain that for any k ≥ 0 the dimension vector

dk = (1, F1, F2, . . . , Fk+3;Fk+4)

is dense. Similarly, by applying the above proposition to the dense dimension vectors that we
found in previous sections, we can construct infinitely many sequences of “Fibonacci type”
that are dense.

Proposition 8.3. Let (a1, . . . , ar, b;n) be a dense dimension vector with n =
∑r

i=1 ai. Then,
for every k ≥ 1, the dimension vector

dk = (a1, . . . , ar, b
k;n+ (k − 1)b)

is dense.

Proof. We prove the assertion by induction on k. The induction basis k = 1 is our hypothesis.
If we assume that the dimension vector dk is dense, Lemma 4.6 implies that the dimension
vector dk+1 is dense, too. �

The reduction lemmas can be applied to study the density of arbitrary dimension vectors
with size bounded by n/2. Unfortunately, after the reduction the dimension of some of the
vector spaces might be more than half the ambient dimension. The same techniques can
be applied even when some of the dimensions are greater than n/2. However, after the
reduction, the new problem is no longer the density of the PGL(n) action on a product of
Grassmannians, but the density of the action on a subvariety of a product of flag varieties.
This was already encountered in the proof of Lemma 4.9. The following example is typical.

Example 8.4. We show that the dimension vector (5, 5, 5, 5, 13; 14) is not dense. The reader
can check that the same argument works for dimension vectors of the form (k, k, k, k, 3k −
2; 3k− 1). Let U1, U2, U3, U4,W be general linear subspaces of a 14-dimensional vector space
X, where dimUi = 5 for 1 ≤ i ≤ 4 and dimW = 13. We first reduce checking the density to
checking the density of a configuration where the ambient vector space has dimension 10.

Let V = U1 + U2. Let U
′
i = Ui ∩ V for i = 3, 4 and let W1 = W ∩ V . Finally, let

W2 = ((U3 ∩W ) + (U4 ∩W )) ∩ V.

Then there is a natural restriction morphism

f : Stab(U1, U2, U3, U4,W ;X) → Stab(U1, U2, U
′
3, U

′
4,W1,W2;V ).

The new twist in this case is that W2 ⊂ W1, hence the new data is not a point of a product
of Grassmannians, but of a product of partial flag varieties. Since the expected dimensions
of the stabilizers are equal and both configurations can be taken to be generic, the density of
one configuration is equivalent to the density of the other configuration by Lemma 2.2.

Next we reduce the problem to one where the ambient dimension is 6. Set V ′ = U ′
3 +U ′

4+
W2. Let U

′
i = Ui ∩ V ′ for i = 1, 2, let W ′

1 = W1 ∩ V ′ and

W3 = ((U1 ∩W1) + (U2 ∩W1)) ∩ V ′.

There is a natural restriction morphism

f : Stab(U1, U2, U
′
3, U

′
4,W1,W2;V ) → Stab(U ′

1, U
′
2, U

′
3, U

′
4,W

′
1,W2,W3;V

′).

Again both configurations are generic subject to the restriction W2 ⊂ W1 and W2,W3 ⊂ W ′
1

and by Lemma 2.2 the density of one is equivalent to the density of the other. The new twist
at this stage is that both W2,W3 ⊂ W ′

1. Hence, this is a configuration parameterized by a
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subvariety of a product of Grassmannians and flag varieties defined by imposing some linear
conditions on the vector spaces. At this stage, it is clear that the configuration is not dense
since the configuration (1, 1, 4, 4; 5) exists as a subconfiguration by taking T1 = (U ′

1+U ′
3)∩W

′
1,

T2 = (U ′
2 + U ′

4) ∩W ′
1.

We can speculate that whenever a dimension vector is not dense, there is always a config-
uration of vector spaces obtained by repeatedly taking spans, intersections and projections
that gives a configuration which is trivially sparse. Based on the previous example and to get
a better inductive set up, the following generalization of Question 1.1 may be more natural.

Question 8.5. Let X be a subvariety of a product of flag varieties
∏k

i=1 F (di,1, . . . , di,ji ;n)
obtained by imposing linear relations on the vector spaces. When does the diagonal action of
PGL(n) have a dense orbit on X?

One can also generalize the question to other homogeneous varieties.

Question 8.6. Let G be a semisimple linear algebraic group and let Pi, for 1 ≤ i ≤ n, be
parabolic subgroups. When does the diagonal action of G have a dense orbit on

∏n
i=1 G/Pi?
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