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THE PRYM VARIETY OF A DILATED DOUBLE COVER OF METRIC GRAPHS

ARKABRATA GHOSH AND DMITRY ZAKHAROV

Abstract. We calculate the volume of the tropical Prym variety of a harmonic double cover of
metric graphs having non-trivial dilation. We show that the tropical Prym variety behaves discon-
tinuously under deformations of the double cover that change the number of connected components
of the dilation subgraph.

1. Introduction

Tropical geometry studies discrete, piecewise-linear analogues of algebro-geometric objects.
For example, the tropical analogue of an algebraic curve is a connected finite graph G, and the
Jacobian Jac(G) (also known as the critical group of G) is a finite abelian group. We can endow
G with positive real edge lengths to obtain a metric graph Γ ; this promotes the Jacobian to a real
torus Jac(Γ) equipped with an additional integral structure. The dimension of Jac(Γ) is equal to
the first Betti number g(Γ) = b1(Γ) of Γ , also known as the genus of Γ .

The tropical analogue of a morphism of algebraic curves is a harmonic morphism of graphs.
Topological covering spaces are examples of harmonic morphisms. More generally, harmonic
morphisms of finite graphs allow nontrivial degrees at vertices, also known as dilation, while
harmonic morphisms of metric graphs also allow dilation along edges. A harmonic morphism
of metric graphs is free if it has no dilation (in other words, if it is a covering isometry), and
dilated otherwise. A harmonic morphism has a well-defined global degree, and a double cover is a
harmonic morphism of metric graphs of degree two.

A classical algebraic construction associates to an étale degree two cover rX → X of smooth
algebraic curves a principally polarized abelian variety (ppav) of dimension g(X) − 1, called

the Prym variety Prym(rX{X) of the double cover (see [Mum74]). The kernel of the norm map

Nm : Jac(rX) → Jac(X) has two connected components, and Prym(rX{X) is the even connected

component (containing the identity). The ppav Prym(rX{X) carries a principal polarization that is

half of the polarization induced from Jac(rX).
The tropical Prym variety was defined in [JL18] and further investigated in [LU21], in complete

analogy with the algebraic setting. A double cover π : rΓ → Γ of metric graphs induces a norm

map Nm : Jac(rΓ) → Jac(Γ). It is shown in [JL18, LU21] that the kernel of Nm has two connected
components if π is free and one if π is dilated. In the free case, the connected component of
the identity carries a principal polarization that is half the induced polarization, just as in the
algebraic setting. In the dilated case, the kernel also carries a principal polarization, whose rela-
tionship to the induced polarization was computed in [RZ22]. In either case, the corresponding

principally polarized tropical abelian variety is called the Prym variety Prym(rΓ{Γ) of the double

cover π : rΓ → Γ .

The volume formulas. Kirchhoff’s matrix tree theorem states that the order of the Jacobian
group Jac(G) of a finite graph G is equal to the number of its spanning trees. A weighted version
of this result for metric graphs was proved in [ABKS14]: the square of the volume of the Jacobian
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Jac(Γ) of a metric graph Γ of genus g is given by a degree g polynomial in the edge lengths of Γ ,
whose monomials correspond to the spanning trees. Specifically,

Vol2(Jac(Γ)) =
ÿ

CĂE(Γ)

ź

ePC

ℓ(e),

where the sum is taken over all g-element sets of edges of Γ that are complements of spanning
trees.

An analogous formula for the volume of the Prym variety of a free double cover was proved

in [LZ22]. Let π : rΓ → Γ be a free double cover of metric graphs of genera 2g − 1 and g,

respectively, so that Prym(rΓ{Γ) has dimension g − 1. By analogy with [ABKS14], the square of
the volume of the Prym should be given by a polynomial with terms indexed by certain (g− 1)-
element sets of edges of Γ , which play the role of spanning trees for double covers. The relevant
notion was already defined by Zaslavsky in [Zas82] in the context of signed graphs, and was
rediscovered by the authors of [LZ22], who were not aware of this earlier work. A set F Ă E(Γ) of
g − 1 edges is an odd genus one decomposition (or relative spanning tree) of rank r(F) if Γ\F consists

of r(F) connected components, each having connected preimage in rΓ . It then turns out that the
volume is given by a sum

Vol2(Prym(rΓ{Γ)) =
ÿ

FĂE(Γ)

4r(F)−1
ź

ePF

ℓ(e),

over all genus one decompositions F Ă E(Γ), with each term additionally weighted according to
the rank r(F).

Our results. In this paper, we generalize the volume formula to dilated double covers. As a first
step, we extend the definition of odd genus one decompositions, or ogods, to the dilated case (see
Definition 3.1). The volume of the Prym variety is then given by a similar formula.

Theorem 1.1. (Theorem 3.3) Let π : rΓ → Γ be a dilated double cover of metric graphs. The volume of the

tropical Prym variety of π : rΓ → Γ is given by

Vol2(Prym(rΓ{Γ)) = 21−d(rΓ{Γ)
ÿ

FĂE(Γ)

4r(F)−1
ź

ePF

ℓ(e). (1)

The sum is taken over all h-element ogods of E(Γ) (see Definition 3.1), where h = g(rΓ) − g(Γ) is the di-

mension of Prym(rΓ{Γ) and r(F) is the rank of an ogod, and d(rΓ{Γ) is the number of connected components
of the dilation subgraph Γdil of Γ .

The theorem is proved by performing a series of deformations to the base curve Γ in such a way
that the double cover becomes free, and then applying the results of [LZ22] (see Theorem 3.10).
At the same time, it is necessary to explicitly compute the pushforward and pullback maps on the

simplicial homology groups H1(rΓ ,Z) and H1(Γ,Z) for a dilated double cover; these calculations
appeared in [RZ22] and we restate them here for convenience. We then compute the relationship

between the volumes of the three tropical ppavs attached to a dilated double cover π : rΓ → Γ (see
Theorem 3.11). Putting these two theorems together, we obtain our main result.

We note that Equation (1) shows that the volume of the Prym variety does not behave continu-

ously under deformations of the cover that change the number d(rΓ{Γ) of connected components

of the dilation subgraph (see Example 3.6). In other words, the object Prym(rΓ{Γ) does not behave
well in moduli, suggesting that perhaps it needs to be somehow redefined, at least in the dilated
case.
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As a final note, we observe that the ogods of a dilated double cover π : rΓ → Γ appear to form
the bases of a matroid on the set of undilated edges of Γ , generalizing the signed graphic matroid
introduced by Zaslavsky in [Zas82]. We are not aware if this matroid has been considered before,
and we plan to study it in future work.

Acknowledgements. The authors would like to thank Yoav Len and Felix Röhrle for insightful
discussions.

2. Setup and notation

In this section, we recall a number of standard definitions concerning metric graphs, harmonic
morphisms, double covers, and tropical abelian varieties. We also recall the Jacobian Jac(Γ) of

a metric graph Γ and the Prym variety Prym(rΓ{Γ) of a harmonic double cover rΓ → Γ of metric

graphs. Finally, we recall how to compute the volumes of Jac(Γ) (see [ABKS14]) and Prym(rΓ{Γ)
for a free double cover rΓ → Γ (see [LZ22]).

2.1. Graphs, metric graphs, and double covers. A graph G consists of a non-empty finite set
of vertices V(G) and a set of edges E(G). We allow loops and multiple edges between a pair of
vertices. It is convenient to view each edge e P E(G) as consisting of two half-edges e = {h, h 1},
so that E(G) is the set of orbits of a fixed-point-free involution acting on the set of half-edges
H(G). The root map r : H(G) → V(G) attaches half-edges to vertices, and the set of half-edges
Tv(G) = r−1(v) attached to a given vertex v is the tangent space. The genus of a graph is its first
Betti number (we do not use vertex weights):

g(G) = b1(G) = #E(G) − #V(G) + 1.

An orientation of G is a choice of ordering of each edge, and defines source and target maps
s, t : E(G) → V(G).

A morphism of graphs f : rG → G is a pair of maps f : V(rG) → V(G) and f : H(rG) → H(G) that

commute with the root map and preserve edges. A harmonic morphism of graphs (f, df) : rG → G is

a pair consisting of a morphism of graphs f : rG → G and a degree function df : V(rG)YE(rG) → Zą0

satisfying

df(rv) =
ÿ

rhPTrv rGXf−1(h)

df(rh)

for any rv P V(rG) and any h P Tf(rv)G (where we denote df(rh) = df(rh 1) = df(re) for an edge

re = {rh, rh 1}). If G is connected, a harmonic morphism has a global degree deg(f) given by

deg(f) =
ÿ

rvPf−1(v)

df(rv) =
ÿ

rhPf−1(h)

df(rh)

for any v P V(G) or any h P H(G).

A double cover p : rG → G is a harmonic morphism of global degree two. There are two types
of vertices v P V(G): undilated, having two pre-images p−1(v) = {rv+,rv−} with dp(rv˘) = 1, and
dilated, having a single pre-image p−1(v) = {rv} with dp(rv) = 2. We similarly define dilated and
undilated half-edges and edges of G. A dilated half-edge may only be rooted at a dilated vertex,
hence the set of dilated edges and vertices forms a subgraph called the dilation subgraph Gdil Ă G

of f. We say that f is free if Gdil is empty, dilated if Gdil is not empty, and edge-free if Gdil consists of
isolated vertices only. We note that dilated double covers should not be thought of as somehow
"more degenerate" than free double covers; in fact, arguably the converse is true, since the latter
arise as tropicalizations of more degenerate algebraic double covers than the former.
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A metric graph Γ is a compact metric space obtained from a graph G by identifying each edge
e P E(G) with a closed interval of positive length ℓ(e), identifying the endpoints with the vertices
of G, and endowing Γ with the shortest-path metric. The pair (G, ℓ) is called a model for Γ . The
genus g(Γ) of a metric graph is its first Betti number, and is equal to the genus of any model. A

harmonic morphism of metric graphs φ : rΓ → Γ is a continuous, piecewise-linear map with nonzero

integer-valued slopes dφ(re) = df(re) along the edges re P E(rΓ) given by the degree function df of

a harmonic morphism f : rG → G between some models (rG,rℓ) and (G, ℓ) of rΓ and Γ , respectively.
The slope condition imposes the restriction

ℓ(φ(re)) = dφ(re)rℓ(re), re P E(rG).

We similarly define double covers of metric graphs. A double cover π : rΓ → Γ is locally an
isometry along an undilated edge and a factor 2 dilation along a dilated edge, which explains
the terminology.

Finally, we recall how to contract a harmonic morphism along a subgraph of the target. Let

f : rG → G be a harmonic morphism and let G0 Ă G be a possibly disconnected subgraph.
We define G 1 from G by contracting each connected component of G0 to a separate vertex. We

similarly define rG 1 by contracting each connected component of f−1(G0) to a separate vertex.

Finally, we define f 1 : rG 1 → G 1 by setting df 1(rv) on a vertex rv P V(rG 1) corresponding to a
contracted component of f−1(G0) to be equal to the global degree of f on that component. The

result is a harmonic morphism f 1 : rG 1 → G 1, called the contraction of f along G0. We similarly
define contractions of harmonic morphisms of metric graphs.

Since we are principally interested in double covers of metric graphs, we henceforth assume
that any metric graph Γ comes equipped with a choice of model. Hence we abuse notation and
write E(Γ), V(Γ), and so on for a metric graph Γ . The principal results of our paper do not depend
on the choice of underlying model.

Example 2.1. Figure 1 shows a dilated double cover π : rΓ → Γ of metric graphs. Fat edges and
vertices indicate dilation.

2.2. Tropical abelian varieties. The tropical Jacobian of a metric graph and the tropical Prym
variety of a harmonic double cover are examples of tropical principally polarized abelian vari-
eties, which are real tori equipped with auxiliary integral structure. We recall their definition
(our conventions follow [LZ22] and are a slight modification of the standard definitions found
in [FRSS18] and [LU21]).

A real torus with integral structure Σ of dimension n, or integral torus for short, is determined
by a triple (Λ,Λ 1, [¨, ¨]), where Λ and Λ 1 are finitely generated free abelian groups of rank n

and [¨, ¨] : Λ ˆ Λ 1 → R is a non-degenerate pairing. The pairing defines a lattice embedding
Λ 1 Ă Hom(Λ,R) via the assignment λ 1 Þ→ [¨, λ 1], and the torus itself is the compact abelian group
Σ = Hom(Λ,R){Λ 1. The integral structure refers to the lattice Hom(Λ,Z) Ă Hom(Λ,R) in the
universal cover of Σ, and is the tropical analogue of the complex structure on a complex torus.

Let Σ1 = (Λ1, Λ
1
1, [¨, ¨]1) and Σ2 = (Λ2, Λ

1
2, [¨, ¨]2) be integral tori. A homomorphism of integral tori

f = (f#, f
#) : Σ1 → Σ2 is given by a pair of maps f# : Λ 1

1 → Λ 1
2 and f# : Λ2 → Λ1 satisfying the

relation

[f#(λ2), λ
1
1]1 = [λ2, f#(λ

1
1)]2

for all λ 1
1 P Λ 1

1 and λ2 P Λ2. This relation implies that the map Hom(Λ1,R) → Hom(Λ2,R) dual

to f# restricts to f# on Λ 1
1, and hence descends to a group homomorphism f : Σ1 → Σ2.

Let f = (f#, f
#) : Σ1 → Σ2 be a homomorphism of integral tori Σi = (Λi, Λ

1
i , [¨, ¨]i) for i = 1, 2.

The connected component of the identity of the kernel of f, denoted by (Ker f)0, carries the
4



re+1re−1

re+2

re−2

rf2

rf1

re+3

re−3

re+5 re−5

re+4

re−4

π

e1

e2

f2

f1

e3 e4

e5

Figure 1. A dilated double cover

structure of an integral torus, which we now recall. Let K = (Coker f#)tf be the quotient of
Coker f# by its torsion subgroup, and let K 1 = Ker f#. It is easy to verify that the pairing [¨, ¨]1
induces a well-defined pairing [¨, ¨]K : K ˆ K 1 → R, and that the natural maps i# : K 1 → Λ 1

1 and

i# : Λ1 → K define an injective homomorphism i = (i#, i
#) : (Ker f)0 → Σ1 of integral tori.

Let Σ = (Λ,Λ 1, [¨, ¨]) be an integral torus. A polarization on Σ is a map ζ : Λ 1 → Λ having the
property that the induced bilinear form

(¨, ¨) : Λ 1 ˆ Λ 1 → R, (λ 1, µ 1) = [ζ(λ 1), µ 1]

is symmetric and positive definite. The polarization map ζ is necessarily injective, and is called
principal if it is bijective. The pair (Σ, ζ) is called a tropical polarized abelian variety, and a tppav if ζ
is a principal polarization.

Let f = (f#, f
#) : Σ1 → Σ2 be a homomorphism of integral tori, and assume that f has finite

kernel (equivalently, f# is injective). Given a polarization ζ2 : Λ 1
2 → Λ2 on Σ2, it is easy to verify

that the map ζ1 = f# ˝ ζ2 ˝ f# : Λ 1
1 → Λ1 defines an induced polarization on Σ1. The polarization

induced by a principal polarization need not itself be principal.
Given a tropical polarized abelian variety Σ = (Λ,Λ 1, [¨, ¨]) of dimension n, the associated

bilinear form (¨, ¨) on Λ 1 extends to an inner product on the vector space V = Hom(Λ,R). The
volume of Σ = V{Λ 1 with respect to this product is the volume of a fundamental parallelotope
of Λ 1, and is given by the Grammian determinant

Vol2(Σ) = det(λ 1
i , λ

1
j), (2)

where λ 1
1, . . . , λ

1
n is any basis of Λ 1.

2.3. Jacobians and Pryms. We now recall how to construct the Jacobian of a metric graph and
the Prym variety of a harmonic double cover as tppavs.

Let Γ be a metric graph of genus g, let C0(Γ,Z) = ZV(Γ) and C1(Γ,Z) = ZE(Γ) be the groups of
0-chains and 1-chains, respectively (with respect to a choice of oriented model), and let d be the

5



simplicial boundary map

d : C1(Γ,Z) → C0(Γ,Z), d





ÿ

ePE(Γ)

nee



 =
ÿ

ePE(Γ)

ne[t(e) − s(e)].

The first simplicial homology group H1(Γ,Z) = Kerd is a free abelian group of rank g. The edge
length pairing on H1(Γ,Z) is given by

[¨, ¨]Γ : H1(Γ,Z) ˆ H1(Γ,Z) → R,

[

ÿ

ePE(Γ)

aee,
ÿ

ePE(Γ)

bee

]

=
ÿ

ePE(G)

aebeℓ(e). (3)

The Jacobian Jac(Γ) of Γ is the dimension g tppav (Λ,Λ 1, [¨, ¨]Γ ) where Λ = Λ 1 = H1(Γ,Z), [¨, ¨]Γ is
the edge length pairing, and the principal polarization ζ is the identity map on H1(Γ,Z).

Remark 2.2. We note that the edge length pairing (3) has a physical peculiarity: it is measured in
units of edge lengths of Γ , while the expected units for an inner product are lengths squared. As
a consequence, the units of ℓ(e) double in dimension when we view the Jacobian variety Jac(Γ)
as a Riemannian manifold. For example, the Jacobian Jac(Γ) of a circle Γ of circumference L is

also a circle, but of circumference
?
L, not L.

Given a harmonic morphism φ : rΓ → Γ of metric graphs, we define the push-forward and
pullback maps (again, with respect to appropriately chosen models)

φ˚ : C1(rΓ ,Z) → C1(Γ,Z), re Þ→ φ(re)
and

φ˚ : C1(Γ,Z) → C1(rΓ ,Z), e Þ→
ÿ

rePφ−1(e)

dφ(re)re.

These maps commute with d and descend to maps

φ˚ : H1(rΓ ,Z) → H1(Γ,Z), φ˚ : H1(Γ,Z) → H1(rΓ ,Z).

The pair Nm# = φ˚,Nm# = φ˚ defines the surjective norm homomorphism Nm : Jac(rΓ) → Jac(Γ).

We are interested in the kernel of the norm homomorphism Nm : Jac(rΓ ) → Jac(Γ) when π :
rΓ → Γ is a harmonic double cover of metric graphs. In this case, the map π˚ : H1(Γ,Z) → H1(rΓ ,Z)
is explicitly given on edges by

π˚(e) =

{
2re, e is dilated with preimage re,
re+ + re−, e is undilated with preimages re˘.

(4)

Unwinding the definitions, the connected component of the identity of the kernel of Nm is the
integral torus

(Ker Nm)0 =
Kerπ : Hom(H1(rΓ ,Z),R) → Hom(H1(Γ,Z),R)

Kerπ˚ : H1(rΓ ,Z) → H1(Γ,Z)
,

where π is the Hom-dual of the map π˚. The principal polarization on Jac(rΓ) induces a polar-
ization on (Ker Nm)0, which is not principal in general. We show in Proposition 3.14 that there
is a natural principal polarization on (Ker Nm)0, whose type (compared to the induced polar-
ization) depends on the number of connected components of the dilation subgraph Γdil. The

corresponding tropical ppav is the Prym variety Prym(rΓ{Γ) of the double cover π : rΓ → Γ .
6



2.4. Volume formulas and odd genus one decompositions. Finally, we recall how to compute

the volumes of Jac(Γ) for a metric graph Γ and Prym(rΓ{Γ) for a free double cover rΓ → Γ . The
formula for the volume of the tropical Prym variety of a dilated double cover is proved in the
next section and is the principal result of this paper.

Let Γ be a metric graph of genus g. Since Jac(Γ) is a Riemannian manifold of dimension g,
one may expect the volume of Jac(Γ) to be given by a homogeneous degree g polynomial in the
edge lengths ℓ(e) of Γ . However, due to the dimensional peculiarity noted in Remark 2.2, it is the
square of the volume of Jac(Γ) that is given by such a polynomial, with monomials corresponding
to the complements of spanning trees of Γ :

Theorem 2.3 (Theorem 1.5 of [ABKS14]). Let Γ be a metric graph of genus g. The volume of the tropical
Jacobian of Γ is given by

Vol2(Jac(Γ)) =
ÿ

FĂE(Γ)

ź

ePF

ℓ(e). (5)

The sum is taken over all g-element subsets F Ă E(Γ) with the property that Γ\F is a tree.

It is elementary to verify that the sum on the right-hand side does not in fact depend on the
choice of model of Γ . We also note that if F has g elements, then Γ\F is a tree if and only if it is
connected.

An analogous formula for the volume of the tropical Prym variety of a free double cover is

the principal result of [LZ22]. Let π : rΓ → Γ be a free double cover of metric graphs of genera

g(rΓ) = 2g − 1 and g(Γ) = g, respectively. Since Prym(rΓ{Γ) has dimension g − 1, we expect (see

Remark 2.2) Vol2(Prym(rΓ{Γ)) to be given by a degree g−1 homogeneous polynomial in the edge
lengths of Γ . The monomials should correspond to certain (g−1)-element subsets of E(Γ), playing
the same role that complements of spanning trees do for Jac(Γ). The correct notion turns out to
be the following.

Definition 2.4. Let π : rΓ → Γ be a free double cover of metric graphs of genera g(rΓ) = 2g− 1 and
g(Γ) = g, respectively. A set of g − 1 edges F Ă E(Γ) is called an odd genus one decomposition, or

ogod, if every connected component of Γ\F has connected preimage in rΓ . The rank r(F) of an odd
genus one decomposition is the number of connected components of Γ\F.

An elementary calculation shows that for a set F Ă E(Γ) of g − 1 edges with correspond-
ing connected component decomposition Γ\F = Γ1 Y ¨ ¨ ¨ Y Γk, either g(Γi) = 0 for some i or
g(Γi) = 1 for all i. In the former case π−1(Γi) is a trivial double cover (because π1(Γi) = 0) and
hence disconnected, while in the latter case π−1(Γi) is connected if and only if the double cover
π−1(Γi) → Γi is given (under the Galois correspondence) by the odd (i.e. notrivial) element of
Hom(π1(Γi),Z{2Z) » Z{2Z. This explains our choice of terminology.

The volume of the tropical Prym variety is calculated as a sum over the odd genus one decom-
positions, with each monomial additionally weighted according to the rank.

Theorem 2.5 (Theorem 3.4 in [LZ22]). Let π : rΓ → Γ be a free double cover of metric graphs of genera

2g− 1 and g, respectively. The volume of the tropical Prym variety of π : rΓ → Γ is given by

Vol2(Prym(rΓ{Γ)) =
ÿ

FĂE(Γ)

4r(F)−1
ź

ePF

ℓ(e), (6)

where the sum is taken over all odd genus one decompositions F Ă E(Γ).

Remark 2.6. Given a metric graph Γ of genus g, the complements of spanning trees are the bases

of the cographic matroid ĂM(Γ). Similarly, a free double cover π : rΓ → Γ determines (after choosing
a spanning tree for Γ ) the structure of a signed graph on Γ , and the odd genus one decompositions

7



are in fact the bases of the corresponding signed cographic matroid ĂM(rΓ{Γ) (see [Zas82]). Hence
the sums on the right-hand sides of Equations (5) and (6) are indexed by the bases of certain

matroids naturally associated to Γ and π : rΓ → Γ , respectively. It turns out that the matroids ĂM(Γ)

and ĂM(rΓ{Γ) play a fundamental role in the polyhedral geometry of Jac(Γ) and Prym(rΓ{Γ). These
tppavs can be effectively described using respectively the Abel–Jacobi map Symg(Γ) → Jac(Γ) and

the Abel–Prym map Symg−1(rΓ) → Prym(rΓ{Γ). The independent sets of the matroids correspond
to the cells of the symmetric product on which these maps have full rank. Hence the bases
correspond to the top-dimensional cells that define polyhedral decompositions of the tppavs,
and thus give geometric meaning to Equations (5) and (6).

3. The volume formula

In this section, we prove the main result of our paper, Theorem 3.3, which calculates the
volume of the tropical Prym variety of a dilated double cover of metric graphs.

3.1. Ogods for dilated double covers. Our first task is to extend Definition 2.4 to dilated double
covers. This turns out to be straightforward.

Definition 3.1. Let π : rΓ → Γ be a dilated double cover of a connected metric graph Γ , and let

h = g(rΓ ) − g(Γ). A set F Ă E(Γ) of h edges of Γ is called an ogod if no edge in F is dilated, and if

each connected component of Γ\F has connected preimage in rΓ . The rank r(F) of F is the number
of connected components of Γ\F.

A connected component Γi of Γ\F having a dilated vertex automatically has connected preim-

age in rΓ . If a connected component Γi has no dilated vertices, then π−1(Γi) is connected only if
g(Γi) ě 1, since a free double cover of a tree is trivial. To clarify exposition, and for future use,
we give a more precise description of ogods for dilated double covers.

Lemma 3.2. Let π : rΓ → Γ be a dilated double cover of metric graphs, let F Ă E(Γ) be a set of h =

g(rΓ) − g(Γ) undilated edges of Γ , and let Γ\F = Γ1 Y ¨ ¨ ¨ Y Γk be the decomposition of Γ\F into connected
components. Then F is an ogod if and only if each Γi satisfies one of the following (mutually exclusive)
conditions:

(1) Γi contains a unique connected component of the dilation subgraph Γdil, and the genus g(Γi) is
equal to the genus of this component.

(2) Γi has no dilated vertices or edges, g(Γi) = 1, and Γi has connected preimage in rΓ .

Proof. It is clear that if each Γi is one of the above two types, then F is an ogod. To prove the

converse, we first assume that π : rΓ → Γ is an edge-free cover, in which case the connected
components of the dilation subgraph Γdil are the dilated vertices. For a subgraph Γ0 Ă Γ , possibly
disconnected, introduce the quantity

rg(Γ0) = #E(Γ0) − #{undilated vertices of Γ0}.

If Γ0 is connected, then

rg(Γ0) = g(Γ0) − 1+ #V(Γ0 X Γdil) ě −1.

Now let F Ă E(Γ) be an h-element set of undilated edges, and let Γ\F = Γ1 Y ¨ ¨ ¨ Y Γk be the
decomposition into connected components. It is clear that

rg(Γ\F) =
kÿ

i=1

rg(Γi).

8



On the other hand, we observe that

h = g(rΓ) − g(Γ) = #E(rΓ ) − #V(rΓ) − (#E(Γ) − #V(Γ)) = #E(Γ) − #{undilated vertices of Γ },

therefore

rg(Γ\F) = #E(rΓ ) − h− #{undilated vertices of Γ } = 0.

Since each rg(Γi) ě −1, it follows that either rg(Γi) = −1 for some i or rg(Γi) = 0 for all i. In
the former case F is not an ogod, because the component Γi with rg(Γi) = −1 is a tree with no
dilated vertices and hence π−1(Γi) is disconnected. In the latter case, each Γi is either a tree with a
unique dilated vertex, in which case it satisfies property (1), or a genus one graph with no dilated

vertices, in which case it satisfies property (2) if and only if it has connected preimage in rΓ . This

proves the lemma for the edge-free double cover π : rΓ → Γ .

Now let π : rΓ → Γ be a double cover with edge dilation. We consider the edge-free double

cover π 1 : rΓ 1 → Γ 1 obtained by contracting each connected component of the dilation subgraph
of Γ to a separate dilated vertex. The graphs Γ and Γ 1 have the same sets of undilated edges, and
it is clear that the ogods of Γ and Γ 1 are in rank-preserving bijection. Now let F Ă E(Γ) be a set
of h undilated edges, let Γ\F = Γ1 Y ¨ ¨ ¨ Y Γk be the decomposition into connected components,
and let Γ 1\F = Γ 1

1 Y ¨ ¨ ¨ Y Γ 1
k be the corresponding decomposition for Γ 1. If Γi has no dilation then

Γ 1
i = Γi, while if Γi has dilation, then it satisfies property (1) if and only if Γ 1

i is a tree with a unique
dilated vertex. Hence each Γi satisfies property (1) or (2) if and only if Γ 1

i does, in which case F is
an ogod. �

Lemma 3.2 shows that the term "odd genus one decomposition" makes sense for edge-free
covers, if we view each dilated vertex as having intrinsic genus one. However, the terminology
breaks down for covers with edge dilation, since now the genus of Γi is determined by the genus
of the corresponding dilation subgraph, which may be arbitrary. For this reason, we henceforth
use the term "ogod" instead of "odd genus one decomposition". We also note that ogods of
dilated double covers also correspond to bases of an associated matroid (see Remark 2.6) on the
set of undilated edges of Γ , which we plan to investigate in future work.

We are now ready to state our main result.

Theorem 3.3. Let π : rΓ → Γ be a dilated double cover of metric graphs. The volume of the tropical Prym

variety of π : rΓ → Γ is given by

Vol2(Prym(rΓ{Γ)) = 21−d(rΓ{Γ)
ÿ

FĂE(Γ)

4r(F)−1
ź

ePF

ℓ(e). (7)

The sum is taken over all h-element ogods of E(Γ) (see Definition 3.1), where h = g(rΓ)−g(Γ) is the dimen-

sion of Prym(rΓ{Γ) and r(F) is the rank of the ogod, and d(rΓ{Γ) is the number of connected components of
the dilation subgraph Γdil.

We first consider several examples.

Example 3.4. Let π : rΓ → Γ be a double cover such that every vertex of Γ is dilated and no edge

of Γ is dilated. In this case g(rΓ) = 2#E(Γ) − #V(Γ) + 1 so h = #E(Γ), and the only ogod of the

double cover π : rΓ → Γ is all of F = E(Γ), with r(F) = #V(Γ). Since d(rΓ{Γ) = #V(Γ), we see that

the volume of the tropical Prym variety of π : rΓ → Γ is equal to

Vol2(Prym(rΓ{Γ)) = 2#V(Γ)−1
ź

ePE(Γ)

ℓ(e).

9
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Figure 2. Discontinuity of the Prym variety under edge contraction

Example 3.5. We consider the double cover π : rΓ → Γ shown on Figure 1. We have g(rΓ) = 6 and
g(Γ) = 3, so ogods are three-element subsets of the set {e1, e2, e3, e4, e5} of undilated edges. An
ogod cannot contain both e1 and e2, since the left undilated vertex will then have disconnected
preimage, and similarly with e4 and e5. This leaves a total of four ogods of the following ranks:

r({e1, e3, e4}) = 3, r({e1, e3, e5}) = 2, r({e2, e3, e4}) = 4, r({e2, e3, e5}) = 3.

The dilation subgraph has d(rΓ{Γ) = 2 connected components, therefore

Vol2(Prym(rΓ{Γ)) = 8x1x3x4 + 2x1x3x5 + 32x2x3x4 + 8x2x3x5, xi = ℓ(ei).

Example 3.6. Equation (7) shows that the Prym variety of a dilated double cover behaves discon-

tinuously under edge contractions that change the number d(rΓ{Γ) of connected components of

the dilation subgraph. Indeed, consider the double cover π : rΓ → Γ shown on the left hand side
of Figure 2. The double cover π has two ogods, {e} and {f}, with r({e}) = 2 and r({f}) = 1. The left

vertex is dilated, so d(rΓ{Γ) = 1 and

Vol2(Prym(rΓ{Γ)) = 4ℓ(e) + ℓ(f).

The double cover π 1 : rΓ 1 → Γ 1 on the right hand side is obtained from π by contracting the
loop f, creating a second dilated vertex. The edge e is the unique ogod and r({e}) = 2, but now

d(rΓ 1{Γ 1) = 2. Hence

Vol2(Prym(rΓ 1{Γ 1)) = 2ℓ(e),

which is not the limit of Vol2(Prym(rΓ{Γ)) as ℓ(f) → 0, as one may expect. This is problematic
from a moduli-theoretic viewpoint, and suggests that the original definition of the Prym variety
of a dilated double cover should be revisited.

We note that this phenomenon does not occur when deforming from a dilated double cover
with connected dilation subgraph to a free double cover, since Equations (6) and (7) agree when

d(rΓ{Γ) = 1.

The proof of Theorem 3.3 consists of two distinct parts. On one hand, we show that the
polynomial on the right-hand side of Equation (7) can be expressed in terms of the spanning

trees of rΓ and Γ . The idea is to deform a dilated double cover to a free double cover by a series
of edge contractions and de-contractions, and use Theorem 2.5 as the base case. This part of
the proof is purely graph-theoretic, and the main result is Theorem 3.10. On the other hand, we

independently compute the relationship between the volumes of the tppavs Jac(rΓ), Jac(Γ), and

Prym(rΓ{Γ) for a dilated double cover π : rΓ → Γ , by studying the action of the pushforward and
10



pullback maps on the homology groups H1(rΓ ,Z) and H1(Γ,Z); the main result is Theorem 3.11.
These homology calculations have appeared in [RZ22], sharpening and correcting the results
of [LU21], and we briefly reproduce them here.

3.2. The volume polynomials. It is convenient to separate the right hand sides of Equations (5)
and (7) into stand-alone definitions:

Definition 3.7. Let Γ be a metric graph of genus g. The Jacobian polynomial J(Γ) of Γ is the degree
g homogeneous polynomial in the edge lengths of Γ given by

J(Γ) =
ÿ

CĂE(Γ)

ź

ePC

ℓ(e),

where the sum is taken over all g-element subsets C Ă E(Γ) such that Γ\C is a tree.

The following contraction-deletion formula for the Jacobian polynomial is elementary to verify,
and we omit the proof.

Lemma 3.8. Let Γ be a metric graph and let e P E(Γ) be an edge of length ℓ(e). Let Γe and Γ e be the
graphs obtained by contracting and removing e, respectively. The Jacobian polynomial of Γ is expressed in
terms of the Jacobian polynomials of Γe and Γ e as follows:

J(Γ) =






ℓ(e)J(Γe), e is a loop,

J(Γe), e is a bridge,

J(Γe) + ℓ(e)J(Γ e), otherwise.

Definition 3.9. Let π : rΓ → Γ be a double cover of metric graphs, and let h = g(rΓ) − g(Γ). The

Prym polynomial Pr(rΓ{Γ) of π : rΓ → Γ is the degree h homogeneous polynomial in the edge lengths
of Γ given by

Pr(rΓ{Γ) =
ÿ

FĂE(Γ)

4r(F)−1
ź

ePF

ℓ(e), (8)

where the sum is taken over all ogods (see Definition 3.1) and r(F) is the rank of the ogod.

We now determine the relationship between the three polynomials associated with a harmonic
double cover.

Theorem 3.10. Let π : rΓ → Γ be a double cover of metric graphs. Then

J(rΓ) = 21−md(rΓ{Γ)+nd(rΓ{Γ)−2d(rΓ{Γ) Pr(rΓ{Γ)J(Γ). (9)

where md(rΓ{Γ), nd(rΓ{Γ), and d(rΓ{Γ) denote respectively the number of edges, vertices, and connected
components of the dilation subgraph Γdil.

We note that for an edge re P E(rΓ) we have

ℓ(re) =
{
ℓ(π(re)), π(re) is undilated,

ℓ(π(re)){2, π(re) is dilated,

so we may indeed view J(rΓ) as a polynomial in the edge lengths of Γ . Of course, it is not a priori

clear why J(rΓ) should be divisible by J(Γ).
11
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Figure 3. Resolving a dilated vertex by adding a loop.

Proof of Theorem 3.10. We prove this result first for free double covers, then for edge-free double
covers, and finally for double covers with edge dilation.

Free double covers. The proof for a free double cover π : rΓ → Γ follows directly from the results
of [LZ22]. Indeed, according to Equation (5) we have

Vol2(Jac(rΓ )) = J(rΓ), Vol2(Jac(Γ)) = J(Γ).

On the other hand, Equation (6) states that

Vol2(Prym(rΓ{Γ)) = Pr(rΓ{Γ),
and the relationship between the three volumes is given by Proposition 3.6 of [LZ22]:

Vol2(Jac(rΓ )) = 2Vol2(Prym(rΓ{Γ))Vol2(Jac(Γ)). (10)

It follows that

J(rΓ) = 2Pr(rΓ{Γ)J(Γ),
which is Equation (9) for a free double cover, for which md(rΓ{Γ) = nd(rΓ{Γ) = d(rΓ{Γ) = 0.

Edge-free double covers. We now prove the theorem for edge-free double covers by induction

on the number of dilated vertices. For such a cover π : rΓ → Γ , we have nd(rΓ{Γ) = d(rΓ{Γ) and

md(rΓ{Γ) = 0. Consider an edge-free cover π : rΓ → Γ with a dilated vertex v P V(Γ), and let

rv = π−1(v). We consider the double cover π 1 : rΓ 1 → Γ 1 obtained by resolving the dilated vertex v

into an undilated vertex by a loop attachment (see Figure 3). Specifically, Γ 1 consists of Γ with a

loop e of length ℓ(e) attached to v, while rΓ 1 consists of rΓ with the vertex rv replaced by a pair of
vertices rv˘ connected by two edges re˘. For each edge f P E(Γ) rooted at v there are two edges
rf˘ P E(rΓ ) rooted at rv, and we root one at each of the rv˘ P V(rΓ 1) arbitrarily. The map π 1 sends rv˘

to v, re˘ to e, and is equal to π on the rest of rΓ 1. The vertex v on the resulting harmonic double

cover π 1 : rΓ 1 → Γ 1 is now undilated, hence

nd(rΓ{Γ) = d(rΓ{Γ) = nd(rΓ 1{Γ 1) + 1 = d(rΓ 1{Γ 1) + 1, md(rΓ{Γ) = md(rΓ 1{Γ 1) = 0, (11)

and we assume by induction that Equation (9) holds for π 1 : rΓ 1 → Γ 1.
12



We now compare the Jacobian and Prym polynomials of the two covers π 1 : rΓ 1 → Γ 1 and

π : rΓ → Γ . First, we note that g(Γ 1) = g(Γ) + 1. Since e is a loop, it lies in the complement of each
spanning tree, and therefore

J(Γ 1) = ℓ(e)J(Γ). (12)

Similarly, we have g(rΓ 1) = g(rΓ) + 1, and we evaluate J(rΓ 1) in terms of J(rΓ). We classify

complements of spanning trees C 1 Ă E(rΓ 1) according to whether they contain the edges re˘:

(1) re˘ P C 1. There is a unique path from rv+ to rv− along the spanning tree rΓ 1\C 1 of rΓ 1, which

corresponds to a closed loop in rΓ starting and ending at rv. Hence it follows that the

corresponding subset C = C 1\{re˘} Ă E(rΓ) is not the complement of a spanning tree of rΓ .

Instead, C is the complement of a unique spanning tree in the graph rΓ 1
0 obtained from rΓ 1

by deleting the edges re˘, and every such complement is obtained in this way.

(2) re+ P C 1 and re− R C 1. The spanning tree T 1 = rΓ 1\C 1 contains the edge re−, and T = T 1\{re−}
is a spanning tree of rΓ with complementary edge set C = C 1\{re+} Ă E(rΓ). Conversely, if

C Ă E(rΓ) is the complement of a spanning tree T = rΓ\C of rΓ , then C 1 = C Y re+ Ă E(rΓ 1) is

the complement of a spanning tree T 1 = T Y {re−} of rΓ 1.
(3) re− P C 1 and re+ R C 1. This case is symmetric to the one above: C = C 1\{re−} is the

complement of a spanning tree of rΓ , and every such complement is obtained in this way.

(4) re˘ R C 1. This is not possible, since a spanning tree of rΓ 1 may not contain both edges re˘.

Expressing the sum that defines J(rΓ 1) according to these four types, we see that

J(rΓ 1) = 2ℓ(e)J(rΓ ) + ℓ(e)2J(rΓ 1
0). (13)

Finally, we compare Pr(rΓ 1{Γ 1) and Pr(rΓ{Γ). Since g(rΓ 1)−g(Γ 1) = g(rΓ)−g(Γ), these polynomials

have the same degree. Let F Ă E(Γ) be an ogod of the double cover π : rΓ → Γ . The connected

component of Γ\F containing v has connected pre-image in rΓ because v is dilated, and this
remains true when we undilate v and replace rv with rv˘. Hence F Ă E(Γ 1) is also an ogod of the

double cover π 1 : rΓ 1 → Γ of the same rank. Conversely, if F 1 Ă E(Γ 1) is an ogod of the double cover

π 1 : rΓ 1 → Γ and e R F 1, then F 1 Ă E(Γ), and the connected component of Γ 1\F 1 containing e (and

having connected pre-image in rΓ 1) corresponds to a connected component of Γ\F 1 containing v

(which necessarily has connected pre-image). It follows that there is a rank-preserving bijection

between the ogods F Ă E(Γ) of the double cover π : rΓ → Γ and the ogods F 1 Ă E(Γ 1) of the double

cover π 1 : rΓ 1 → Γ 1 not containing e, and therefore

Pr(rΓ 1{Γ 1) = Pr(rΓ{Γ) + ℓ(e)Q, (14)

where the term Q is irrelevant to us.
We now put everything together. By induction, Equation (9) holds for the double cover π 1 :

rΓ 1 → Γ 1. Plugging in Equations (12), (13), (14), taking the linear in ℓ(e) term, and using (11), we

see that Equation (9) holds for the double cover π : rΓ → Γ .

Double covers with edge dilation. Finally, we prove the theorem for arbitrary dilated double
covers by induction on the number of dilated edges, the base case being that of edge-free double

covers. Let π : rΓ → Γ be a dilated double cover with a dilated edge e P E(Γ) of length ℓ(e), and
let re = π−1(e) be its preimage of length ℓ(re) = ℓ(e){2. We contract the edges e and re to obtain a

dilated double cover πe : rΓre → Γe with

md(rΓre{Γe) = md(rΓ{Γ) − 1, d(rΓre{Γe) = d(rΓ{Γ), (15)

and we assume by induction that Equation (9) holds for πe : rΓre → Γe.
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It is clear that g(rΓre)−g(Γe) = g(rΓ)−g(Γ), so Pr(rΓre{Γe) and Pr(rΓ{Γ) have the same degrees. Since
ogods do not contain dilated edges, and the dilation subgraphs of Γ and Γe have the same sets of
connected components, we see that there is a rank-preserving bijection between the ogods of the

double covers πe : rΓre → Γe and π : rΓ → Γ . Therefore

Pr(rΓre{Γe) = Pr(rΓ{Γ). (16)

We now consider the edge types of e and re and apply Lemma 3.8.

(1) If e P E(Γ) is a loop, then re P E(rΓ) is also a loop (of half the length) because the root vertex
of e is dilated and hence has a unique preimage at which both ends of re are rooted. Then
by Lemma 3.8 we have

J(Γ) = ℓ(e)J(Γe), J(rΓ) = ℓ(e)

2
J(rΓre). (17)

Plugging Equations (15), (16), and (17) into Equation (9) and noting that nd(rΓre{Γe) =

nd(rΓ{Γ), we see that Equation (9) holds for the double cover π : rΓ → Γ .

(2) If e P E(Γ) is a bridge, then re P E(rΓ ) is also a bridge because π−1(e) = re. By Lemma 3.8
we have

J(Γ) = J(Γe), J(rΓ) = J(rΓre), (18)

and in this case nd(rΓre{Γe) = nd(rΓ{Γ) − 1, since contracting e joins the dilated end vertices
of e into a single dilated vertex. Plugging this and Equations (15), (16) and (18) into

Equation (9), we see that Equation (9) holds for the double cover π : rΓ → Γ .
(3) Finally, suppose that e P E(Γ) is neither a bridge nor a loop. There exists a path in Γ

between the (dilated) end vertices of re that bypasses e, and this path lifts to a path in rΓ
connecting the end vertices of re and bypassing re. Hence re P E(rΓ ) is neither a bridge nor a
loop, and by Lemma 3.8 we have

J(Γ) = J(Γe) + ℓ(e)J(Γ e), J(rΓ) = J(rΓre) +
ℓ(e)

2
J(rΓre), (19)

and nd(rΓre{Γe) = nd(rΓ{Γ) − 1 as in the previous case.

We need to additionally consider the harmonic double cover πe : rΓre → Γ e obtained by
deleting the edges e and re. Since Γ e has one fewer dilated edge than Γ , we assume by

induction that Equation (9) holds for the double cover πe : rΓre → Γ e, and we have

md(rΓre{Γ e) = md(rΓ{Γ) − 1, nd(rΓre{Γ e) = nd(rΓ{Γ). (20)

Since e is dilated, there is again a bijection between the ogods of the double covers πe :
rΓre → Γ e and π : rΓ → Γ . However, the ranks of the ogods may be different, since removing e

may increase the number of connected components of the dilation subgraph. We consider
two subcases:
(a) The edge e is not a bridge edge of the dilation subgraph Γdil, in which case d(rΓre{Γ e) =

d(rΓ{Γ). Given an ogod F Ă E(Γ) of Γ , the connected component Γi of Γ\F containing e

is not disconnected by removing e. It follows that the ranks of F as an ogod on Γ and

Γ e agree, and hence Pr(rΓ{Γ) = Pr(rΓre{Γ e). Plugging this and Equations (15), (16), (19),
and (20) into Equation (9), we see that Equation (9) holds for the double cover π :
rΓ → Γ .

(b) The edge e is a bridge edge of the dilation subgraph Γdil, so that d(rΓre{Γ e) = d(rΓ{Γ)+1.
Let F Ă E(Γ) be an ogod of Γ , and let Γi be the connected component of Γ\F containing
e. By Lemma 3.2, the dilation subgraph of Γi is connected and has the same genus as
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Γi. It follows that e is in fact a bridge edge of Γi itself, not just its dilation subgraph.
Hence Γ e\F has one more connected component than Γ\F, so the rank of F as an ogod

of Γ e is one greater than its rank as an ogod of Γ , and therefore Pr(rΓ{Γ) = Pr(rΓre{Γ e){4.
Plugging this and the remaining formulas into Equation (9), we see that Equation (9)

holds for the double cover π : rΓ → Γ .

�

3.3. The volumes of the tppavs. We now compute the relationship between the volumes of the

three tppavs associated to a dilated double cover π : rΓ → Γ . The main result is the following
theorem.

Theorem 3.11. Let π : rΓ → Γ be a dilated double cover of metric graphs. The volume of the tropical Prym
variety of π is given by

Vol2(Prym(rΓ{Γ)) = 2md(rΓ{Γ)−nd(rΓ{Γ)+d(rΓ{Γ) Vol2(Jac(rΓ ))
Vol2(Jac(Γ))

, (21)

where md(rΓ{Γ), nd(rΓ{Γ), and d(rΓ{Γ) are respectively the numbers of edges, vertices, and connected
components of the dilation subgraph Γdil.

Before giving the proof, we consider an elementary example.

Example 3.12. Let Γ be a metric graph of genus g, and let π : rΓ → Γ be the double cover such

that Γdil = Γ , so that π is a factor two isometry. Since g(rΓ) = g(Γ) the Prym variety Prym(rΓ{Γ)
is a point, and its (zero-dimensional) volume is formally equal to one. On the other hand, the
exponent in the right hand side of Equation (21) is the genus of Γ , so we see that

Vol2(Jac(rΓ)) = 2−g(Γ) Vol2(Jac(Γ)).

This clearly agrees with Theorem 2.3, since each edge has half the length in rΓ as in Γ , and thus

the Jacobians of rΓ and Γ differ by scaling by a factor of 2.

The principal technical result required for the proof is Proposition 3.13, which calculates the
pushforward, pullback, and involution maps

π˚ : H1(rΓ ,Z) → H1(Γ,Z), π˚ : H1(rΓ ,Z) → H1(Γ,Z), ι˚ : H1(rΓ ,Z) → H1(rΓ ,Z)
in terms of explicit bases of H1(rΓ ,Z) and H1(Γ,Z). This result recently appeared in [RZ22], im-
proving and correcting earlier results in [LU21], and we restate it here for convenience. We then
calculate the volumes of the tppavs using Equation (2). We also note that, unlike Theorem 3.10,
the relationship between the volumes in the case of a free double cover is given by a different
formula (Equation (10), which differs from Equation (21) by a factor of two). Morally, this is due

to the fact that the kernel of the norm map Nm : Jac(rΓ ) → Jac(Γ) has two connected components

if π : rΓ → Γ is free and one if it is dilated (see Theorem 1.5.7 in [LU21]).

Let π : rΓ → Γ be a dilated double cover, and introduce the invariants

A = g(Γ) −md + nd − d, B = d− 1, C = md − nd + d, (22)

where md, nd, and d denote respectively the number of edges, vertices, and connected compo-
nents of the dilation subgraph Γdil. We note that

A + B = g(Γ) −md + nd − 1 = |E(Γ)| − |V(Γ)| −md + nd = g(rΓ ) − g(Γ)

is the dimension of the Prym variety of the double cover π : rΓ → Γ . We explicitly describe the
induced maps on the homology groups:
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Proposition 3.13 (Proposition 4.20 in [RZ22]). Let π : rΓ → Γ be a dilated double cover of metric graphs.

There exists a basis α1, . . . , αA, γ1, . . . , γC of H1(Γ,Z) and a basis rα˘
1 , . . . , rα˘

A , rβ1, . . . , rβB, rγ1, . . . , rγC of

H1(rΓ ,Z) such that

ι˚(rα˘
i ) = rα¯

i , π˚(rα˘
i ) = αi, π˚(αi) = rα+

i + rα−
i , i = 1, . . . , A,

ι˚(rβj) = −rβj, π˚(rβj) = 0, j = 1, . . . , B,

ι˚(rγk) = rγk, π˚(rγk) = γk, π˚(γk) = 2rγk, k = 1, . . . , C.

We now show how to define a principal polarization on the tropical Prym variety Prym(rΓ{Γ)
associated to a dilated double cover π : rΓ → Γ . Recall that the underlying integral torus of

Prym(rΓ{Γ) is given by the triple (K,K 1, [¨, ¨]P), where K = (Cokerπ˚)tf, K 1 = Kerπ˚, and the

intersection pairing [¨, ¨]P : K 1 ˆ K → R is induced from the pairing H1(rΓ ,Z) ˆ H1(rΓ ,Z) → R on
rΓ . The principal polarization ξ = Id : H1(rΓ ,Z) → H1(rΓ ,Z) induces a polarization ξ|P : K 1 → K,
which is not principal in general. The structure of this polarization was computed in [RZ22].

Proposition 3.14 (Proposition 4.21 in [RZ22]). There exists a principal polarization ζ : K 1 → K

on Prym(rΓ{Γ) with respect to which the induced polarization ξ|P has type (i.e. Smith normal form)
(1, . . . , 1, 2, . . . , 2), where the number of 1’s and 2’s is equal to B and A, respectively.

We are now ready to prove Theorem 3.11.

Proof of Theorem 3.11. Let rB = {rα˘
i ,

rβj, rγk} be the Z-basis of H1(rΓ ,Z) constructed in Proposi-
tion 3.13, then by Equation (2) we have

Vol2(Jac(rΓ )) = Gram( rB)rΓ ,

where the subscript rΓ is there to remind us that the entries in the Gram determinant are computed

using the inner product (¨, ¨)rΓ . Introduce the following alternative Q-basis rB 1 of H1(rΓ ,Z):
rB 1 = rB 1

1 Y rB 1
2,

rB 1
1 = {rα+

i + rα−
i , 2rγk}, rB 1

2 = {rα+
i − rα−

i ,
rβj}.

The change-of-basis matrix from rB to rB 1 has determinant ˘2−A−C (see Equation (22)), hence

Gram( rB)rΓ = 2−2A−2C Gram( rB 1)rΓ .

Now let rδ1 P rB 1
1 and rδ2 P rB 1

2 be two cycles. By Proposition 3.13 we know that ι˚(rδ1) = rδ1 and

ι˚(rδ2) = −rδ2. Since ι˚ preserves the inner product (¨, ¨)rΓ , we have

(rδ1,rδ2)rΓ = (ι˚(rδ1), ι˚(rδ2))rΓ = −(rδ1,rδ2)rΓ .

Hence the elements of rB 1
1 and rB 1

2 are orthogonal to one another, and therefore

Gram( rB 1)rΓ = Gram( rB 1
1)rΓ Gram( rB 1

2)rΓ .

Now let B = {αi, γk} be the basis of H1(Γ,Z) given in Proposition 3.13, then Gram(B)Γ computes

Vol2(Jac(Γ)) by Equation (2). On the other hand, π˚(B) = rB 1
1, and for any δ1, δ2 P H1(G,Z) by

Equation (4) we have

(π˚(δ1), π
˚(δ2))rΓ = 2(δ1, δ2)Γ ,

implying that

Gram( rB 1
1)rΓ = 2A+C Gram(B)Γ = 2A+C Vol2(Jac(Γ)).

Finally, we note that rB 1
2 is a basis for K 1 = Kerπ˚, so the Gram determinant Gram( rB 1

2)rΓ computes
the square of the volume of the tropical Prym variety, but with respect to the polarization ξ|P
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induced from Jac(rΓ). By Proposition 3.14, the volume with respect to the intrinsic principal
polarization is obtained by re-scaling as follows:

Vol2(Prym(rΓ{Γ)) = Gram( rB 1
2)P = 2−A Gram( rB 1

2)rΓ .

Putting everything together, we see that

Vol2(Jac(rΓ)) = Gram( rB)rΓ = 2−2A−2C Gram( rB 1)rΓ = 2−2A−2C Gram( rB 1
1)rΓ Gram( rB 1

2)rΓ =

= 2−2A−2C ¨ 2A+C Gram(B)Γ2
A Gram( rB)P = 2−C Vol2(Jac(Γ))Vol2(Prym(rΓ{Γ)),

which completes the proof.
�

3.4. Proof of the main theorem. We are now ready to put everything together.

Proof of Theorem 3.3. Let π : rΓ → Γ be a dilated double cover of metric graphs, and let md, nd, and
d denote respectively the number of edges, vertices, and connected components of the dilation
subgraph Γdil. From Theorems 3.11, 2.3, and 3.10, respectively, we have

Vol2(Prym(rΓ{Γ)) = 2md−nd+d Vol2(Jac(rΓ))
Vol2(Jac(Γ))

= 2md−nd+d J(
rΓ)

J(rΓ)
= 21−d Pr(rΓ{Γ),

which by Definition 3.9 is the right hand side of (7).
�
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