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THE ZERO SECTION OF THE UNIVERSAL

SEMIABELIAN VARIETY, AND THE DOUBLE

RAMIFICATION CYCLE

SAMUEL GRUSHEVSKY AND DMITRY ZAKHAROV

Abstract. We study the Chow ring of the boundary of the partial
compactification of the universal family of principally polarized
abelian varieties. We describe the subring generated by divisor
classes, and compute the class of the partial compactification of
the universal zero section, which turns out to lie in this subring.
Our formula extends the results for the zero section of the universal
uncompactified family.

The partial compactification of the universal family of ppav can
be thought of as the first two boundary strata in any toroidal com-
pactification of Ag. Our formula provides a first step in a program

to understand the Chow groups ofAg, especially of the perfect cone
compactification, by induction on genus. By restricting to the im-
age of Mg under the Torelli map, our results extend the results
of Hain on the double ramification cycle, answering Eliashberg’s
question.

Introduction

We are mainly interested in the Chow and cohomology groups of
(compactified) moduli spaces of principally polarized abelian varieties
(ppav). The tautological ring of the moduli space of ppav Ag is defined
as the subring R∗(Ag) ⊂ A∗(Ag) of the Chow ring (or of cohomology
ring RH∗(Ag) ⊂ H∗(Ag)) generated by the Chern classes λi := ci(E) of
the rank g Hodge bundle E → Ag, with fiber over A being H1,0(C). Un-
like the case of curves, this tautological ring is known completely. For
a suitable toroidal compactification Ag van der Geer [vdG99] proved
that RH∗(Ag) is generated by the λi with the only relations being the
homogeneous degree pieces of the basic relation

(1) (1 + λ1 + · · ·+ λg)(1− λ1 + · · ·+ (−1)gλg) = 1.

In cohomology this relation follows from the triviality of E ⊕ E, the
total space of the bundle of first cohomology. Esnault and Viehweg
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[EV02] proved the much more delicate result that it also holds in the
Chow ring of Ag, which implies that R∗(Ag) = RH∗(Ag).
Furthermore, van der Geer [vdG99] also proved that the tautologi-

cal ring R∗(Ag) = RH∗(Ag) is obtained from R∗(Ag) by imposing one
more relation λg = 0. Thus in R∗(Ag) the class λg can be represented
by a cycle supported on the boundary, and it is a natural question
to find a suitable representative for it. A lot of progress on this was
made by Ekedahl and van der Geer [EvdG05],[EvdG04]. In partic-
ular, in characteristic p suitable cycles were constructed, but over C

this question remains open. Note that in characteristic zero Keel and
Sadun [KS03] proved Oort’s conjecture that Ag does not have complete
subvarieties of codimension g.
One naturally defined geometric locus in Ag is the locus δg, the clo-

sure of the locus of trivial extensions of semiabelic varieties of torus
rank one. This locus was introduced and studied by Ekedahl and van
der Geer [EvdG05]. We denote A′

g ⊃ Ag Mumford’s partial compact-
ification, obtained by adding semiabelic varieties of torus rank one
(compactifications of C∗-extensions of (g − 1)-dimensional ppav). The
boundary A′

g \ Ag is then the universal family of (g − 1)-dimensional
Kummer varieties (quotients of ppav by the −1 involution), and admits
the zero section. The class δg is defined to be the class of the closure
of the image of the zero section in a suitable toroidal compactification
Ag (recall that all toroidal compactifications contain A′

g). Ekedahl and

van der Geer show that on Ag the class λg is equal to (−1)gζ(1−2g)δg
up to classes supported deeper in the boundary, on Ag \ A

′
g, in other

words that on A′
g the class λg is proportional to δg. Thus understanding

the class δg could lead to finding an explicit geometric cycle represent-
ing λg in characteristic zero. A study of the locus δg is also natural
since Shepherd-Barron [SB06] showed that in the perfect cone toroidal
compactification APerf

g the normalization of the closure of the zero sec-

tion is equal to APerf
g−1 . Thus a full understanding of the class δg could

provide an inductive approach for understanding the cohomology of
the perfect cone compactification, for example addressing the conjec-
ture of [EGH10] on intersection numbers of divisors on APerf

g−1 . We note

that for g ≤ 3 the locus δg was fully described, and its class in Ag

was computed completely by van der Geer in [vdG98], but nothing was
previously known for higher g.
Denote Xg → Ag the universal family of ppav, and by X ′

g → A′
g its

partial compactification (note that the existence of a universal com-
pactified family X g over a full toroidal compactification Ag is only
known for the second Voronoi toroidal compactification [Ale02]). Our
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main result is the computation of the class of the closure of the zero sec-
tion z′g : A

′
g → X ′

g, which turns out to be a polynomial in divisor classes
and a natural codimension two “gluing locus” in X ′

g, see Theorem 1.1.
Moreover, we prove that the divisor classes and this codimension two
class generate a certain geometric subring of the Chow ring of X ′

g, see
Theorem 1.3. We also describe the algebraic cohomology of the uni-
versal family Xg ×Ag

Xg of products of ppavs, see Theorem 3.1. Since

Xg−1 is a cover of the boundary of A′
g, our results mean that on Ag

we compute the class δg up to the stratum parameterizing semiabelic
varieties of torus rank two.

Our results also have consequences for the moduli space of curves
Mg. Recall that the tautological ring R∗(Mg) ⊂ A∗(Mg) (or sim-

ilarly for the Deligne-Mumford compactification Mg or the partial
compactification by stable curves of compact type Mct

g ) is defined
to be the subring generated by the Mumford-Morita-Miller classes
κi. Faber’s conjecture [Fab99] states that the tautological ring of
Mg (resp. of Mct

g ,Mg) is Gorenstein with socle in dimension g − 2
(resp. 2g−3, 3g−3) — such rings are also called Poincaré duality rings.
That is to say that the tautological ring is zero above the socle dimen-
sion, one-dimensional in the socle dimension, and has perfect pairing to
the socle dimension. While the vanishing and the one-dimensionality
are known, see [Loo95],[Fab97],[Ion02],[GV05], the perfect pairing part,
and in general the structure of the ideal of relations among the κi re-
main mysterious, and are currently under intense investigation, see
e.g. [Pan09]. Another interesting question is whether classes of various
naturally defined geometric loci in Mg are tautological, see [FP05],
and whether the classes of their closures in Mg are tautological. For
tautological classes on Mg that vanish in Mg one can also ask to find
explicit geometric representatives — in particular this question is of
interest for the class λg, which is a pullback from the moduli space of
ppav.
Our results on X ′

g yield a further understanding of a natural codimen-
sion g class onMg,n: the two-branch-point locus, also called the double
ramification locus [FSZ10]. It is defined as locus of (C, p1, . . . , pn) ∈
Mg,n such that a linear combination

∑
dipi is a principal divisor (for

some fixed di ∈ Z,
∑

di = 0). This is a natural “double Hurwitz” locus
of curves admitting a map to P1 with prescribed preimages and ramifi-
cation at 0 and∞. Its class is also of interest in Gromov–Witten theory
(see [FSZ10]), and the question of computing it is due to Eliashberg.
The class of the closure of this locus in Mct

g,n was recently computed by
Hain [Hai11], and we extend his computation further into the boundary
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of Mg, to the open subset of the boundary δirr where the geometric
genus is g−1 — this is precisely the preimage of the partial compactifi-
cation ofAg, and we obtain the result by pulling back our computations
there.

While for Mg the classes of the boundary divisors, and possibly
the classes of closure of various geometric loci, are tautological [FP05],
for Ag already the boundary divisor(s) are non-tautological (as their
classes are clearly not proportional to λ1). Thus defining a suitable “ex-
tended” tautological subring of A∗(Ag,Q) is a natural central further
question to study; one could hope that such a ring would be defined
geometrically, and would contain the classes of geometrically defined
loci. Some results in this direction were obtained by the first author
and Hulek in [GH11a], but the situation is far from clear, and studying
natural geometric loci in Ag is thus of particular interest.
Note also that since the Deligne-Mumford compactification Mg ad-

mits a morphism to the second Voronoi [Nam80] and perfect cone
[AB11] toroidal compactifications of Ag, restricting a geometric cy-
cle representing λg on Ag to the image of the Torelli map would allow
one to relate the tautological rings of Mg and Mct

g (which is the preim-
age of Ag under the Torelli map, as a stack), and perhaps to obtain a
direct computational proof of the λg-conjecture (proven by Faber and
Pandharipande [FP03], to which we also refer for a discussion).

1. Statement of results

The principal result of our paper is the computation of the class of
the closure of the zero section of the universal abelian variety in the
partial compactification X ′

g → A′
g.

Theorem 1.1. Let X ′
g → A′

g denote the partial compactification of the
universal family of ppav Xg → Ag, let zg : Ag → Xg denote the zero
section, let z′g : A′

g → X ′
g denote the closure of the zero section in the

partial compactification, and let Z ′
g denote its class in Ag(X ′

g,Q). Then
we have

(2) Z ′
g =

∑

a+b+2c=g

αa,b,c(Θ−D/8)aDb(∆− 2ΘD)c,

where the positive coefficients αa,b,c are given by

(3) αa,b,c =
(−1)b+c+1(2−b−c − 21−3b−3c)(2a+ 2b+ 2c− 1)!!B2b+2c

(2a+ 2c− 1)!!(2b+ 2c− 1)!!a!b!c!
.

Here Θ ∈ A1(X ′
g,Q) denotes the class of the universal theta divisor

trivialized along the zero section, D ∈ A1(X ′
g,Q) denotes the class of
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the boundary X ′
g\Xg, and ∆ ∈ A2(X ′

g,Q) denotes the class of the gluing
locus within D, where the 0 and ∞ sections of the universal Poincaré
bundle that is the total space of X ′

g \ Xg are identified (all considered
non-stacky, see below for details).

Remark 1.2. The classes Θ−D/8 and ∆−2ΘD above may seem like
a random choice, but in fact have a geometric significance. Indeed, Θ−
D/8 is in a sense the class of the theta divisor, with generic vanishing
on the boundary taken out, and appears for example in Grothendieck-
Riemann-Roch computations in [EvdG05], while ∆−2ΘD is a natural
“shift-invariant” class (see below), and corresponds to the Casimir ten-
sor of SL(2), acting on the fiberwise square of the universal family of
ppav (this phenomenon will be explored in more generality in a forth-
coming work of the authors).
Equivalently, the class of the partial compactification of the zero

section can be written as

Z ′
g =

∑

a+b+2c=g

ηa,b,cΘ
aDb∆c,

where the coefficients ηa,b,c are equal to

(−1)b+c(2c+ 2b− 1)!!

23b+3ca!c!

b∑

x=0

(2− 22c+2x)B2c+2x

(2c+ 2b− 2x− 1)!!(2c+ 2x− 1)!!(b− x)!x!
.

We note that as Xg/ ± 1 is the boundary of the partial compactifi-
cation A′

g+1, we can interpret the above result as computing the class

δg+1 ∈ A∗(Ag+1,Q) up to the second boundary stratum, of semiabelic
varieties of torus rank two — see Remark 5.2 for more details on this.
The theorem above was surprising to us, as it claims that Z ′

g, which
is a codimension g class, admits a polynomial expression in classes of
degree 1 and 2. However, this turns out to be a fairly general phenom-
enon. Namely, we prove the following result.

Theorem 1.3. Let Ỹ denote the normalization of the boundary of
the partial compactification X ′

g → A′
g. Any class in A∗(X ′

g,Q) whose

pullback to Ỹ is a polynomial in divisor classes on Ỹ can be expressed
on X ′

g as a polynomial in the three classes Θ, D and ∆.

Along the way of proving these results, we also further investigate
the geometry and intersection theory of the total space of the universal
Poincaré bundle (i.e. of X ′

g \ Xg), which may be of independent inter-
est. We also investigate the relations among Chow classes on the fiber
square of a very general ppav, which may lead to further generalizations
and questions.
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Turning to the moduli space of curves, we apply the theorem above
to obtain a partial answer to the following question of Eliashberg. Let
d = (d1, . . . , dn) ∈ Zn be integers summing to zero, and consider the
locus Rd of curves (X, p1, . . . , pn) ∈ Mg,n such that

∑
dipi is a principal

divisor on X . This locus is known as the double ramification locus, and
the question is to compute the class of its closure in Mg,n.
On a smooth curve X , the divisor

∑
dipi is principal if and only if its

image in Jac(X) is zero. Therefore, the double ramification locus can
be computed by pulling back the zero section of the universal Jacobian
under the Abel–Jacobi map sd : Mg,n → Jac that sends (X, p1, . . . , pn)
to
∑

dipi ∈ Jac(X). This map naturally extends to curves of compact
type, since the Jacobians of such curves are abelian varieties, and was
used by Hain in [Hai11] to compute the class of the closure of Rd in
Mct

g,n.
In this paper, we take this approach one step further. The Abel–

Jacobi map does not extend to a morphism over all of Mg,n, but it

does extend to a morphism over the open part M
o

g,n of Mg,n param-
eterizing stable curves whose normalization has genus at least g − 1.
The compactified Jacobians of such curves are semiabelic varieties of
torus rank one, and there exists an Abel–Jacobi map from M

o

g,n to the
partial compactification X ′

g → A′
g. Computing the class of the zero

section in the partial compactification and pulling it back, we find the
class of the closure of the double ramification locus in M

o

g,n.

Theorem 1.4. Let M
o

g,n be the open subset of Mg,n parameterizing
curves with geometric genus at least g − 1. Let d = (d1, . . . , dn) ∈ Zn

be integers summing to zero, and let Rd denote the double ramification

locus defined above. Then the class of the closure Rd of Rd in M
o

g,n is

equal in Ag(M
o

g,n,Q) to

[Rd] =
∑

a+b+2c=g

ηa,b,c(s
∗
dΘ)aδbirr(s

∗
d∆)c.

Here s∗dΘ and s∗d∆ denote the pullbacks of the classes Θ and ∆ to M
o

g,n

under the Abel–Jacobi map, and the coefficients ηa,b,c are the same as
in Theorem 1.1. These pullbacks can be expressed in terms of classes
in A∗(M

o

g,n,Q) in the following way:

s∗dΘ =
1

2

n∑

i=1

d2iKi −
1

2

∑

P⊆I

(
d2P −

∑

i∈P

d2i

)
δP0 −

1

2

∑

h>0,P⊆I

d2P δ
P
h ,
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s∗d∆ =
n∑

i=1

|di|ξi.

Here Ki and δPh are the standard divisor classes on M
o

g,n (see Section 6
for details), I = {1, . . . , n} is the indexing set, dP =

∑
i∈P di, and ξi is

a codimension two class in M
o

g,n whose generic point is a rational curve
containing the i-th marked point attached at two nodes to a smooth
genus g − 1 curve containing the remaining marked points.

Remark 1.5. On the moduli space of curves of compact type this
formula restricts to the result of Hain [Hai11], while on the moduli space
of curves with rational tails (having a smooth component of maximum
genus) this formula restricts to the result of Cavalieri, Marcus, and
Wise [CMW11].
We would like to stress that while M

o

g,n \ Mct
g,n is an irreducible

divisor, computing a codimension g class on M
o

g,n involves much more
than computing it on Mct

g,n, and then computing one extra coefficient.

The structure of the paper is as follows. In Section 2 we introduce the
notation, and review the known results on the geometric structure of
the boundary of X ′

g (which is also the second stratum of the boundary

of Ag+1), mostly following [EGH10]. In Section 3 we study the sub-
ring of its Chow ring generated by the divisor classes. In Section 4 we
study the normalization of the boundary of X ′

g and describe the classes
on the normalization that glue to classes on the actual boundary of
X ′

g, culminating with a proof of Theorem 1.3. In Section 5 we study
the closure of the zero section and obtain an expression for it, prov-
ing Theorem 1.1. Finally, in Section 6 we use this theorem, together
with standard intersection techniques on Mg, to obtain an answer to
Eliashberg’s problem, proving Theorem 1.4.

2. Notation and known results

Throughout the text, we work with Chow groups with rational co-
efficients. The spaces that we work with are smooth Deligne-Mumford
stacks, and thus the Chow groups admit a ring structure (below, we
specifically avoid working with the Chow groups of the non-normal
boundary Y = X ′

g\Xg).
We denote by π : Xg/ ± 1 → Ag the universal family of Kummer

varieties (which are quotients of ppav by the involution ±1), and denote
by zg : Ag → Xg its zero section. By abuse of notation, we also denote
zg the image of the zero section as a locus in Xg, and denote Zg its
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class in Ag(Xg). We denote by T ⊂ Xg the universal symmetric theta
divisor trivialized along the zero section (so that T |zg is trivial).
Our problem is motivated by the following result:

Theorem 2.1 ([Hai11] in homology, implied by the results of [DM91]
in Chow, see [BL04]). The class of the zero section in Ag(Xg) and in
H2g(Xg) is equal to

Zg =
T g

g!
.

Remark 2.2. This result has a long history, and many approaches to
it have been developed. We are grateful to Richard Hain, Claire Voisin,
and Gerard van der Geer for discussions on these topics. Indeed, Hain
[Hai11, Prop. 8.1] proves this result using Hodge-theoretic methods,
while the argument in the Chow ring uses the Fourier transform on
the Chow ring, and is based on ideas of Deninger and Murre, including
[DM91, Cor. 2.22]. We refer to [BL04, Cor. 16.5.7] for a complete proof,
which is also given in [vdGM12, Exercise 13.2]. We also refer to Section
3 for more results and a discussion of the relationship of the Poincaré
bundle and the class T .

The goal of this paper is to extend this formula to Mumford’s partial
compactification of the moduli space of ppav, which we denote by A′

g.
In this section, we recall the construction of the universal family over
the partial compactification.
The partial compactification is the blow-up of the partial Satake

compactification Ag ⊔ Ag−1 along the boundary. The boundary of the
partial compactification is the universal family Xg−1:

A′
g = Ag ⊔ Xg−1.

Geometrically, the boundary of the partial compactification parame-
terizes semiabelic varieties of torus rank one, described as follows. For
a point (B, b) ∈ Xg−1, where B ∈ Ag−1 is an abelian variety of dimen-
sion g − 1 and b ∈ B a point on it, up to sign, the semiabelic variety
corresponding to (B, b) is obtained by compactifying the C∗-extension
of B

1 → C∗ → G → B → 0

to a P1-bundle G̃ over B by adding the 0- and ∞-sections, and then
gluing these sections with a shift by b to obtain the non-normal variety

G = G̃/(β, 0) ∼ (β + b,∞) (we use β instead of the more standard
notation z, to distinguish this from the zero section, and to emphasize
that β and b are in a sense points of dual abelian varieties).
We extend the universal family π : Xg → Ag to a family over the

partial compactification π′ : X ′
g → A′

g by globalizing the construction
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above. We follow the notation of [EGH10], the results and setup of
which we now recall. We let X 2

g−1 = Xg−1 ×Ag−1
Xg−1 be the fiberwise

square, with pri : X
2
g−1 → Xg−1 denoting the projections to the two

factors. Let P denote the Poincaré bundle on X 2
g−1, and let Ỹ =

P(P⊕O) denote the projectivization of P. We now define the extension
Y of the universal family over the boundary by gluing the 0- and ∞-

sections of Ỹ with a shift by the second coordinate, and factorizing by

the involution. In other words, we glue (B, β, b, 0) ∈ Ỹ and (B, β +

b, b,∞) ∈ Ỹ , and then factorize by j, where j denotes the involution

on the semiabelic variety fiber of Ỹ → Xg−1. We denote ∆ ⊂ Y the
gluing locus (and by abuse of notation its class in cohomology), i.e. ∆

denotes the image of the glued 0- and ∞-sections of Ỹ . We summarize
the geometry in the following diagram:

(Ỹ = P(P ⊕O))/j ∋ (B, β, b, x)

tt✐✐
✐
✐
✐
✐
✐
✐
✐
✐
✐
✐
✐
✐
✐
✐
✐
✐
✐
✐
✐
✐
✐

��

Xg/± 1

��

⊔ Y

��

X 2
g−1 ∋ (B, β, b)

pr2
tt✐✐
✐
✐
✐
✐
✐
✐
✐
✐
✐
✐
✐
✐
✐
✐
✐

pr1

��

Ag

��

⊔ Xg−1 ∋ (B, b)

��

Xg−1 ∋ (B, β)

tt❤❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤

Ag ⊔ Ag−1 ∋ (B)

We avoid working directly on the boundary family Y , because it is
not normal and the Chow groups do not have an intersection product.

We instead do all our computations on Ỹ , which is a P1-bundle over
X 2

g−1, and then only at the end take the involution and the gluing into
account by requiring our computations to be invariant under them.
We now summarize the known results about the Chow rings of the

various objects in the diagram.
The Picard group of Ag−1 is equal to the first Chow group and is

generated by the first Chern class λ1 of the Hodge bundle. The Picard
group and the first Chow group of the universal family is PicQ(Xg−1/±
1) = Qλ1 ⊕ QT , where T is the universal symmetric theta divisor
trivialized along the zero section (note that it is only defined up to
translation by two-torsion points, which is torsion, and thus gives a
well-defined class over Q).
The Picard group of the product family X 2

g−1 is generated by the
pullback of λ1, which we denote by L, by the pullbacks Ti = pr∗i T



10 SAMUEL GRUSHEVSKY AND DMITRY ZAKHAROV

of the theta divisors from the two factors, and by the class P of the
universal Poincaré bundle, also trivialized along the zero section (see
[EGH10]). By abuse of notation, we also use L, T1, P and T2 to denote

the pullbacks of these classes to A1(Ỹ ). We recall that by the results
of Deninger and Murre [DM91] (see also [Voi12a]), the direct image
Rπ∗Q of a constant sheaf in any family of ppav admits a multiplicative
decomposition. It follows, (see [Voi12, Prop. 4.3.6, Cor. 4.3.9] and
Remark 2.2), that for classes T1, P and T2 on X 2

g−1, all trivialized
along the zero section by definition, a polynomial relation f(T1, P, T2) =
0 holds in H∗(X 2

g−1) if and only if it holds in the Chow ring and if
and only if it holds fiberwise. Along the way of our computation, we
compute the relations between these classes on a very general ppav,
and thus describe entirely the subring of H∗(X 2

g−1) (and of the Chow
ring) generated by these classes — the result is given in Theorem 3.1.
The Chow and the cohomology rings of X 2

g−1 admit a natural auto-

morphism which plays a key role in our computations. Let s : X 2
g−1 →

X 2
g−1 denote the shift map defined by

s(B, β, b) = (B, β + b, b),

and let s∗ : A∗(X 2
g−1) → A∗(X 2

g−1) denote the induced map on the Chow
ring. The action of s∗ on the divisors T1, P and T2 was computed in
[GL08],[EGH10] to be

(4) s∗(T2) = T2; s∗(P ) = P + 2T2; s∗(T1) = T1 + P + T2.

The Chow ring of A∗(Ỹ ) is generated over the Chow ring A∗(X 2
g−1)

by one class ξ satisfying the relation ξ2 = ξP (see [Ful98]). We think
of ξ as the class of the 0-section, in which case ξ−P is the class of the
∞-section, and the relation ξ · (ξ−P ) = 0 expresses the fact that these
sections do not intersect.
The action of the involution j on Ỹ is studied in detail in [GH11b,

Sec. 4], where it is described globally in coordinates. It is easy to see

that j interchanges the 0- and ∞-sections of Ỹ , and thus its action

on A∗(Ỹ ) interchanges ξ and ξ − P , which implies in particular that
j∗P = −P . From the explicit description of the action we then also
see that j∗Ti = Ti (since the theta divisors are symmetric).

We also consider several cycles on the entire partial compactification
X ′

g, and their pullbacks to Ỹ . The divisor T extends to a universal

polarization divisor Θ ∈ A1(X ′
g). The boundary of X ′

g is an irreducible
divisor, the class of which we denote D, therefore we have PicQ(X

′
g) =

Qλ1 ⊕ QΘ ⊕ QD. Finally, we consider the class of the gluing locus
∆ ∈ A2(X ′

g).
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Finally, we need to know how these cycles restrict to the bound-

ary. Let (·)|Ỹ : A∗(X ′
g) → A∗(Ỹ ) denote the pullback map. Then by

[Mum83],[GL08], and [EGH10] we have

(5) D|Ỹ = −2T2; Θ|Ỹ = ξ + T1 − P/2.

We compute the pullback of ∆ to Ỹ in Proposition 4.3 (note that ∆|∆
was computed in [EGH10]).

3. Intersection theory on Xg−1 ×Ag−1
Xg−1

We prove our main result by restricting the formula (2) to the bound-
ary of the partial compactification of the universal family, and express-
ing all of the cycles involved in terms of the divisor classes ξ, T1, P
and T2 defined in the previous section. To compare products of cycles
on the boundary, we first need to understand the subring of the Chow
ring generated by these divisors.
In this section, we compute the subring of A∗(X 2

g−1,Q) generated
by the classes T1, P and T2. We show that this ring is a Gorenstein
ring with socle in dimension 2g − 2, and that there are no relations
in degrees up to and including the middle dimension. This calculation
improves on the results of [EGH10], in particular on Theorem 7.1,
which describes the pushforwards of products of T1, P , and T2 to the
base Ag−1.

Theorem 3.1. Let R denote the subring of A∗(X 2
g−1,Q) generated by

the classes T1, P , and T2, and let Rk denote the subspace of R spanned
by monomials of degree k. Then

(1) The ideal of relations in R is generated by all the coefficients of
the one basic relation

(6) (T1 + nP + n2T2)
g = 0, n ∈ Z

considered as a polynomial in n (i.e. by all the homogeneous in
n pieces of it). In particular, there are no non-trivial relations
between T1, P and T2 in degree less than g.

(2) R is a Gorenstein ring with socle in codimension 2g − 2, in
other words,

R2g−2 ∼= Q, dimRk = 0 for k > 2g − 2,

and for any 0 ≤ k ≤ g − 1 the product map

Rg−1−k × Rg−1+k → R2g−2 ∼= Q

is a perfect pairing (in particular dimRg−1−k = dimRg−1+k).
Moreover, the multiplication by (T1T2)

k is an isomorphism from
Rg−1−k to Rg−1+k .
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Remark 3.2. The ring R introduced in the theorem is very natural:
its restriction to the Cartesian square of a very general ppav gener-
ates its algebraic cohomology ring. As discussed above, the results of
Deninger and Murre [DM91] on the multiplicative decomposition the-
orem imply that a relation among the classes T1, P and T2 holds if
and only if it holds when restricted to a very general ppav. There-
fore, the second part of the above statement admits a Hodge-theoretic
interpretation. Moreover, the above statement can be combined with
the Fourier transform F : A∗(Xg) → A∗(X ∨

g ) of families over Ag (the
principal polarization identifies the universal family with its dual). Ap-
plying the Fourier transform provides an alternative approach to this
theorem, but does not seem to yield the first part of the theorem, nor
all of the statements in the second part of the theorem. We give a
direct proof of the theorem below, and in a separate future work we
will further investigate the geometry of this setup, and generalize the
result to a higher fiberwise product (when the fiber over A ∈ Ag−1 is
A×k), where the theorem of the cube plays a crucial role.

We prove the theorem by considering the action of the shift operator
s∗ defined by (4) on the ring A∗(X 2

g−1) and by using Theorem 2.1.

Proposition 3.3. For any integer n relation (6) holds in the Chow
ring, i.e. we have (T1 + nP + n2T2)

g = 0 in Ag(X 2
g−1,Q).

Proof. The class T1 is the pullback of the universal theta divisor T on
Xg−1. According to Theorem 2.1, T g−1 = (g − 1)!Zg−1 ∈ Ag−1(Xg−1).
Multiplying both sides of this equality by T and recalling that T is
trivial along the zero section, so that TZg−1 = 0, we see that T g is zero
in the Chow ring. Pulling back this relation from Xg−1 to X 2

g−1 under

pr∗1 we get that T g
1 = 0 in Ag(X 2

g−1).
We now apply the shift operator to this relation. A direct calculation

using (4) shows that (s∗)n(T1) = T1 + nP + n2T2. The shift operator
s∗ is an automorphism of A∗(X 2

g−1), so the result follows. �

Proof of Theorem 3.1. The proof is direct and computational. We prove
the statements of the theorem in the following order. First, we prove
the vanishing of Rk for k > 2g − 2 and show that multiplication by
(T1T2)

k is a surjective map from Rg−1−k to Rg−1+k. Then we use a
pushforward calculation to prove that R2g−2 ∼= Q. We then show that
the relations (6) generate the ideal of relations, and that multiplica-
tion by (T1T2)

k is also injective. Finally, we prove the perfect pairing
statement.
We define a second grading d on R by setting

d(T a
1 P

bT c
2 ) := a− c.
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This grading is motivated by the fact that all the summands of the ng−k

term of relation (6) have degree k in this grading. We now consider
the decomposition of R with respect to d and the usual degree:

R =

∞⊕

k=0

Rk =

∞⊕

k=0

k⊕

l=−k

Rk
l , Rk

l = {L ∈ R| deg(L) = k, d(L) = l} .

We consider relation (6) as a polynomial of degree 2g in a variable
n. The coefficients of this polynomial give 2g + 1 relations in Rg, one
in each Rg

l :
(7)
⌊(g−l)/2⌋∑

m=0

T l+m
1 P g−l−2mTm

2

g!

(l +m)!(g − l − 2m)!m!
= 0 ∈ Rg

l , 0 ≤ l ≤ g,

(8)
⌊(g+l)/2⌋∑

m=0

Tm
1 P g+l−2mTm−l

2

g!

m!(g + l − 2m)!(m− l)!
= 0 ∈ Rg

l ,−g ≤ l < 0.

We first prove by induction on p the following auxiliary statement:

T g−1−p
1 P 2p+1 = 0 for 0 ≤ p ≤ g − 1.

The base case p = 0 is relation (7) for l = g − 1. Now consider
relation (7) for l = g − 1 − 2p. Multiplying it by T p

1 , we see that

it consists of terms of the form T
g−1−(p−m)
1 P 2(p−m)+1Tm

2 with non-zero
coefficients. All terms containing positive powers of T2 are equal to
zero by induction, hence so is T g−1−p

1 P 2p+1.
We now show that Rk

l = 0 for l ≥ 2g − k − 1. Let T a
1 P

bT c
2 be an

element of Rk
l , so that a+ b+ c = k and a− c ≥ 2g − k − 1. It follows

that 2a + b ≥ 2g − 1. Let l = ⌊(b− 1)/2⌋, then a ≥ g − 1 − l and

b ≥ 2l + 1. It follows that T a
1 P

bT c
2 is a multiple of T g−1−l

1 P 2l+1 and is
therefore equal to zero. Hence Rk

l = 0 for l ≥ 2g − k − 1. A similar
proof shows that Rk

l = 0 for l ≤ −2g + k + 1.
We now use the above statement to describe the structure of the

graded components Rk for k ≥ g. First, we see that Rk = 0 for
k > 2g− 2, because if l is non-negative, then l ≥ 2g− k− 1, and if l is
non-positive, then l ≤ −2g + k + 1, and in either case Rk

l = 0 by the
result of the previous paragraph.
We now show that the map from Rg−1−k to Rg−1+k given by mul-

tiplication by (T1T2)
k is surjective for 1 ≤ k ≤ g − 1, in other words

that every element of Rg−1+k can be written as a multiple of (T1T2)
k.

We have already seen above that Rg−1+k
l = 0 for |l| > g − 1 − k. Now

suppose l ≤ g−1−k, and assume without loss of generality that l ≥ 0.
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Let T a
1 P

bT c
2 ∈ Rg−1+k

l , so that a + b + c = g − 1 + k and a − c = l.
If c ≥ k then a = c + l ≥ k, so T a

1 P
bT c

2 is a multiple of (T1T2)
k. If

c < k, then a + b ≥ g, and we can use relation (7) to express T a
1 P

b as
a multiple of T1T2. Repeating this procedure if necessary, we can raise
the exponent of T2 to k and write T a

1 P
bT c

2 as a multiple of (T1T2)
k,

which proves the surjectivity of multiplication by (T1T2)
k.

We now show that R2g−2 ∼= Q. We have shown that in the subspace
R2g−2 the only non-trivial d-graded piece is R2g−2

0 , consisting of ele-
ments of the form T g−1−a

1 P 2aT g−1−a
2 , and that all such elements are mul-

tiples of T g−1
1 T g−1

2 . In other words, R2g−2 is at most one-dimensional.
To show that these classes are non-zero, we recall that in [EGH10, The-
orem 7.1] the pushforwards of these classes to A∗(Ag−1) were computed
to be

(9) h∗(T
g−1−a
1 P 2aT g−1−a

2 ) = (−1)a
(g − 1)!(2a)!(g − 1− a)!

a!
[Ag−1].

Therefore, all of the classes T g−1−a
1 P 2aT g−1−a

2 are non-zero, and so
R2g−2 has dimension one. Also, every class of the form T g−1−a

1 P 2aT g−1−a
2

is in fact a non-zero multiple of T g−1
1 T g−1

2 , as proved above.
We have shown that Rk is spanned as a vector space by monomials

that are multiples of (T1T2)
k−g+1. We now show that these monomials

are linearly independent, by induction on k from k = 2g − 2 down to
k = g − 1. This will prove both that multiplication by (T1T2)

k−g+1 is
an isomorphism from R2g−2−k to Rk for k ≥ g, and that there are no
relations in degree less than g.
The base case, namely that T g−1

1 T g−1
2 is non-zero, was established

above. Now suppose that we have a linear relation in Rk for some
g − 1 ≤ k < 2g − 2:

(T1T2)
k−g+1 ·




2g−2−k∑

l=1

g−1−⌈(k+l)/2⌉∑

m=0

AlmT
l+m
1 P 2g−2−k−l−2mTm

2 +

+

g−1−⌈k/2⌉∑

m=0

BmT
m
1 P 2g−2−k−2mTm

2 +

+

−2g+2+k∑

l=−1

g−1−⌈(k−l)/2⌉∑

m=0

ClmT
m
1 P 2g−2−k+l−2mT−l+m

2


 = 0.
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Multiplying this relation by T2, we get a relation in Rk+1 of the form

(T1T2)
k−g+2 ·




2g−2−k∑

l=1

g−1−⌈(k+l)/2⌉∑

m=0

AlmT
l+m−1
1 P 2g−2−k−l−2mTm

2


 +

+ (terms with negative d) = 0.

The left bracket only contains monomials with non-negative d that
are multiples of (T1T2)

k−g+2. The terms in the right bracket can be
written as multiples of (T1T2)

k−g+1 using relations (8). These relations
preserve the second grading d, and hence it follows that the right and
left brackets are both equal to zero. By induction, monomials that are
multiples of (T1T2)

k−g+2 are linearly independent in Rk+1, hence all of
the coefficients Alm are zero. Similarly, multiplying by T1 shows that
Clm = 0 for all l and m.
It remains to show that all the Bm are zero, i.e. that there are no

non-trivial relations in Rk
0 . There are two cases to consider. If k is odd,

we multiply by P to obtain a relation in Rk+1
0 :

B0(T1T2)
k−g+1P 2g−1−k+

+(T1T2)
k−g+2 ·




g−1−⌈k/2⌉∑

m=1

BmT
m−1
1 P 2g−1−k−2mTm−1

2


 = 0.

All terms in the right bracket contain a positive even power of P . On
the other hand, using relation (7) with l = k + 1 − g, we can express
P 2g−1−k(T1T2)

k−g−1 as a linear combination of multiples of (T1T2)
k−g+2,

including, with a non-zero coefficient, a term not containing P . This
term cannot cancel any of the terms in the right bracket. Therefore
B0 = 0, and hence all of the other Bm are zero as well.
If k is even this reasoning does not work, because Rk

0 has dimension
one greater than Rk+1

0 . Instead, if we have a relation in Rk
0 , we multiply

it by T1 and P to obtain relations in Rk+1
1 and Rk+1

0 :

B0T
k−g
1 P 2g−2−kT k−g−1

2 +

+(T1T2)
k−g ·




g−1−k/2∑

m=1

BmT
m
1 P 2g−2−k−2mTm−1

2



 = 0,

B0T
k−g−1
1 P 2g−1−kT k−g−1

2 +

+(T1T2)
k−g ·




g−1−k/2∑

m=1

BmT
m−1
1 P 2g−1−k−2mTm−1

2


 = 0.
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In each of these relations, we express the first term in terms of multiples
of (T1T2)

k−g by using (7) with l = k − g + 2 and l = k − g + 1. By
induction, all of the coefficients of the obtained linear relations are zero.
The coefficients in front of the top power of P in each relation are

B1 − B0
(2g − 2− k)(2g − 3− k)

k − g + 3
= 0,

B1 − B0
(2g − 1− k)(2g − 2− k)

k − g + 2
= 0.

It is easy to check that the determinant of this system cannot vanish for
integer values of g. Therefore B0 = 0, and hence all other Bm vanish
as well. Therefore, multiples of (T1T2)

k−g+1 form a basis for Rk. This
proves that the multiplication by (T1T2)

k−g+1 map from R2g−2−k to Rk

is an isomorphism, and that there are no other relations in the ring R.
Finally, we need to show that the product map defines a perfect

pairing

Rk ×R2g−2−k → R2g−2 ≃ Q.

First, it is clear that Rk
l × R2g−2−k

m = 0 unless m = −l, because R2g−2
l+m

is zero unless l +m = 0. Therefore, it is sufficient to show that Rk
l ×

R2g−2−k
−l → R2g−2

0 is a perfect pairing. From the above discussion it

is clear that Rk
l = Rk−l

0 · T l
1 and R2g−2−k

−l = R2g−2−k−l
0 · T l

2. If there

exists an element X ∈ R2g−2−k
−l that pairs to zero with Rk

l , then the

element XT l
1 ∈ R2g−2−k+l

0 pairs to zero with Rk−l
0 . Therefore, it is

sufficient to prove that Rk
0 × R2g−2−k

0 → R2g−2
0 is a perfect pairing for

1 ≤ k ≤ g − 1. Finally, we can assume k to be even, because if k is
odd then Rk

0 = Rk−1
0 ·P and if X ∈ R2g−2−k

0 pairs to zero with Rk
0 then

XP ∈ R2g−1−k pairs to zero with Rk−1
0 .

We now prove by induction on k that R2k
0 × R2g−2−2k

0 → R2g−2
0

is a perfect pairing. For k = 1, suppose that X = aT g−2
1 T g−2

2 +
bT g−3

1 P 2T g−3
2 pairs to zero with R2

0. Multiplying X by T1T2 and P 2

and taking the pushforward to the base using (9), we get that

a(g − 1)!− 2b(g − 2)! = 0, −2a(g − 2)! + 12b(g − 3)! = 0,

which implies that a = b = 0.
Now suppose that the element

X = T g−1−2k
1 T g−1−2k

2

k∑

i=0

aiT
i
1P

2k−2iT i
2

in R2g−2−2k
0 pairs to zero with R2k

0 . Then the elements XT1T2 and XP 2

in R2g−2k
0 kill R2k−2

0 , so by induction they are zero. The element XT1T2
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contains the term a0T
g−2k
1 P 2kT g−2k

2 . Using relations (7) to express

T g−2k
1 P 2k as a multiple of T2, and using the fact that multiples of

(T1T2)
g+1−2k in R2g−2k

0 are linearly independent, we see that

ai(g − 2k + i)!(2k − 2i)!i! = a0(g − 2k)!(2k)!0!

Similarly, the element XP 2 contains the terms a0T
g−2k−1
1 P 2k+2T g−2k+1

2

and a1T
g−2k
1 P 2kT g−2k

2 . Expressing them as multiples of T g−2k+1
1 T g−2k+1

2

and setting the coefficient of T g−k
1 T g−k

2 to zero, we see that

a1(g − 2k)!(2k − 1)!1! = a0(g − 2k − 1)!(2k + 1)!0!

This equation, together with the i = 1 equation above, are a system
for a0 and a1 with determinant 2k−2g−1. Hence a0 = a1 = 0, and the
other equations imply that the remaining ai are also zero. Therefore,
the class X is zero, which proves the perfect pairing statement. �

4. Shift-invariant classes

Our goal is to compute the restriction of the zero section of the
universal semiabelian variety to the boundary Y in terms of products
of pullbacks of geometric cycles defined on the whole family X ′

g. The
boundary Y is not a normal variety, so the Chow group A∗(Y ) does not
have an intersection product. To avoid this difficulty we instead work

in the Chow ring A∗(Ỹ ), where Ỹ is a 2-to-1 cover of the normalization
of the boundary. For this reason, we need to determine which cycles in

A∗(Ỹ ) are pullbacks of cycles from A∗(Y ), and in particular pullbacks
of intersections of cycles on X ′

g with Y . We denote by (·)|Ỹ : A∗(X ′
g) →

A∗(Ỹ ) the composition of the restriction to Y with the pullback to Ỹ .

The Chow ring A∗(Ỹ ) is generated over the Chow ring A∗(X 2
g−1)

by the class ξ of the zero section satisfying the relation ξ2 − ξP =
0. In the previous section we determined the subring R∗ of A∗(X 2

g−1)
generated by the classes T1, P and T2. In this section, we describe

the classes in R̃∗ ⊂ A∗(Ỹ ) that are pullbacks of classes from Y , where

R̃∗ = R∗[ξ]/(ξ2 − ξP ) denotes the subring of A∗(Ỹ ) generated by T1,
P , T2 and ξ. By abuse of notation, we will also use T1, P and T2 to

denote the pullbacks of these classes to A1(Ỹ ).
The boundary Y is the quotient by the involution j of the P1-bundle

Ỹ over X 2
g−1, with the zero section ∆0 glued to the infinity section ∆∞

by a shift, resulting in the locus ∆ ⊂ Y . The two sections ∆0 and

∆∞ define pullback maps (·)|0 and (·)|∞ from A∗(Ỹ ) to A∗(X 2
g−1). By

definition ξ is the class of the zero section ∆0, hence

ξ ·∆0 = ξ2 = ξ · P = P ·∆0.
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Therefore, the map (·)|0 : A
∗(Ỹ ) → A∗(X 2

g−1) consists in setting ξ = P .
Similarly, the class of the infinity section ∆∞ is ξ − P , hence

ξ ·∆∞ = ξ(ξ − P ) = 0,

and the map (·)|0 : A
∗(Ỹ ) → A∗(X 2

g−1) consists in setting ξ = 0.

Given a subvariety V ⊂ Y , the preimage of V ∩∆ in Ỹ consists of

two connected components, namely the preimages of V in Ỹ intersected

with ∆0 and ∆∞. Therefore, a class X ∈ A∗(Ỹ ) is the pullback of a
class from A∗(Y ) only if it is shift-invariant, in other words only if

(10) s∗(X|∆∞
) = X|∆0

,

where the above equality is in A∗(X 2
g−1).

We also recall from [GH11b, Sec. 4] and from the discussion in Sec-
tion 2 that the action of the involution j on the semiabelic fibers of the
universal family induces the following action on the Picard group:

j∗ξ = ξ − P, j∗P = −P, j∗T1 = T1, j∗T2 = T2.

We now describe the shift-invariant and j-invariant classes.

Proposition 4.1. Let R̃ denote the ring Q[ξ, T1, P, T2]/I, where I is

the ideal generated by ξ2− ξP and relations (6). Let j : R̃ → R̃ denote
the automorphism defined on the generators by

j(ξ) = ξ − P, j(P ) = −P, j(T1) = T1, j(T2) = T2,

and let s be the shift operator defined on the subring generated by T1,
P and T2 as follows:

s(T1) = T1 + P + T2, s(P ) = P + 2T2, s(T2) = T2.

Then the subset of elements X ∈ R̃ that are j-invariant and that are
shift-invariant:

j(X) = X, s(X(0, T1, P, T2)) = X(ξ, T1, P, T2)

is the subring generated by the classes Θ := ξ + T1 − P/2, D := −2T2,
and −4ξT2 − P 2 + 2PT2.

Remark 4.2. The notation Θ and D is due to the fact that these are
in fact the restrictions of the corresponding classes on X ′

g, according
to (5). The next proposition shows that the third class in in fact the
restriction of ∆.

Proof. We first consider the automorphism j on the free polynomial
ring Q[ξ, T1, P, T2]. It is clear that j is an involution, and that the
j-invariant subring is generated by ξ − P/2, P 2, T1 and T2:

Q[ξ, T1, P, T2]
j = Q[ξ − P/2, P 2, T1, T2].
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Let r : Q[ξ, T1, P, T2] → R̃ denote the projection map. First we note
that j preserves the ideal I, hence j in fact descends to an involution

of R̃.
Suppose that X ∈ R̃ satisfies j(X) = X . If X = r(Y ), then setting

Z = (Y + j(Y ))/2 we see that X = r(Z) and j(Z) = Z. In other

words, every j-invariant element in R̃ is the image of a j-invariant

element in Q[ξ, T1, P, T2]. Since (ξ − P/2)2 = P 2/4 in R̃, we see that

R̃j is generated by ξ − P/2, T1 and T2.

The shift operator s does not extend to the entire ring R̃, so we
cannot compute the subring of shift-invariant classes in the same way,
as an invariant subring of the action of a finite group. However, we
make the following observation. Let S ⊂ Q[ξ, T1, P, T2] denote the
subring generated by the classes Θ = ξ + T1 − P/2, µ = ξ − P/2 and

T2. We have shown above that r(S) = R̃j . It turns out that the ring S
admits an involution such that the subring of fixed elements is precisely
the subring of shift-invariant classes.
Indeed, define an automorphism σ of S on the generators as follows:

σ(Θ) = Θ, σ(µ) = −µ− T2, σ(T2) = T2.

The automorphism σ preserves the ideal S ∩ I and it is an involution,
therefore σ descends to an involution on R̃j . Moreover, an element

X ∈ R̃j satisfies the gluing condition if and only if it is σ-invariant.
Using the same reasoning as above, we see that subset of elements of

R̃j satisfying the gluing condition is the image under r of the invariant
subring Sσ. The invariant subring Sσ is generated by Θ, D, and the
class µ · σ(µ) = −µ(µ + T2) = −(ξT2 + P 2/4 − PT2/2), which proves
the theorem. �

We now give an interpretation for the third invariant class appearing
in Proposition 4.1:

Proposition 4.3. The pullback of ∆, considered as a class in A2(X ′
g),

to Ỹ is equal to

∆|Ỹ = −4ξT2 − P 2 + 2PT2 = (2ξ − P )(−2ξ + P − 2T2) ∈ A2(Ỹ ).

Proof. The proof of this formula is a slight extension of the ideas of the
proof of [EGH10, Prop. 4.3], where it is shown that ∆|∆ = P (−P−2T2).
We note that the formula above restricts to this expression when we
set ξ = P (which we think of as restricting to the 0-section), while
for ξ = 0 (the ∞-section) the above formula restricts to −P 2 + 2PT2,
which is obtained from P (−P − 2T2) by sending P to −P , which we

know to be the action of the involution j on Pic(Ỹ ).
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To prove the proposition we interpret the class ∆ geometrically. In-
deed, recall from [EGH10] that ∆ is the locus where Y is not normal,
and thus in a small neighborhood of itself ∆ is the intersection of the
two local irreducible components of the locus Y ⊂ X ′

g. Therefore the
class of ∆ is a product of divisors, and so lies in the ring generated
by ξ, T1, P and T2. The class of ∆ also satisfies the conditions of
Proposition 4.1, hence it is a linear combination of Θ2, ΘD, D2 and
−4ξT2 − P 2 + 2PT2. Finally, ∆ restricts to −P 2 + 2PT2 when we set
ξ = P , and it is easy to see that −4ξT2 − P 2 + 2PT2 is the only class
that satisfies this condition.

�

Proof of Theorem 1.3. The result now immediately follows from Propo-
sition 4.1 and Proposition 4.3. �

Remark 4.4. In the next section, we show that the restriction of the
zero section to the boundary is a polynomial in ξ and T1, and therefore
can be expressed as a polynomial in Θ, D and ∆. For now, we note
two curious facts.
First, we note that the class Q := ∆− 2ΘD = 4T1T2 − P 2 does not

contain ξ, and is therefore in the image of A2(∆) in A2(Ỹ ). We do not
know a geometric explanation or meaning of why such a shift-invariant
class should exist. However, the expression for the zero section in terms
of the class Q is much simpler than in terms of ∆ (see Theorem 1.1).
Second, we note that one can show that the subring of R∗ invariant

under gluing (i.e. under the involution σ) is generated by Θ, D, and
∆, together with one additional class, ξ(6PT2 + 12T 2

2 ) + P 3 − 4PT 2
2 ,

that satisfies a quadratic relation in Θ, D, and ∆. We do not know if
this class has any geometric meaning.

5. Class of the partial boundary of the zero section

We now prove Theorem 1.1, obtaining an explicit expression for the
class of the locus of the closure of the zero section in the partial com-
pactification.
Our goal is to extend Theorem 2.1 to the partial compactification.

Denote by z′g : A′
g → X ′

g the closure of the zero section in the partial
compactification of the universal family, and denote, as above, by Θ ⊂
X ′

g the closure of the theta divisor and its class. In [vdG98] van der Geer

computes the Chow rings of A3 and X ′
2, and in particular shows that

Z ′
g 6= [T g]/g! in A2(X ′

2). It is easy to deduce that such an equality does
not hold in any higher genus either. We now compute the difference.
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We describe the locus z′g explicitly using our description of the geom-
etry of X ′

g, as the universal space of the universal Poincaré bundle over

the universal fiberwise product X 2
g−1 = Xg−1 ×Ag−1

Xg−1. Indeed, the
semiabelic variety of torus rank one is no longer a group, but is acted
upon by the semiabelian variety (the C∗-bundle over the same base B),
which is a group. The zero for the group law of the semiabelian variety
is the point 1 ∈ C∗ lying in the fiber over the zero in the base abelian
variety B. The zero of the semiabelic variety becomes one of the limits
of two-torsion points on it (as described in detail in [GH11b]) — which
one, it does not matter for us, as their classes are all equivalent modulo
torsion, and we are working in the Chow ring with rational coefficients.
Thus the restriction of z′g to the boundary Xg−1 of A′

g is the map that
associates to (B, b) ∈ Xg−1 the point (B, 0, b, 1) ∈ Y = ∂X ′

g. This is
of course a section of the universal Poincaré bundle restricted to the
locus {(B, 0, b)}, and thus its class ∂Z ′

g := Z ′
g|Y is equal to ξ times the

class of the locus {(B, 0, b)} ⊂ X 2
g−1. However, this class is just the

class of the zero section zg−1 : Ag−1 → Xg−1, pulled back to X 2
g−1 under

pr1. By Theorem 2.1 discussed above, this is the pullback of the class
T g−1/(g−1)! under the projection map pr1, i.e. the class T

g−1
1 /(g−1)!

in our notation. Therefore, we have proved the following result:

Proposition 5.1. The class of the restriction to Ỹ of the closure of
the zero section Z ′

g is equal to

∂Z ′
g =

ξT g−1
1

(g − 1)!
∈ Ag(Ỹ ).

Notice that there is an ambiguity here: we could have as well deduced
the same formula with ξ replaced by ξ + P , by arguing that the 1-
section of the P1-bundle is also a section over the B that is the ∞-
section, instead of the 0-section, with the corresponding shift. This is
consistent, as T g−1

1 P = 0 ∈ Ag(X 2
g−1) by Proposition 3.3. Of course the

zero section, being defined geometrically on Y , pulls back to a shift-

invariant class on the normalization Ỹ of Y , and Theorem 1.3 applies
to show that ∂Z ′

g is a polynomial in the classes Θ, D, and ∆. It remains
to compute the coefficients, proving our main result.

Proof of the main theorem 1.1. We first note that the class ∂Z ′
g =

ξT g−1

1

(g−1)!

satisfies the conditions of Proposition 4.1 (it is shift-invariant since
T g−1
1 P = 0). Therefore, it can be written as a polynomial in Θ, D and

∆. It turns out that the formula for the zero section is simpler in terms
of the alternative classes Θ−D/8, D, and ∆− 2ΘD.
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These three classes also generate the subring of shift-invariant poly-
nomials, therefore there exists a formula

(11)
ξT g−1

1

(g − 1)!
=

∑

a+b+2c=g

αa,b,c(Θ−D/8)aDb(∆− 2ΘD)c,

where the classes Θ, D and ∆ are given in terms of ξ, T1, P and T2 by

Θ = ξ + T1 −
P

2
, D = −2T2, ∆ = −4ξT2 − P 2 + 2PT2.

We first find the coefficients αa,0,c not involving D.
In the main equation (11), set T2 = 0, obtaining

ξT g−1
1

(g − 1)!
=
∑

a+2c=g

αa,0,c

(
ξ + T1 −

P

2

)a

(−P 2)c.

For an arbitrary integer n we now formally set T1 =
(
n + 1

2

)
P . Using

ξ2 = ξP we then get

(ξ + nP )a = naP a +

a∑

i=1

na−iC i
aξP

a−1 = naP a + [(n+ 1)a − na]ξP a−1.

Therefore, equating the coefficients in front of ξP g−1 on both sides gives
(
n+ 1

2

)g−1

(g − 1)!
=
∑

a+2c=g

αa,0,c[(n + 1)a − na](−1)c.

We now sum this equality from n = 1 to n = N−1, where N is another
integer. The left hand side can be expressed in terms of Bernoulli
numbers:

N−1∑

n=1

(
n +

1

2

)g−1

=
1

2g−1

[
2N∑

k=1

kg−1 −
N∑

l=1

(2l)g−1 − 1

]
=

=

g−1∑

m=0

Ng−mBm

m!(g −m)!
(21−m − 1)−

1

2g−1
.

Comparing this with the right hand side and equating coefficients of
the powers of N yields

αa,0,c =
(−1)c

a!(2c)!
(21−2c − 1)B2c,

as claimed by the theorem.
For the coefficients αa,b,c with b > 0, we do not know an elegant

derivation as above. Instead, we show that the remaining coefficients
satisfy a triangular system of equations in terms of the coefficients
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αa,0,c, and solve this system directly using Maple. We consider the
main equation (11), and set ξ = 0:

∑

a+b+2c=g

αa,b,c

(
T1 −

P

2
+

T2

4

)a

(−2T2)
b(4T1T2 − P 2)c = 0.

Now formally apply the square root of the shift operator (4)

(s∗)1/2(T1) = T1 +
P

2
+

T2

4
, (s∗)1/2(P ) = P + T2, (s∗)1/2(T2) = T2,

to this equation. We get that
∑

a+b+2c=g

αa,b,cT
a
1 (−2T2)

b(4T1T2 − P 2)c = 0.

This is a relation in the ring R∗, in other words this equation is a
linear combination of relations (7)-(8). These relations are homoge-
neous with respect to the grading d, as well as the usual grading, so
the d-homogeneous parts of the above equation vanish separately. The
possible values of the grading d are g − 2h, where h = 0, . . . , g, so the
above equation splits into the following system:

min(h,g−h)∑

c=0

αg−h−c,h−c,cT
g−h−c
1 (−2T2)

h−c(4T1T2−P 2)c = 0, h = 0, . . . , g.

First, assume that g − h ≥ h. Expanding (4T1T2 − P 2)c and changing
the order of summation, we can write the above as

h∑

l=0

T g−h−l
1 P 2lT h−l

2

(−1)h+l2h−2l

l!

h∑

c=l

c!

(c− l)!
(−1)c2cαg−h−c,h−c,c = 0.

This equation is satisfied if and only if the left hand side is a multiple
of the corresponding relation (7). This gives us a triangular system of
equations on the coefficients αg−h−c,h−c,c, and we have already deter-
mined the coefficient αg−2c,0,c above, so the remaining coefficients are
determined uniquely by this system.
Therefore, to prove Theorem 1.1 it is sufficient to substitute the

coefficients (3) into the formula above and check that we get relation
(7). Substituting and dividing out by a common multiple, we get

h∑

l=0

T g−h−l
1 P 2lT h−l

2

(−1)l2−2l

l!

h∑

c=l

(−1)c22c(2g − 2c)!

(g − c)!(c− l)!(g − h− c)!(h− c)!
= 0.
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Using Maple, we evaluate the inside sum as

h∑

c=l

(−1)c22c(2g − 2c)!

(g − c)!(c− l)!(g − h− c)!(h− c)!
= Cg,h

(−1)l22ll!

(g − l − h)!(h− l)!(2l)!
,

where Cg,h is a coefficient depending on g and h. Plugging this into the
equation above, we see that it is indeed a multiple of (7), hence it is
satisfied. This completes the calculation of the coefficients αg−h−c,h−c,c

for g − h ≥ h, and the calculation of the other coefficients is virtually
identical.
Finally, the coefficients ηa,b,c are obtained by expanding formula (2)

and using Maple to simplify. �

Remark 5.2. Given the explicit formula we obtain for the extension
of the zero section to the partial compactification, it is natural to ask
whether a formula for the extension to the next boundary stratum
(over the locus of torus rank two semiabelic varieties) may be possi-
ble. This locus of semiabelic varieties of torus rank two is the same for
perfect cone, second Voronoi, and central cone (Igusa) toroidal com-
pactifications — since all these compactifications coincide in genus 2,
and restrict inductively to products. In principle it should be possible
to describe explicitly the geometry of the universal family of semiabelic
varieties of torus rank two (which can now be of two types, depending
on whether the normalization is a P1 × P1 bundle, or two copies of a
P2 bundle). This computation would be very involved technically, but
could shed further light on the class of the closure of the zero section
in APerf

g , which would be instrumental in trying to inductively describe
its cohomology. We note also that the fact that torus rank up to two
strata of a toroidal compactification of Ag are closely related to the
partial compactification of the universal family does not seem to ex-
tend deeper, as even the existence of a universal family over APerf

g is
not known globally.

6. Extension of the double ramification locus

In this section we extend Hain’s formula for the double ramification
locus from Mct

g,n to M
o

g,n, i.e. to the entire preimage of A′
g under the

Torelli map Mg → Ag. We recall the setup. Fix a set of integers
d = {d1, . . . , dn} such that

∑
di = 0. The double ramification locus Rd

is defined as the locus in Mg,n consisting of (X, p1, . . . , pn) such that
the sum

∑
dipi is a principal divisor onX . The locus Rd is very natural

from the point of view of Hurwitz theory. This locus, or related loci
(see eg [Mül12]) also occurs naturally in various enumerative problems,
and is also studied in Gromov–Witten theory [FSZ10].
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We approach this locus in the following way. Denoting by AJ the
Abel–Jacobi map, Rd is the locus in Mg,n where

∑
diAJ(pi) = 0 ∈

Pic0(X), so we can compute Rd by pulling back the zero section of the
universal abelian variety under the Abel–Jacobi map. The Jacobian of
a curve of compact type is an abelian variety, so the Abel–Jacobi map
extends to the moduli space Mct

g,n.

To compute the closure of the double ramification locus in M
o

g,n, we

need to understand how the Abel–Jacobi map extends to M
o

g,n. Let Xt

be a family of smooth curves of genus g with n marked points p1, . . . , pn
degenerating to an irreducible nodal curve X0. Choose a basis Ai, Bi

of H1(Xt,Z) such that the degeneration corresponds to contracting the
cycle A1, and let ωi be a basis forH

0(Xt,Ω) dual to the cycles Ai. Then
the Abel–Jacobi map is obtained by integrating the basis ωi between
the marked points, i.e.

AJ (Xt, p1, . . . , pn) =

n∑

i=1

di

(∫ pi

q

ω1, . . . ,

∫ pi

q

ωg

)
∈ Jac(Xt),

where q ∈ Xt is an arbitrary base point.

Let X̃0 be the normalization of X0, and let p± be the preimages
of the node. The differentials ω2, . . . , ωg degenerate to holomorphic

differentials on X̃0 normalized along the periods A2, . . . , Ag, while the

differential ω1 degenerates to a meromorphic differential on X̃0 having
zero A-periods and having simple poles with residues ±1 at p±.
A line bundle of degree zero on X0 is given by the data of a degree

zero line bundle on X̃0 and a non-zero complex number ξ that defines
an isomorphism of the stalks over the preimages p± of the nodes. For
the line bundle that is the limit of the divisor

∑
dipi, this number is

x = exp

(
g∑

i=1

di

∫ pi

q

ω1

)
,

which we think of as giving the coordinate on the C∗-fiber of the cor-
responding semiabelic variety. Therefore, for a curve (X, p1, . . . , pn) of
geometric genus g− 1 the Abel–Jacobi map is given by the line bundle∑

dipi on the normalization of X and by the gluing parameter x given
by the formula above.

Proof of Theorem 1.4. We denote, following [GZ12], by sd the map

M
o

g,n → X ′
g sending (X, p1, . . . , pn) to (Pic0(X),

∑
diAJ(pi)). The

closure of the double ramification locus Rd ⊂ M
o

g,n is the pullback of
the zero section s∗d(z

′
g). The class of the zero section Z ′

g is given by a
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polynomial in Θ, D and ∆ by Theorem 1.1, so to compute the class
[Rd] we need to compute the pullbacks of Θ, D, and ∆ under sd.

The pullback s∗dΘ on Mg,n was computed by Hain in [Hai11], and
an alternative computation of it is one of the main results of [GZ12]
(note also that a closely related divisor class was computed recently by
Müller [Mül12], and a computation on the moduli space of curves with
rational tails was done by Cavalieri, Marcus, and Wise in [CMW11]).
This class is expressed in terms of the standard divisor classes on Mg,n

in the following way:

s∗dΘ =
1

2

n∑

i=1

d2iKi −
1

2

∑

P⊆I

(
d2P −

∑

i∈P

d2i

)
δP0 −

1

2

∑

h>0,P⊆I

d2P δ
P
h .

Here Ki denotes the pullback of the relative dualizing sheaf of the uni-
versal curve Mg,1 → Mg under the projection map πi : Mg,n → Mg,1

forgetting all but the i-th marked point, I = {1, . . . , n} denotes the
indexing set, dP =

∑
i∈P di, and δPh denotes the class of the boundary

divisor whose generic point is a reducible curve consisting of a smooth
genus h component containing the marked points indexed by P joined
at a node to a smooth genus g−h component containing the remaining
marked points.
The preimage of D is the locus of curves whose Jacobian is a semi-

abelic variety. Since D is a pullback of the boundary of A′
g, the map

sd : δirr → D factors through a lift of M
o

g → A′
g, and the multiplicity

is thus one, so we have s∗dD = δirr.
To finish the proof of the theorem it remains to compute the pullback

of the class ∆. Geometrically, sd(X, p1, . . . , pn) ∈ ∆ if the curve X is
in δirr and if the Abel–Jacobi map of the divisor

∑
dipi is a torsion-

free sheaf that is not a line bundle. This happens precisely when the
gluing parameter x discussed above tends to zero or to infinity, in other
words when the limit of the integral of the differential ω1 is infinite.
The limit of the differential ω1 has single poles at the nodes and no
other singularities, therefore the limit of the integral of ω1 is infinite
if and only if one of the marked points pi approaches the node. The
resulting stable curve is the normalized curve of genus g−1 containing
the remaining marked points, and the marked point pi on a rational
bridge connecting the preimages of the node. Therefore, the pullback
of ∆ is set-theoretically the locus ξi of curves in M

o

g,n of this form, and
the multiplicity is equal to the number of copies of pi in the divisor,
which is |di|. This finishes the proof of the theorem. �
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Remark 6.1. It is natural to try to extend this computation deeper
into the boundary of Mg,n. Of course if one has a complete formula
for the class δg on a bigger partial toroidal compactification of Ag

(see Remark 5.2 about the difficulties of this), this would suffice, but
in principle it could be that a computation on the moduli space of
curves is easier than on the moduli space of abelian varieties, as the
image of the Torelli map only hits some of the strata of a toroidal
compactification, see [AB11],[MV11].
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and the universal theta divisor on Ag. Int. Math. Res. Not. IMRN,
(1):Art. ID rnm 128, 19, 2008.

[GZ12] S. Grushevsky and D. Zakharov. The double ramification locus and the
theta divisor. Preprint 2012.

[Hai11] R. Hain. Normal functions and the geometry of moduli spaces of curves.
2011. preprint arXiv:1102.4031.

[Ion02] E.-N. Ionel. Topological recursive relations inH
2g(Mg,n). Invent. Math.,

148(3):627–658, 2002.
[KS03] S. Keel and L. Sadun. Oort’s conjecture for Ag ⊗ C. J. Amer. Math.

Soc., 16(4):887–900, 2003.
[Loo95] E. Looijenga. On the tautological ring ofMg. Invent. Math., 121(2):411–

419, 1995.
[MV11] M. Melo and F. Viviani. Comparing perfect and voronoi decompositions:

the matroidal locus. 2011. preprint arXiv:1106.3291.
[Mül12] F. Müller. The pullback of a theta divisor to Mg,n. 2012. preprint

arXiv:1203.3102.

http://arxiv.org/abs/1103.1857
http://arxiv.org/abs/1102.4031
http://arxiv.org/abs/1106.3291
http://arxiv.org/abs/1203.3102


THE UNIVERSAL SEMIABELIAN VARIETY 29

[Mum83] D. Mumford. On the Kodaira dimension of the Siegel modular variety.
In Algebraic geometry—open problems (Ravello, 1982), volume 997 of
Lecture Notes in Math., pages 348–375, Berlin, 1983. Springer.

[Nam80] Y. Namikawa. Toroidal compactification of Siegel spaces, volume 812 of
Lecture Notes in Mathematics. Springer, Berlin, 1980.

[Pan09] R. Pandharipande. The kappa ring of the moduli of curves of compact
type. 2009. preprints arXiv:0906.2657 and arXiv:0906.2658; Acta Math.,
to appear.

[SB06] N. Shepherd-Barron. Perfect forms and the moduli space of abelian va-
rieties. Invent. Math., 163(1):25–45, 2006.

[Voi12a] C. Voisin. Chow rings and decomposition theorems for K3 surfaces and
Calabi-Yau hypersurfaces. Geom. and Top., 16(1):433–473, 2012.

[Voi12] C. Voisin. Chow rings, decomposition of the diago-
nal and the topology of families. 2012. available at
http://www.math.jussieu.fr/˜voisin/Articlesweb/weyllectures.pdf.

Mathematics Department, Stony Brook University, Stony Brook,

NY 11790-3651, USA

E-mail address : sam@math.sunysb.edu

Mathematics Department, Stony Brook University, Stony Brook,

NY 11790-3651, USA

E-mail address : dvzakharov@gmail.com

http://arxiv.org/abs/0906.2657
http://arxiv.org/abs/0906.2658
http://www.math.jussieu.fr/~voisin/Articlesweb/weyllectures.pdf

	Introduction
	1. Statement of results
	2. Notation and known results
	3. Intersection theory on Xg-1Ag-1Xg-1
	4. Shift-invariant classes
	5. Class of the partial boundary of the zero section
	6. Extension of the double ramification locus
	Acknowledgments
	References

