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CHIP-FIRING ON GRAPHS OF GROUPS

MARGARET MEYER, DMITRY ZAKHAROV

Abstract. We define the Laplacian matrix and the Jacobian group of a finite graph of groups.

We prove analogues of the matrix tree theorem and the class number formula for the order of the

Jacobian of a graph of groups. Given a group G acting on a graph X, we define natural pushforward

and pullback maps between the Jacobian groups of X and the quotient graph of groups X{{G. For the

case G = Z{2Z, we also prove a combinatorial formula for the order of the kernel of the pushforward

map.

1. Introduction

The theory of chip-firing on graphs is a purely combinatorial theory, having a remarkable

similarity to divisor theory on algebraic curves. A divisor on a graph is an integer linear com-

bination of its vertices, and two divisors are linearly equivalent if one is obtained from another

by a sequence of chip-firing moves. The set of equivalence classes of degree zero divisors on a

graph X is a finite abelian group, called the Jacobian Jac(X) or the critical group of X. The similarity

with algebraic geometry is not accidental: graphs record degeneration data of one-dimensional

families of algebraic curves, and divisors on graphs represent discrete invariants of algebraic

divisor classes under degeneration.

Chip-firing on graphs is functorial with respect to a class of graph maps known as harmonic

morphisms, which may be viewed as discrete analogues of finite maps of algebraic curves. Specifi-

cally, a harmonic morphism of graphs f : X → Y defines natural pushforward and pullback maps

f˚ : Jac(X) → Jac(Y) and f˚ : Jac(Y) → Jac(X). Harmonic morphisms are characterized by a local

degree assignment at the vertices of the source graph, and are a generalization of topological

coverings, which have local degree one everywhere.

A natural example of a topological covering, and hence of a harmonic morphism, is the quo-

tient p : X → X{G of a graph X by a free action of a group G. The paper [RT14] thoroughly

investigated the corresponding pushforward map p˚ : Jac(X) → Jac(X{G), and found a combina-

torial formula for the degree of the kernel in the case when G = Z{2Z. If the action of G on X

has nontrivial stabilizers, however, then p is not in general harmonic, and there is no relationship

between Jac(X) and Jac(X{G). This raises the natural problem of redefining chip-firing on the

quotient graph in a way that preserves functoriality.

In this paper, we solve this problem using the theory of graphs of groups, also known as Bass–

Serre theory (see [Bas93] and [Ser02]). Given a G-action on a graph X, the quotient graph of

groups X{{G consists of the quotient graph X{G together with the data of the local stabilizers, and

may be thought of as the stacky quotient of X by G. We define the Laplacian matrix and the

Jacobian group of a graph of groups by weighting the chip-firing map using the orders of the

local stabilizers. We define natural pushforward and pullback maps p˚ : Jac(X) → Jac(X{{G) and

p˚ : Jac(X{{G) → Jac(X), and we investigate their properties.
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The paper is organized as follows. In Section 2, we recall the definitions of chip-firing for a

graph, as well as harmonic morphisms of graphs and Bass–Serre theory. We define graphs and

chip-firing in terms of half-edges and introduce a detailed factorization of the graph Laplacian.

This approach is notationally cumbersome but proves useful in Section 3, where we define chip-

firing and the Jacobian group for a graph of groups. We prove two formulas for the order of

the Jacobian of a graph of groups: Theorem 3.5, a weighted version of Kirchhoff’s matrix tree

theorem, and Theorem 3.6, which is a class number formula involving a hypothetical Ihara zeta

function of a graph of groups. In Section 4, we consider a group G acting on a graph X and

consider the Jacobian of the quotient graph of groups X{{G. We define natural pushforward and

pullback maps between the Jacobians Jac(X) and Jac(X{{G). We compute the Jacobians of all

group quotients of two graphs with large automorphism groups: the complete graph on four

vertices and the Petersen graph. Finally, in Section 5 we specialize to the case G = Z{2Z and

find a combinatorial formula for the order of the kernel of the pushforward map p˚ : Jac(X) →

Jac(X{{G), generalizing a result of Reiner and Tseng [RT14].

A natural question is to relate chip-firing on graphs of groups to algebraic geometry. A ver-

sion of the chip-firing maps with edge weights (but trivial vertex weights) appears in [Chi15]

and [CF17], in the study of moduli spaces of curves with level structure. Curves with a G-cover

with arbitrary group G are considered in [Gal19]. It is natural to assume that chip-firing on

graphs of groups should be related to the theory of line bundles on stacky curves. Investigating

this connection, however, is beyond the scope of this paper.

2. Graphs with legs and graphs of groups

We begin by recalling a number of standard definitions concerning graphs, group actions,

divisor theory on graphs, harmonic morphisms, and graphs of groups.

2.1. Graphs, morphisms, and group actions. In Serre’s definition (see [Ser02]), the edges of a

graph are the orbits of a fixed-point-free involution acting on a set of half-edges. When considering

group actions on graphs, it is then necessary to require that the action not flip any edges of the

graph. We can relax this constraint by allowing the involution on the set of half-edges to have

fixed points. The resulting object is a graph with legs, where a leg is the result of folding an edge

in half via an involution. Such objects have appeared before in the combinatorics literature (for

example, see p. 60 in the paper [Zas82], where they are called half-arcs).

Definition 2.1. A graph with legs X, or simply a graph, consists of the following data:

(1) A set of vertices V(X).

(2) A set of half-edges H(X).

(3) A root map rX : H(X) → V(X).

(4) An involution ιX : H(X) → H(X).

The involution ιX partitions H(X) into orbits of size one and two. An orbit e = {h, h 1} of size

two (so that ιX(h) = h 1) is an edge with root vertices rX(h), rX(h
1) P V(X), and the set of edges of

X is denoted E(X). An edge whose root vertices coincide is called a loop. A fixed point of ιX is

called a leg and has a single root vertex rX(h) P V(X), and we denote the set of legs of X by L(X).

The tangent space TvX = r−1
X (v) of a vertex v P V(X) is the set of half-edges rooted at v, and its

valency is val(v) = |TvX| (so a leg is counted once, while a loop is counted twice). An orientation

of an edge e = {h, h 1} is a choice of order (h, h 1) on the half-edges, and we call s(e) = rX(h) and
2



t(e) = rX(h
1) respectively the initial and terminal vertices of an oriented edge e. An orientation

O on X is a choice of orientation for each edge (each leg has a unique orientation). We consider

only finite connected graphs.

Definition 2.2. A morphism of graphs f : rX → X is a pair of maps f : V(rX) → V(X) and f : H(rX) →
H(X) (both denoted f by abuse of notation) that commute with the root and involution maps on
rX and X.

Let f : rX → X be a morphism of graphs. If l P L(rX) is a leg then ιX(f(l)) = f(ιrX(l)) = f(l),

so f(l) P L(X) is also a leg. On the other hand, if e = {h, h 1} P E(rX) is an edge, then either

f(h) ‰ f(h 1), in which case f maps e to an edge f(e) = {f(h), f(h 1)} P E(X), or f(h) = f(h 1) P L(X)

is a leg. In other words, edges can map to edges or fold to legs. However, we do not allow

morphisms to contract edges or half-legs, in other words we consider only finite morphisms.

Definition 2.3. Let X be a graph and let G be a group acting on the right on X. In other words,

each g P G defines an automorphism of X, which we denote x Þ→ xg for x P V(X) Y H(X), such

that x(g1g2) = (xg1)g2 for all x P V(X) Y H(X) and all g1, g2 P G. We define the vertices and

half-edges of the quotient graph X{G as the G-orbits of V(X) and H(X):

V(X{G) = V(X){G = {vG : v P V(X)}, H(X{G) = H(X){G = {hG : h P H(X)},

and descending the root and involution maps:

rX{G(hG) = rX(h)G, ιX{G(hG) = ιX(h)G.

The quotient projection p : X → X{G sends each element of X to its orbit.

Let h P H(X) be a half-edge with orbit p(h) = hG P H(X{G). If h is a leg, then ιX{G(hG) =

ιX(h)G = hG so p(h) = hG P L(X{G) is also a leg. If h belongs to an edge e = {h, h 1} P E(X),

then there are two possibilities. If h 1 ‰ hg for all g P G, then the orbits hG and h 1G are distinct

half-edges of X{G forming an edge p(e) = {hG,h 1G} P E(X{G). However, if h 1 = hg for some

g P G (in other words, if the G-action flips the edge e), then p(e) = hG = h 1G P L(X{G) is a leg.

In Serre’s original definition, the involution ιX on a graph X is required to be fixed-point-free,

and hence the set H(X) of half-edges is partitioned into edges only. Relaxing this condition

enables us to consider quotients by group actions that flip edges. We give a simple example

below and two extended examples in Sections 4.2 and 4.3.

Example 2.4. Let X be the graph with two vertices joined by an edge. There is a unique nontrivial

morphism f : X → X exchanging the two vertices, so Aut(X) is the cyclic group of order two. The

quotient X{ Aut(X) is the graph having one leg at one vertex, and is in fact the terminal object in

the category of graphs with legs, while no such object exists in the category of graphs.

2.2. The graph Laplacian and chip-firing. We now recall divisor theory on a graph X. We follow

the framework of the paper [RT14], which we reformulate in terms of half-edges. Specifically, we

use a detailed factorization of the Laplacian which can be conveniently generalized to graphs of

groups. A minor additional advantage is that we are never required to pick an orientation for

the graph.

For a set S, we denote ZS and ZS
0 respectively the free abelian group on S and the subgroup

consisting of elements whose coefficients sum to zero. The free abelian group ZV(X) is called

the divisor group of X, and a divisor D =
ÿ

vPV(X)

avv is interpreted as a distribution of av chips on

3



ZH(X) ZV(X)

rX

ιX
τX

LX

Figure 1. Factorization of the graph Laplacian.

each vertex v. The root and involution maps rX : H(X) → V(X) and ιX : H(X) → H(X) induce

homomorphisms

rX : ZH(X) → ZV(X), ιX : ZH(X) → ZH(X)

on the corresponding free abelian groups (denoted by the same letters by abuse of notation). Let

τX denote the transpose of rX:

τX : ZV(X) → ZH(X), τX(v) =
ÿ

hPTvX

h. (1)

Definition 2.5. The Laplacian of a graph X is the homomorphism LX : ZV(X) → ZV(X) given by

LX = rX ˝ (Id− ιX) ˝ τX, LX(v) =
ÿ

hPTvX

(v − rX(ιX(h))). (2)

Figure 1 displays all the maps involved in defining the graph Laplacian. It is elementary to

verify that ImLX Ă Z
V(X)
0 , where ImLX is the subgroup of principal divisors on X, and in fact

Z
V(X)
0 = Im(rX ˝ (Id− ιX)) if the graph X is connected.

Definition 2.6. The Jacobian of a graph X is the quotient group

Jac(X) = Z
V(X)
0 { ImLX. = Im(rX ˝ (Id−ιX)){ Im LX.

The Jacobian Jac(X) is also known as the critical group of X. Kirchhoff’s matrix-tree theorem

states that Jac(X) is a finite group whose order is equal to the number of spanning trees of X.

Given a vertex v P V(X), the divisor −LX(v) is obtained by firing the vertex v, in other words by

moving a chip from v along each half-edge h P TvX to the root vertex of ιX(h). Chips moved

along legs and loops return to v, hence legs and loops of X do not contribute to the Laplacian or

the Jacobian group, and Jac(X) is canonically isomorphic to the Jacobian of the graph obtained

by removing all legs and loops. However, legs and loops naturally occur when taking quotients

by group actions, so we nevertheless consider them.

We give an explicit presentation for the matrix L of the graph Laplacian LX. Let n = |V(X)| and

m = |E(X)| denote the number of vertices and edges, respectively. Then L = Q−A, where Q and

A are the n ˆ n valency and adjacency matrices of X:

Luv = Quv −Auv, Quv = δuv val(v), Auv = |{h P TvX : rX(ιX(h)) = u}|.

These matrices have the following convenient factorizations. Pick an orientation on X and define

the n ˆ m root matrices

Sve =

{
1, s(e) = v,

0, s(e) ‰ v,
, Tve =

{
1, t(e) = v,

0, t(e) ‰ v.
(3)

It is then easy to verify that

Q = SSt + TT t, A = ST t + TSt, L = Q −A = (S− T)(S − T)t.
4



ZH(rX) ZV(rX)

ZH(X) ZV(X)

r rX

f˚

ι rX τ rX

f˚

L rX

rX

f˚

ιX
τX

f˚

LX

Figure 2. Pushforward and pullback maps associated to a harmonic morphism.

2.3. Harmonic morphisms of graphs. Given a morphism of graphs f : rX → X, there is generally

no relationship between Jac(rX) and Jac(X). However, we can define functoriality with respect to

a class of graph morphisms that admit a local degree function on the vertices of the source graph

(see [Ura00] and [BN09]).

Definition 2.7. A graph morphism f : rX → X is called harmonic if there exists a function df :

V(rX) → Z, called the local degree, such that for any rv P V(rX) and any h P Tf(rv)X we have

df(rv) =
∣

∣

∣

{
rh P Trv rX : f(rh) = h

}∣
∣

∣ .

For example, a covering space f : rX → X (in the topological sense) is the same thing as a

harmonic morphism with df(rv) = 1 for all rv P V(rX). If X is connected, then any harmonic

morphism f : rX → X has a global degree equal to

deg(f) =
ÿ

rvPf−1(v)

df(rv) = |f−1(h)|

for any v P V(X) or any h P H(X). In particular, any harmonic morphism to a connected graph is

surjective (on the edges and the vertices).

Let f : rX → X be a harmonic morphism of graphs, and denote

f˚ : ZV(rX) → ZV(X), f˚(rv) = f(rv), f˚ : ZH(rX) → ZH(X), f˚(rh) = f(rh)
the induced homomorphisms on the free abelian groups. For any graph morphism (not neces-

sarily harmonic) we have

f˚ ˝ rrX = rX ˝ f˚, f˚ ˝ ιrX = ιX ˝ f˚.

For any rv P V(rX) we have

(f˚ ˝ τrX)(rv) = df(rv)(τX ˝ f˚)(rv) (4)

by the harmonicity of f, therefore

(f˚ ˝ LrX)(rv) = df(rv)(LX ˝ f˚)(rv).
It follows that f˚(ImLrX) Ă ImLX and the map f˚ descends to a surjective pushforward map

f˚ : Jac(rX) → Jac(X).

Similarly, if X is connected, we define the maps

f˚ : ZV(X) → ZV(rX), f˚(v) =
ÿ

rvPf−1(v)

df(rv) ¨ rv (5)

5



and

f˚ : ZH(X) → ZH(rX), f˚(h) =
ÿ

rhPf−1(h)

rh.

It is easy to verify that

f˚(LX(v)) =
ÿ

rvPf−1(v)

LrX(rv)

for any v P V(X), hence f˚(Prin(X)) Ă Prin(rX) and there is an induced pullback map

f˚ : Jac(X) → Jac(rX).

The map f˚ : Jac(X) → Jac(rX) is injective (Theorem 4.7 in [BN09]), and the composition f˚ ˝f˚ acts

by multiplication by deg(f) on Jac(X). Figure 2 displays all the maps associated to a harmonic

morphism of graphs.

2.4. Graphs of groups. We now recall graphs of groups, which are the natural category for

taking quotients of graphs by non-free group actions. We modify the definitions in [Bas93] to

allow graphs with legs (and thus quotients by group actions that flip edges).

Definition 2.8. A graph of groups X = (X,Xv,Xh) consists of the following data:

‚ A graph X (possibly with legs).

‚ A group Xv for each vertex v P V(X).

‚ A subgroup Xh Ă XrX(h) for each half-edge h P H(X).

‚ An isomorphism ih : Xh → XιX(h) for each edge {h, ιX(h)} P E(X), where we assume that

iιX(h) = i−1
h .

Our definition differs slightly from the standard one [Bas93], where one assumes that the two

groups Xh and XιX(h) corresponding to an edge are the same, and instead records monomor-

phisms Xh → Xr(h). The two approaches are equivalent in the case when there are no legs. We

consider only finite graphs of groups, so that the underlying graph and all vertex groups are

finite.

We now define the quotient graph of groups by a right group action on a graph. The standard

definition in [Bas93] uses a trivialization with respect to a choice of spanning tree in the quotient

graph and a lift of the tree to the source graph, and records the gluing data on the complementary

edges (with respect to a choice of orientation). We find it more natural to instead trivialize the

neighborhood of every vertex.

Definition 2.9. Let G be a group acting on the right on a graph rX, let X = rX{G be the quotient

graph, and let p : rX → X be the quotient map. We define the quotient graph of groups rX{{G =

(X,Xv,Xh) on X as follows:

(1) Choose a section Ă(¨) : V(X) → V(rX) of the map p : V(rX) → V(X). For each vertex v P V(X),

Xv = Grv = {g P G : rvg = rv} is the stabilizer of the chosen preimage rv P p−1(v).

(2) Choose a section Ă(¨) : H(X) → H(rX) of the map p : H(rX) → H(X) with the property that

rrX(
rh) = ČrX(h) for all h P H(X). For each half-edge h P H(X), Xh = Grh = {g P G : rhg = rh} is

the stabilizer the chosen preimage rh P p−1(h). It is clear that Xh = Grh Ă G
r rX(

rh) = XrX(h).
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For v P V(X) and g P G we denote rvg = rvg (so that rv1 = rv); this identifies the fiber p−1(v) =

{rvg : g P G} with the set Xv\G of right cosets of Xv in G. Similarly, given h P H(X) and g P G we

denote rhg = rhg (so that rh1 = rh), so that p−1(h) = {rhg : g P G} is identified with Xh\G. Hence

V(rX) =
ž

vPV(X)

Xv\G, H(rX) =
ž

hPH(X)

Xh\G (6)

as sets, and under this identification the root and projection maps and the G-action are given by

p(rvg) = v, p(rhg) = h, rrX(
rhg) =

ČrX(h)g, rvgg 1 = rvgg 1 , rhgg
1 = rhgg 1 (7)

for v P V(X), h P H(X), and g, g 1 P G.

Finally, let h P H(X) be a half-edge. Applying the involution on rX to rh gives a half-edge lying

over h 1 = ιX(h) (it may be that h 1 = h). Therefore there exists an element β(h) P G, unique up to

left multiplication by Xh 1 , such that ιrX(
rh) = rh 1

β(h). It follows that

ιrX(
rhg) =

ĆιX(h)β(h)g (8)

for all h P H(X) and g P G. We observe that Xh 1 = β(h)Xhβ(h)
−1. We can choose the β(h)

so that β(h 1) = β(h)−1 for all h (in general, they only satisfy β(h 1)β(h) P Xh). The required

isomorphism ih : Xh → XιX(h) is then given by conjugation by β(h).

We can run the construction in reverse and recover the morphism p : rX → X together with

the G-action on rX from the quotient graph of groups X{{G together with the chosen elements

β(h) P G (in keeping with graph-theoretic terminology, we may call the β(h) a generalized G-

voltage assignment on X{{G). First of all, we assume that the vertex and half-edge groups are

given not simply as abstract groups, but as subgroups of G. Hence we can define rX as a set by

Equation (6). The root and projection maps are given by Equation (7), so that rX is trivialized

in the neighborhood of each vertex. Finally, the involution map is given by Equation (8) and

defines how the tangent spaces of the vertices are glued to each other. We note that for an edge

{h, h 1} P E(X) we may choose β(h) P G arbitrarily and then set β(h 1) = β(h)−1, but for a leg

h P L(X) the element β(h) P G must have order two (or be the identity), and furthermore must

lie in the normalizer of Xh. The fiber p−1(h) over the leg h consists of legs if β(h) P Xh (in which

case we may as well have chosen β(h) = 1) and edges if β(h) R Xh.

Two generalized G-voltage assignments on X{{G are equivalent if they define isomorphic G-

covers rX → X. The set of equivalence classes of voltage assignments may be constructed as the

first Čech cohomology set of an appropriate constructible sheaf of non-abelian groups on X. This

set was explicitly described in [LUZ19] for an abelian group G (in which case the set is also an

abelian group), and the construction immediately generalizes to the non-abelian case. We leave

the details to the interested reader.

3. The Laplacian and the Jacobian group of a graph of groups

Let G be a finite group acting on a finite graph rX, and let p : rX → X = rX{G be the quotient map.

If the action of G is free, then p is a covering space and hence a harmonic morphism, and induces

pushforward and pullback homomorphisms p˚ : Jac(rX) → Jac(X) and p˚ : Jac(X) → Jac(rX).
However, for an arbitrary G-action there is no natural relationship between Jac(rX) and Jac(X).

The solution is to replace X with the quotient graph of groups X = rX{{G, and to define the chip-

firing operation on rX{{G in a way that takes into account the orders of the local stabilizers. We

now describe this construction.
7



ZH(X) ZV(X)

rX

ιX
τX

LX

Figure 3. Factorization of the Laplacian of a graph of groups.

3.1. Chip-firing on a graph of groups. Let X = (X,Xv,Xh) be a graph of groups, and let ZV(X)

and ZH(X) be the free abelian groups on the vertices and half-edges of the underlying graph,

respectively. As for graphs, we call ZV(X) the divisor group of X, and interpret divisors as distribu-

tions of chips on the vertices of the underlying graph X (the chips are not weighted in any way).

As before, the root and involution maps induce homomorphisms

rX : ZH(X) → ZV(X), ιX : ZH(X) → ZH(X).

For v P V(X) denote c(v) = |Xv| the order of the local group at v, and similarly for h P H(X)

denote c(h) = |Xh|. Given an edge e = {h, h 1} P E(X), we denote c(e) = c(h) = c(h 1). For each

half-edge h P H(X) rooted at v = rX(h), there is an inclusion Xh Ă Xv of the local groups, hence

c(h) divides c(v). We now define the weighted transpose of rX by the formula

τX : ZV(X) → ZH(X), τX(v) =
ÿ

hPTvX

c(v)

c(h)
h. (9)

Definition 3.1. The Laplacian of the graph of groups X = (X,Xv,Xh) is the homomorphism

LX : ZV(X) → ZV(X) given by

LX = rX ˝ (Id − ιX) ˝ τX, LX(v) =
ÿ

hPTvX

c(v)

c(h)
(v− rX(ιX(h))). (10)

Given a vertex v P V(G), the divisor −LX(v) is the result of firing the vertex v. It is obtained

by moving, along each edge e = {h, h 1} rooted at v, a stack of c(v){c(e) chips from v to the other

root vertex of e. As in the case of graphs, if h is a leg or belongs to a loop then rX(h) = rX(ιX(h)),

so loops and legs do not contribute to the Laplacian. However, the chip-firing operation is not

symmetric: firing two adjacent vertices will in general cause them to exchange chips. As before,

if X is connected then Z
V(X)
0 = Im(rX ˝ (Id − ιX)), so the group of principal divisors ImLX lies in

Z
V(X)
0 . Hence we can define the Jacobian group of X in the same way as for graphs:

Definition 3.2. The Jacobian group of a graph of groups X is the quotient group

Jac(X) = Z
V(X)
0 { ImLX.

We give an explicit formula for the matrix L of the Laplacian LX of a graph of groups X =

(X,Xv,Xh). Assume that X has no legs (this does not affect the Laplacian), and let n = |V(X)| and

m = |E(X)| be the number of vertices and edges, respectively. Then L = Q − A, where Q is the

diagonal valency matrix and A is the adjacency matrix of the graph of groups X:

Luv = Quv −Auv, Quv = δuv
ÿ

hPTvX

c(v)

c(h)
, Auv =

ÿ

hPTvX: rX(ιX(h))=u

c(v)

c(h)
. (11)

We note that L and A are not symmetric in general. The Laplacian L is degenerate, specifically

its rows sum to zero (but generally not the columns).
8



We introduce the following matrix factorizations. Let CV and CE be the respectively nˆn and

m ˆ m diagonal matrices

(CV)uv = c(u)δuv, (CE)ef = c(e)δef

recording the orders of the local groups. Let S and T be the root matrices (3) of X, with respect

to a choice of orientation. It is then elementary to verify that

Q = SC−1
E StCV + TC−1

E T tCV , A = SC−1
E T tCV + TC−1

E StCV , L = (S− T)C−1
E (S− T)tCV . (12)

For future use, we also require the adjugate of the Laplacian.

Lemma 3.3. The adjugate of the Laplacian matrix L of a graph of groups X = (X,Xv,Xh) is equal to

adj(L) = C−1
V Jξ.

Here J is the matrix whose entries are all equal to 1, and the constant ξ is equal to

ξ =
ź

vPV(X)

c(v)
ÿ

TĂX

ź

ePE(T)

c(e)−1,

where the sum is taken over all spanning trees T of X.

Proof. The adjugate of the Laplacian L of an ordinary graph X is equal to J ¨ κ(X), where κ(X) =

| Jac(X)| is the number of spanning trees, and is computed by applying the Cauchy–Binet formula

to the factorization L = (S − T)(S − T)t (see, for example, Theorem 6.3 in [Big93]). Applying the

same proof to the Laplacian of a graph of groups and using the factorization in Equation (12)

gives the desired result.

�

Remark 3.4. We note that defining chip-firing on a graph of groups X = (X,Xv, Xh) uses only the

underlying graph and the orders c(v) = |Xv| and c(h) = |Xh| of the local groups. The structure

of the groups is irrelevant, which is not surprising given that chip-firing is an abelian theory. In

particular, given a group action of G on X, the choices of the local stabilizers that are made when

defining the quotient graph of groups X{{G do not affect chip-firing.

Furthermore, this definition of chip-firing makes sense for any graph whose vertices and edges

are equipped with weights c(v) and c(e), with the condition that the weight of any edge divides

the weights of its root vertices. The weights themselves need not be integers, so for example

rescaling all weights by an arbitrary factor does not change the chip-firing map. This framework

allows one to modify the edges and edge weights of a graph without changing the chip-firing

map. For example, one may eliminate edge weights entirely by dividing all weights by a suffi-

ciently large number such that each edge e has weight 1{n(e) for some integer n(e), and then

replacing each edge e with n(e) unweighted edges. Conversely, a set {e1, . . . , en} of edges joining

two vertices can be replaced by a single edge e with weight c(e) = (c(e1)
−1 + ¨ ¨ ¨ + c(en)

−1)−1,

so chip-firing on any weighted graph is equivalent to chip-firing on a simple graph (without

multi-edges). Vertex weights, however, cannot be modified away.

3.2. The order of the Jacobian via spanning trees. We now compute the order of the Jacobian

Jac(X) = (X,Xv,Xh) of a graph of groups X in two different ways. The first formula generalizes

Kirchhoff’s theorem and computes Jac(X) as a weighted sum over the spanning trees of X. A

similar formula for a graph with trivial vertex weights appears in Theorem 4.1 in [Chi15].
9



Theorem 3.5. Let X = (X,Xv,Xh) be a graph of groups. For each vertex v P V(X) and edge e = {h, h 1} P

E(X), let c(v) = |Xv| and c(e) = |Xh| = |Xh 1 | be the orders of the local groups. The order of the Jacobian

of X is equal to
∣

∣ Jac(X)
∣

∣ = c−1
v

ź

vPV(X)

c(v)
ÿ

TĂX

ź

ePE(T)

c(e)−1,

where cv is the least common multiple of the vertex weights c(v), and the sum is taken over all spanning

trees T of X.

Proof. Denote n = |V(X)| and m = |V(E)| and label the vertices of X as V(X) = {v1, . . . , vn}. Fix an

orientation on X, then the matrix L of the Laplacian of X admits the factorization (12)

L = BC−1
E BTCV , B = S− T,

where CE and CV are diagonal matrices recording the c(e) and the c(v). Let L = [u1 ¨ ¨ ¨un] denote

the columns of L, these vectors satisfy the relation

u1

c(v1)
+ ¨ ¨ ¨ +

un

c(vn)
= 0. (13)

The matrix L defines the chip-firing map L : Zn → Zn, whose image lies in the kernel of the

degree map deg : Zn → Z (which sums the components). Fix the vertex vn and let Zn → Zn−1 be

the homomorphism that forgets the last coordinate; it is clear that it maps Ker deg isomorphically

onto Zn−1. The matrix of the composed map Zn → Zn → Zn−1 is L 1 = [u 1
1 ¨ ¨ ¨u 1

n], which is L with

the last row removed. Then the Jacobian is

Jac(X) = Ker deg { ImL = Zn−1{ ImL 1.

Let rL = [u 1
1 ¨ ¨ ¨u 1

n−1] be the matrix obtained by removing the last column from L 1, then

∣

∣ Jac(X)
∣

∣ =

∣

∣Zn−1{ Im rL
∣

∣

∣

∣ ImL 1{ Im rL
∣

∣

. (14)

The group ImL 1{ Im rL is the finite cyclic group generated by the vector u 1
n over the lattice

xu 1
1 ¨ ¨ ¨u 1

n−1y. Clearing denominators in (13), we obtain the minimal relation between the u 1
i :

cv

c(v1)
u 1
1 + ¨ ¨ ¨ +

cv

c(vn)
u 1
n = 0.

Hence the order of u 1
n and thus the denominator in (14) is equal to

∣

∣ ImL 1{ Im rL
∣

∣ =

∣

∣

∣

∣

xu 1
1 ¨ ¨ ¨u 1

ny

xu 1
1 ¨ ¨ ¨u 1

n−1y

∣

∣

∣

∣

=
cv

c(vn)
. (15)

The numerator in (14) is the determinant of the (n − 1) ˆ (n − 1) matrix rL obtained from L by

deleting the last row and column. By Lemma 3.3, it is equal to

∣

∣Zn−1{ Im rL
∣

∣ = det rL =
1

c(vn)
ξ =

n−1ź

i=1

c(vi)
ÿ

TĂX

ź

ePE(T)

c(e)−1.

Plugging the above two equations into (14), we obtain the result.

�
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3.3. The order of the Jacobian via the zeta function. We give an alternative method for com-

puting the order of the Jacobian group Jac(X) of a graph of groups. Recall that the Ihara zeta

function ζ(u,X) of a graph X is an analogue of the Dedekind zeta function of a number field. It is

defined as an Euler product over the primes of X, which are equivalence classes of certain closed

walks on X. Unlike its arithmetic analogue, the Ihara zeta function ζ(u,X) is the reciprocal of an

explicit polynomial associated to X. Specifically, let n = |V(X)| and m = |E(X)|, and let Q and A

be the n ˆ n valency and adjacenty matrices of X, then Bass’s three-term determinant formula

(see [Bas92] and [Ter10]) states that

ζ(u,X)−1 = (1− u2)m−n det(In −Au+ (Q − In)u
2).

The Ihara zeta function of a graph exhibits a number of remarkable similarities to the Dedekind

zeta function. For example, it satisfies a graph-theoretic analogue of the class number formula,

with Jac(X) playing the role of the ideal class group. Specifically, at u = 1 the zeta function has

a pole of order g = m − n + 1 (if g ě 2) and its reciprocal has the following Taylor expansion

(see [Nor98]):

ζ(u,X)−1 = 2g(−1)g+1(g− 1)
∣

∣ Jac(X)
∣

∣ ¨ (u− 1)g +O
(

(u− 1)g+1
)

. (16)

It is a natural problem to generalize closed walks and the Ihara zeta function to graphs of

groups. In [Zak21], the second author defined ζ(u,X) for a graph of groups X having trivial

edge groups and proved an analogue of Bass’s three-term determinant formula for ζ(u,X) (see

Theorem 3.8 in [Zak21]), and in upcoming work will extend these results to arbitrary graphs of

groups.

It is natural to expect that the Ihara zeta function ζ(u,X) of a graph of groups X computes the

order of Jac(X). We show that this is indeed the case, provided that ζ(u,X) satisfies an analogue

of Bass’s three-term determinant formula (which it does in the edge-trivial case by Theorem 3.8

of [Zak21]).

Theorem 3.6. Let X = (X,Xv,Xh) be a finite graph of groups on a graph with n = |V(X)| vertices and

m = |E(X)| edges. Define the Ihara zeta function of X by the formula

ζ(u,X)−1 = (1− u2)m−n det(In −Au+ (Q − In)u
2),

where Q and A are the valency and adjacency matrices (11) of X. Then ζ(u,X)−1 has a zero of order

g = m− n + 1 at u = 1, and has leading coefficient

ζ(u,X)−1 = 2g(−1)g+1cv





ÿ

ePE(X)

c(e)−1 −
ÿ

vPV(X)

c(v)−1





∣

∣ Jac(X)
∣

∣ ¨ (u− 1)g +O
(

(u− 1)g+1
)

,

where cv is the least common multiple of the vertex weights c(v).

Proof. Plugging u = 1 into the determinant we get

det(In −A+ (Q − In)) = detL = 0,

since the Laplacian is singular. The term (1 − u2)m−n has a zero of order g − 1 at u = 1 with

leading coefficient 2g−1(−1)g+1. Therefore ζ(u,X) has a zero of order at least g at u = 1, and it is

sufficient to show that

d

du
det(In −Au+ (Q − In)u

2)

∣

∣

∣

∣

u=1

= 2cv
∣

∣ Jac(X)
∣

∣





ÿ

ePE(X)

c(e)−1 −
ÿ

vPV(X)

c(v)−1



 .

11



We follow the proof of Theorem 2.11 in [HMSV19]. Using Jacobi’s formula, we have

d

du
det(In −Au+ (Q − In)u

2)

∣

∣

∣

∣

u=1

= tr

[

adj(In −Au+ (Q− In)u
2)

d

du
(In −Au+ (Q − In)u

2)

]∣

∣

∣

∣

u=1

=

= tr [adj(Q −A) ¨ (2Q −A − 2In)] = tr adj(L) ¨ Q − 2 tr adj(L), (17)

where we used that L = Q−A and therefore

adj(L) ¨ (Q−A) = adj(L) ¨ L = detL ¨ In = 0.

By Lemma 3.3 and Equation (12) we have

tr adj(L) = ξ tr(C−1
V J) = ξ tr(C−1

V ) = ξ
ÿ

vPV(X)

c(v)−1,

tr adj(L) ¨ Q = ξ tr[C−1
V J(SC−1

E StCV + TC−1
E T tCV)] = ξ tr[J(SC−1

E St + TC−1
E T t)] = 2ξ

ÿ

ePE(X)

c(e)−1,

where

ξ =
ź

vPV(X)

c(v)
ÿ

TĂX

ź

ePE(T)

c(e)−1 = cv
∣

∣ Jac(X)
∣

∣

by Theorem 3.5. Plugging these into Equation (17), we obtain the desired result.

�

4. The Jacobian of a quotient graph of groups

We now determine the relationship between the Jacobians Jac(rX) and Jac(X), where rX is a

graph with a right G-action and X = X{{G = (X,Xv,Xh) is the quotient graph of groups.

4.1. Pushforward and pullback to the quotient. Let X = rX{G be the quotient graph, let p :
rX → X be the quotient map, and let c(v) = |Xv| and c(h) = |Xh| be the vertex and edge weights.

We recall the description of rX in terms of X and a voltage assignment β : H(X) → G given in

Section 2.4. Following Equation (6), we make the identifications

ZV(rX) =
à

vPV(X)

ZXv\G, ZH(rX) =
à

hPH(X)

ZXh\G, (18)

where the summands correspond to the fibers of p. The generators of ZXv\G are denoted rvg for

v P V(X) and g P G, where rvg = rvg 1 if and only if Xvg = Xvg
1, and similarly for half-edges.

It is elementary to verify that, in terms of these identifications, the maps rrX, ιrX, and τrX are

given by the following formulas on the generators:

rrX(
rhg) =

ČrX(h)g, ιrX(
rhg) =

ĆιX(h)β(h)g, τrX(rvg) =
ÿ

hPTvX

ÿ

g 1PXh\Xv

rhg 1g. (19)

We note that the G-action on rX naturally defines right ZG-module structures on ZV(rX) and ZH(rX),
but we do not use this. The various homomorphisms between the free abelian groups associated

to the quotient p : rX → X are shown on Figure 4 (the objects in the top row are described in

Section 4.4).

We define the pushforward homomorphisms

p˚ : ZV(rX) → ZV(X), p˚ : ZH(rX) → ZH(X)

12



à

hPH(X)

Z
Xh\G
0

à

vPV(X)

Z
Xv\G
0

à

hPH(X)

ZXh\G
à

vPV(X)

ZXv\G

ZH(X) ZV(X)

r0

i˚

ι0

τ0

i˚

L0

r rX

p˚

ι rX

τ rX

p˚

L rX

rXp˚

ιX

τX

p˚

LX

Figure 4. Pushforward and pullback maps associated to a quotient

on the generators by the formulas

p˚(rvg) = v, v P V(X), p˚(rhg) = h, h P H(X).

We note that the formulas are the same as for a harmonic morphism, in other words, p˚ simply

adds up the chips in each fiber without any additional weights.

Proposition 4.1. The pushforward homomorphism p˚ : ZV(rX) → ZV(X) commutes with the Laplacians

p˚ ˝ LX = LX ˝ p˚

and defines a surjective homomorphism p˚ : Jac(rX) → Jac(X).

Proof. The identities

p˚ ˝ rrX = rX ˝ p˚, p˚ ˝ ιrX = ιX ˝ p˚

hold because p is a morphism of the underlying graphs (though not harmonic in general). It

remains to see how p˚ interacts with τrX and τX. Let rvg P V(rX) be a vertex lying over p(rvg) = v.

By Equation (19), we have

(p˚ ˝ τrX)(rvg) = p˚





ÿ

hPTvX

ÿ

g 1PXh\Xv

rhg 1g



 =
ÿ

hPTvX

ÿ

g 1PXh\Xv

h =
ÿ

hPTvX

|Xv|

|Xh|
h,

which is exactly

(τX ˝ p˚)(rvg) = τX(v) =
ÿ

hPTvX

c(v)

c(h)
h.

We therefore see that

p˚ ˝ τrX = τX ˝ p˚, p˚ ˝ LX = LX ˝ p˚, (20)

and hence p˚ induces a homomorphism p˚ : Jac(rX) → Jac(X), which is surjective because the

original map p˚ : ZV(rX) → ZV(X) is surjective.

�
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We also define a pullback homomorphism as follows. Define homomorphisms

p˚ : ZV(X) → ZV(rX), p˚ : ZH(X) → ZH(rX)

on the generators as follows:

p˚(v) = c(v)
ÿ

gPXv\G

rvg, p˚(h) = c(h)
ÿ

gPXh\G

rhg. (21)

Proposition 4.2. The pullback homomorphism p˚ : ZV(X) → ZV(rX) commutes with the Laplacians

LrX ˝ p˚ = p˚ ˝ LX

and defines a homomorphism p˚ : Jac(X) → Jac(rX). Furthermore, the homomorphism p˚ ˝ p˚ acts by

multiplication by |G| on Jac(X).

Proof. Let h P H(X) be a half-edge rooted at v = rX(h) P V(X). Then

(rrX ˝ p˚)(h) = rrX



|Xh|
ÿ

gPXh\G

rhg



 = |Xh|
ÿ

gPXh\G

rvg = |Xh|
ÿ

gPXv\G

|Xv|

|Xh|
rvg = p˚(v) = (p˚ ˝ rX)(h),

hence rrX ˝ p˚ = p˚ ˝ rX. Similarly, ιrX ˝ p˚ = p˚ ˝ ιX because c(ιX(h)) = c(h) for all h P H(X).

Finally, let v P V(X), then by Equation (9) we have

(p˚ ˝ τX)(v) = p˚

[

ÿ

hPTvX

|Xv|

|Xh|
h

]

=
ÿ

hPTvX

|Xv|

|Xh|
|Xh|

ÿ

gPXh\G

rhg = |Xv|
ÿ

hPTvX

ÿ

gPXh\G

rhg,

while by Equation (19)

(τrX ˝ p˚)(v) = τrX



|Xv|
ÿ

gPXv\G

rvg,



 = |Xv|
ÿ

gPXv\G

ÿ

hPTvX

ÿ

g 1PXh\Xv

rhg 1g,

and the two sums agree since each right Xv-coset is naturally partitioned into Xh-cosets. There-

fore τrX ˝ p˚ = p˚ ˝ τX, and putting everything together we get LrX ˝ p˚ = p˚ ˝ LX. Hence the

pullback map induces a homomorphism p˚ : Jac(X) → Jac(rX), and (p˚ ˝ p˚)(v) = |G|v for any

v P V(X) by the orbit-stabilizer theorem.

�

We note that, unlike the case of graphs, the pullback homomorphism p˚ need not be injective.

For example, let G act trivially on any graph X, then Jac(X{{G) = Jac(X) and p˚ : Jac(X{{G) →

Jac(X) acts by multiplication by |G|, which is the trivial map if |G| is divisible by | Jac(X)|.

Remark 4.3. It is instructive to compare the pushforward p˚ and pullback p˚ homomorphisms

associated to a G-cover p : rX → X to those associated to a harmonic morphism f : rX → X.

Comparing Equation (4) with (20), and similarly (5) with (21), we offer the following stack-

theoretic interpretation of the morphisms p˚ and p˚. The map p views a vertex rv P V(rX) lying

over v = p(rv) as a set of c(v) indistinguishable vertices that have been identified by the G-action.

The morphism p may then be viewed as a harmonic morphism having local degree one at each

of these identified vertices. This explains why no degree coefficient appears in Equation (20), in

contrast to Equation (4). Similarly, the coefficient c(v) in Equation (21) should be viewed as a

count of these identified vertices, and not as a local degree coefficient as in Equation (5). With

this interpretation, p is a covering space map (in the stacky sense) of global degree |G|.
14



Remark 4.4. More generally, one can define the notion of a harmonic morphism of graphs of groups

f : X → Y inducing pushforward and pullback homomorphisms f˚ : Jac(X) → Jac(Y) and

f˚ : Jac(Y) → Jac(X). Such a map f is required to satisfy a balancing condition at vertices that

takes the local weighs on both X and Y into account. A natural example is the subquotient map

X{{H → X{{G corresponding a subgroup H Ă G of a group G acting on a graph X. We leave the

details to the interested reader.

4.2. Quotients of the tetrahedron. As a simple example, we consider all interesting quotients of

K4, the complete graph on 4 vertices. Denote V(K4) = {a, b, c, d}. It is well-known that

Jac(K4) » Z{4Z ‘ Z{4Z.

Specifically, Jac(K4) is generated by the classes of the divisors

Da = a − d, Db = b− d, Dc = c− d

subject to the relations

4Da = 4Db = 4Dc = Da +Db +Dc = 0.

The automorphism group of K4 is S4, and we consider the quotients K4{{G for all subgroups

G Ă S4 that act non-transitively on the vertices (otherwise the quotient graph has a single vertex

and its divisor theory is trivial). There are, up to conjugation, four such subgroups, which we

enumerate below. The corresponding quotient graphs of groups are shown in Figure 5. Vertices

are marked by bold dots, so a line segment with one end vertex represents a leg. Nontrivial

stabilizers are labeled by their degree.

2 2 22

3

2

2

2

C2,2

C3
C2

V4

Figure 5. Quotients of K4 by non-vertex-transitive group actions.

(1) C2, the order 2 subgroup generated by (ab). The valency, adjacency, and Laplacian ma-

trices of K4{{C2 are

Q =





3 0 0

0 3 0

0 0 3



 , A =





1 2 2

1 0 1

1 1 0



 , L =





2 −2 −2

−1 3 −1

−1 −1 3



 .

Finding the Smith normal form of L, we see that Jac(K4{{C2) » Z{4Z. In fact, the Jacobian

is generated by the class of D = p˚(Da) = p˚(Db), and the pullback map is given by

p˚(D) = Da +Db.
15



(2) C2,2, the order 2 subgroup generated by (ab)(cd). The valency, adjacency, and Laplacian

matrices of K4{{C2,2 are

Q =

(

3 0

0 3

)

, A =

(

1 2

2 1

)

, L =

(

2 −2

−2 2

)

.

The Jacobian is Jac(K4{{C2,2) » Z{2Z, generated by D = p˚(Da) = p˚(Db), while p˚(Dc) =

0. The pullback map is p˚(D) = Da +Db −Dc.

(3) V4, the non-normal Klein 4-group generated by (ab) and (cd). The valency, adjacency,

and Laplacian matrices of K4{{V4 are in fact identical to those of K4{{C2,2, and the Jacobian

is also Jac(K4{{V4) » Z{2Z.

(4) C3, the order 3 subgroup generated by (abc). The valency, adjacency, and Laplacian

matrices of K4{{C3 are

Q =

(

3 0

0 3

)

, A =

(

2 3

1 0

)

, L =

(

1 −3

−1 3

)

.

Finding the Smith normal form of L, we see that Jac(K4{{C3) is the trivial group.

4.3. Quotients of the Petersen graph. As an extended example, we consider the various quo-

tients of the Petersen graph P. We identify the vertices of P with two-element subsets of a

five-element set {a, b, c, d, e}. Two vertices are connected by an edge when the corresponding

two-element subsets are disjoint. The Jacobian of the Petersen graph is Jac(P) » Z{2Z‘ (Z{10Z)3.

We have computed the Jacobian Jac(P{{H) of the quotient graph of groups for all subgroups

H Ă Aut(P) = S5, by finding the Smith normal form of the Laplacian. Figure 6 lists all subgroups

H, up to conjugacy, having the property that Jac(P{{H) is nontrivial.

The corresponding quotient graphs of groups are shown on Figure 7. Each vertex in a quotient

graph is labeled by the first vertex of its preimage, with respect to lexicographic order. Numbers

at vertices, edges, and legs indicate the orders of nontrivial stabilizers.

Generators of H Isomorphism class of H Order of H Jac(P{{H)

(ab) Z{2Z 2 (Z{10Z)2

(abc) Z{3Z 3 Z{5Z

(ab)(cd) Z{2Z 2 Z{2Z ‘ Z{10Z

(ab)(cd), (ac)(bd) (Z{2Z)2 4 (Z{2Z)2

(abcd) Z{4Z 4 Z{2Z

(ab), (cd) (Z{2Z)2 4 Z{10Z

(ab), (abc) S3 6 Z{5Z

(abcd), (ac) D4 8 Z{2Z

Figure 6. Subgroups H of Aut(P) = S5 and Jacobians of corresponding quotient

graphs of groups. Subgroups resulting in trivial Jac(P{{H) are not listed.

4.4. The kernel of the pushforward. We now identify the kernel of p˚ : Jac(rX) → Jac(X), the

pushforward map on the Jacobians. Denote the kernels of p˚ on ZV(rX) and ZE(rX) by

V0 = Ker
(

p˚ : ZV(rX) → ZV(X)
)

=
à

vPV(X)

Z
Xv\G
0 , H0 = Ker

(

p˚ : ZH(rX) → ZH(X)
)

=
à

hPH(X)

Z
Xh\G
0 ,

(22)
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adac

ce

ab 2

cd 2

ae

2

ad

ac ae

ce 2

de

2

cd

2

ab 2
2

2

2
ac

ce 2

ab 4

cd 4

ae 2

4

2

2

ad

ae

acde

3

ce

bd

ac be

ad
ab

ae

de cd

bc

ac 2

2

ae

ab

ad 2

ae 2

ac

2

de

6
2

2

2

ac 2

2

ab

22

ad

2 2

ae

ac 4

4

2

ae 2

ab 2

2

(ab)
(ab)(cd)

(ab),(cd)

(abc) (abcd)

(ab),(abc)

(ab)(cd),(ac)(bd)

(abcd),(ac)

Figure 7. Quotients of the Petersen graph having non-trivial Jacobian.

where we use the identification (18), and let i˚ : V0 → ZV(rX) and i˚ : H0 → ZH(rX) denote the

canonical injections. It is elementary to verify that the maps rrX, ιrX, and τrX descend to maps (see

Figure 4)

r0 : H0 → V0, ι0 : H0 → H0, τ0 : V0 → H0.

Following the terminology of [RT14], we introduce the following definitions:
17



Definition 4.5. The voltage Laplacian of the cover p : rX → X is the map

L0 : V0 → V0, L0 = r0 ˝ (Id−ι0) ˝ τ0.

The voltage Jacobian of the cover p : rX → X is the quotient

Jac0 = Im(r0 ˝ (Id−ι0)){ Im L0.

An elementary rank count shows that the lattices Im(r0 ˝ (Id−ι0)) and ImL0 have full rank in

V0. Therefore the voltage Laplacian is non-degenerate, unlike the case of a graph X, where ImLX

has full rank in Im(rX ˝ (Id−ιX)) = Z
V(X)
0 . However, r0 ˝ (Id−ι0) is not generally surjective, and

the quotients V0{ ImL0 and Jac0 need to be carefully distinguished.

It is clear that Jac0 embeds into the kernel of p˚ : Jac(rX) → Jac(X). In fact, the two are

isomorphic.

Proposition 4.6. The natural inclusion map Jac0 → Ker
(

p˚ : Jac(rX) → Jac(X)
)

is an isomorphism,

hence the voltage Jacobian fits into an exact sequence

0 Jac0 Jac(rX) Jac(X) 0.
p˚

(23)

In particular, | Jac0 | = | Jac(rX)|{| Jac(X)|.

Proof. This result generalizes Theorem 1.1 in [RT14] to the case of non-free G-actions, and our

proof is essentially a copy of their proof. First, we recall Proposition 2.2 from [RT14], which states

that, given a diagram A
f

Õ
g
B of abelian groups, the map f induces an isomorphism

A{(Im g+ Ker f) » Im f{ Im(f ˝ g).

Hence, denoting

B0 = r0 ˝ (Id−ι0), BrX = rrX ˝ (Id−ιrX), BX = rX ˝ (Id−ιX),

we instead work with the groups

Jac0 » H0{(Im τ0 + Ker B0), Jac(rX) » ZH(rX){(Im τrX + Ker BrX), Jac(X) » ZH(X){(Im τX + Ker BX).

Second, we replace each of the three finite abelian groups A = Jac0, Jac(rX), Jac(X) with its Pon-

tryagin dual A∨ = Hom(A,Q{Z). The dual groups are isomorphic, but the arrows now point in

the opposite direction:

0 Jac0 Jac(rX) Jac(X) 0.
p∨˚

To show that Kerp˚ » Jac0, we instead show that Cokerp∨
˚ » Jac0. For each h P H(X), the map

p˚ : ZH(rX) → ZH(X) sends the generator corresponding to each half-edge rh P p−1(h) = Xh\G to

h. Hence the Pontryagin dual p˚ : ZH(X) → ZH(rX) sends h P H(X) to the sum of the rh over all
rh P Xh\G. It is therefore clear that ZH(X){p∨

˚ (Z
H(X)) » H0, and hence

Cokerp∨
˚ = ZH(rX){(Im τrX + Ker BrX + p∨

˚ (Z
H(X))) » H0{(Im τ0 + Ker B0) = Jac0 .

�
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Remark 4.7. Let p : rX → X be a free G-cover, in other words assume that the G-action on rX is free.

By Equation (16), the orders of Jac(rX) and Jac(X) can be computed from the Taylor expansions

at u = 1 of the Ihara zeta functions ζ(u, rX) and ζ(u,X). In fact, ζ(u,X) divides ζ(u, rX), and the

ratio is a product of the Artin–Ihara L-functions L(u,X, ρ) associated to the cover p : rX → X

corresponding to the nontrivial irreducible representations ρ of G (the L-function of the trivial

representation is equal to ζ(u,X), see [ST00] or [Ter10]). Hence the order of Jac0 can likewise be

computed by looking at the u = 1 Taylor expansion of this product.

Assuming that the Ihara zeta function of a graph of groups is defined and satisfies Bass’s

three-term determinant formula, Theorem 3.6 shows that the order Jac(X) can be computed

from the Taylor expansion of ζ(u,X) at u = 1. It is therefore natural to expect that ζ(u, rX) is

equal to the product of the Artin–Ihara L-functions L(u,X, ρ) of the graph of groups X, suitably

defined, where the product runs over the irreducible representations of G and where L(u,X, 1) =

ζ(u,X). If this is the case, then | Jac0 | = | Jac(rX)|{| Jac(X)| can be found from the Taylor expansion

of the product of the L-functions of the cover rX → X associated to the nontrivial irreducible

representations of G.

The project of defining the Ihara zeta function and the Artin–Ihara L-function of a graph of

groups was carried out by the second author in [Zak21] in the case then G acts with trivial

stabilizers on the edges of rX. In future work, the second author intends to complete this project

and define these functions for arbitrary graphs of groups.

5. Double covers

We now consider the group G = Z{2Z acting on a graph rX. We call the quotient map p : rX → X

a double cover, and introduce some terminology borrowed from tropical geometry.

Let v P V(X) be a vertex. We say that v is undilated if it has two preimages in rX exchanged by the

involution, which we arbitrarily label p−1(v) = {rv˘}, and dilated if it has a unique preimage, which

we label p−1(v) = {rv}. We similarly say that a half-edge h P H(X) is undilated if p−1(h) = {rh˘}

and dilated if p−1(h) = {rh}. A dilated half-edge is rooted at a dilated vertex, so the set of dilated

half-edges and vertices forms a subgraph Xdil Ă X, called the dilation subgraph. The root vertex

v = rX(h) of an undilated half-edge h P H(X) may be dilated or undilated. In the latter case, we

label the preimages in such a way that rrX(
rh˘) = rv˘, in other words a half-edge with a sign is

rooted at either a vertex with the same sign or a vertex with no signs. Finally, we say that the

double cover p : rX → X is free if Xdil = H (in other words, if the Z{2Z-action is free) and dilated

otherwise.

We now construct the free graph Xfr corresponding to the double cover p : rX → X as follows.

The vertices of Xfr are the undilated vertices of X, so V(Xfr) = V(X)\V(Xdil). The edges of Xfr

are the undilated edges of X both of whose root vertices are undilated. The legs of Xfr come

in two types. First, each undilated leg of X that is rooted at an undilated vertex is a leg of X.

Second, consider an edge e = {h, h 1} P E(X) having an undilated root vertex r(h) = u and a

dilated root vertex r(h 1) = v. For each such edge, we attach h to Xfr as a leg rooted at u (so that

rXfr
(h) = rX(h) = u as before but ιXfr

(h) = h instead of ιX(h) = h 1). We call these null legs, in

order to distinguish them from the legs coming from X. In other words, Xfr is obtained from X

by removing Xdil, and turning each loose edge (having one root vertex on Xfr and one missing

root vertex) into a leg.

We now define a parity assignment ε on the half-edges of Xfr as follows:
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(1) Let e = {h1, h2} P E(Xfr) be a edge (having undilated root vertices, which may be the

same). Our choice of labels for the preimages of the root vertices determines a labeling
rh˘
1 , rh˘

2 for the preimages of the half-edges. With respect to this choice, we define

ε(e) = ε(h1) = ε(h2) =

{
+1, ιrX(

rh˘
1 ) =

rh˘
2 ,

−1, ιrX(
rh˘
1 ) =

rh¯
2 .

We say that e is even if ε(e) = 1 and odd if ε(e) = −1.

(2) Let l P L(Xfr) be a leg. If l is a leg of X (in other words, if it is not a null leg), then

p−1(l) = {rl˘}, and there are two possibilities: either ιrX(
rl˘) = rl˘, so p−1(l) is a pair of

legs exchanged by the involution, or ιrX(
rl˘) = rl¯, so e = {rl+,rl−} is an edge folded by the

involution. We therefore set

ε(l) =






+1, ιrX(
rl˘) = rl˘,

−1, ιrX(
rl˘) = rl¯,

0, l is a null leg.

We say that a non-null leg l is even if ε(l) = 1 and odd if ε(l) = −1.

The parity assignment ε gives Xfr the structure of a signed graph, and this construction already

occurs in [Zas82] for the case of free double covers (so null legs do not appear). The values

of ε on the edges depend the labeling rv˘ of the preimages rv˘ of the undilated vertices. The

cocycle [ε] P H1(Xfr,Z{2Z) in the simplicial cohomology group, however, is well-defined. The leg

parity assignement does not depend on any choices, and the cover p : rX → X can be uniquely

reconstructed from the choice of a dilation subgraph Xdil Ă X, an element [ε] P H1(Xfr,Z{2Z)

defining the edge parity, and a choice of leg parity.

5.1. The voltage Laplacian of a double cover. We now compute the voltage Laplacian L0 and the

voltage Jacobian Jac0 of the double cover p : rX → X in terms of the free graph Xfr. We introduce

the following diagram:

ZH(Xfr) ZV(Xfr).

rfr

ιfr
τfr

(24)

Here rfr = rXfr
is the ordinary root map of Xfr and τfr = τXfr

is its transpose (see Equation (1)).

The involution, however, is twisted by the parity assignment:

ιfr(h) = ε(h)ιXfr
(h). (25)

In terms of the identification given by Equation (22), we have Z
Xv\G
0 = Z(rv+ − rv−) for an

undilated vertex v P V(Xfr), while if v is dilated then Z
Xv\G
0 is trivial. Hence we can identify V0

with ZV(Xfr). Similarly, Z
Xh\G
0 = Z(rh+ − rh−) if h P H(X) is an undilated half-edge and is trivial

otherwise. However, H0 is larger than ZH(Xfr), since it has generators corresponding to undilated

half-edges rooted at dilated vertices. These generators, however, do not appear in the image of

r0, and hence we can compute the Laplacian L0 by restricting to ZH(Xfr).

Proposition 5.1. Let rX be a graph with a Z{2Z-action, let p : rX → X be the quotient map, let Xfr be the

free graph, and let ε be the parity assignment on H(Xfr) defined above. Under the identification of V0 with

V(Xfr), the voltage Laplacian L0 : V0 → V0 and the voltage Jacobian are equal to

L0 = rfr ˝ (Id−ιfr) ˝ τfr, Jac0 = (Im rfr ˝ (Id−ιfr)){ ImL0.
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The matrix of the voltage Laplacian L0 : V0 → V0 is explicitly given by

L0,uv =

{
|{non-loop edges at u}| + 4|{odd loops at u}| + 2|{odd legs at u}| + |null legs at u}|, u = v,

|{odd edges between u and v}|− |{even edges between u and v}|, u ‰ v.

Proof. By abuse of notation, for an undilated vertex v P V(Xfr) we denote v = rv+ − rv− the

corresponding generator of V0; this identifies the generators of ZV(Xfr) and V0. Similarly, if h P

H(X)\H(Xdil) is an undilated edge we denote h = rh+ − rh− the corresponding generator of H0.

If rX(h) is an undilated vertex then h is also a generator of ZH(Xfr), so we view the latter as a

subgroup of H0.

It is clear that the maps τ0 : Z
V0 → ZH0 and τfr : Z

V(Xfr) → ZH(Xfr) agree under these identifica-

tions. Given an undilated half-edge h P H(X)\H(Xdil) rooted at v = rX(h), we have

r0(rh+ − rh−) =

{
rv+ − rv−, v is undilated,

0, v is dilated.

Hence the restriction of r0 : Z
H0 → ZV0 to ZH(Xfr) agrees with rfr : Z

H(Xfr) → ZV(Xfr).

Now let h P H(Xfr) be a half-edge rooted at an undilated vertex v = rfr(h). We need to check

that rfr ˝ (Id−ιfr)(h) agrees with r0 ˝ (Id−ι0)(rh+ − rh−). There are several cases to consider.

(1) h is part of an even edge e = {h, h 1} P E(Xfr), where the vertex v 1 = rfr(h
1) is also undilated.

Then ιrX(
rh˘) = rh 1˘, so

rfr ˝ (Id−ιfr)(h) = rfr(h− h 1) = v − v 1 = rv+ − rv− − rv 1+ + rv 1− = r0 ˝ (Id−ι0)(rh+ − rh−).

The half-edge h contributes +1 to L0,vv and −1 to L0,vv 1 , and these contributions cancel if

e is a loop.

(2) h is part of an odd edge e = {h, h 1} P E(Xfr), where the vertex v 1 = rfr(h
1) is also undilated.

Then ιrX(
rh˘) = rh 1¯, so

rfr ˝ (Id−ιfr)(h) = rfr(h+ h 1) = v + v 1 = rv+ − rv− + rv 1+ − rv 1− = r0 ˝ (Id−ι0)(rh+ − rh−).

The half-edge h contributes +1 to L0,vv and +1 to L0,vv 1 . If v = v 1 (e is an odd loop), the

total contribution from h and h 1 to L0,vv is equal to 4.

(3) h is an even leg, then ιfr(h) = h and ιrX(
rh˘) = rh˘ since rh˘ are also legs. Thus

rfr ˝ (Id−ιfr)(h) = 0 = r0 ˝ (Id−ι0)(rh+ − rh−)

and h does not contribute to the voltage Laplacian.

(4) h is an odd leg and rh˘ form an edge of rX. Then ιfr(h) = −h and ιrX(
rh˘) = rh¯, hence

rfr ˝ (Id−ιfr)(h) = 2rfr(h) = 2v = 2rv+ − 2rv− = r0 ˝ (Id−ι0)(rh+ − rh−)

and h contributes +2 to L0,vv.

(5) h is a null leg corresponding to an edge e = {h, h 1} P E(X) with dilated root vertex

v 1 = rX(h
1). Then ιfr(h) = 0 and we can assume that ιrX(

rh˘) = rh 1˘, so

rfr ˝ (Id−ιfr)(h) = rfr(h) = v = rv+ − rv− = r0 ˝ (Id−ι0)(rh+ − rh−)

because r0(rh 1+ − rh 1−) = 0. Hence h contributes +1 to L0,vv.
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It follows that L0 = rfr ˝ (Id−ιfr) ˝ τfr, and to complete the proof it is sufficient to show that

the image of H(Xfr) Ă H0 under the map r0 ˝ (Id−ι0) is equal to the image of all of H0. Let

e = {h, h 1} P E(X) be an undilated edge with undilated root vertex v = rX(h) and dilated root

vertex v 1 = rX(h
1), then rh 1+ − rh 1− is a generator of H0 but not H(Xfr). We verify that

r0 ˝ (Id−ι0)(rh 1+ − rh 1−) = r0(rh 1+ − rh 1− − rh+ + rh−) = −rv+ + rv− = −v = −rfr ˝ (Id−ιfr)(h),

where h = rh+ − rh− is a generator of H(Xfr). Hence adding the rh 1+ − rh 1− as a generator to H(Xfr)

does not increase the image. �

We observe that the matrix of the voltage Laplacian L0 of the double cover p : rX → X is

obtained from the signed graph Laplacian of the free subgraph Xfr (see Definition 9.4 in [RT14])

by adding the contributions from the null legs.

5.2. Ogods and the order of the voltage Jacobian of a double cover. We now derive a combi-

natorial formula for the order of the voltage Jacobian of a double cover p : rX → X. To make our

formula self-contained, we express it in terms of rX and X, and not in terms of the auxiliary graph

Xfr. The only terminology that we retain is that we distinguish odd and even undilated legs of X:

the preimage of the former is a single edge folded by the involution, while the preimage of the

latter is a pair of legs. The following paragraphs are expository, and the interested reader may

skip directly to Definition 5.2 and Theorem 5.3.

Kirchhoff’s matrix tree theorem states that the order of the Jacobian of a connected graph X is

equal to the number of spanning trees of X, and a spanning tree of X may be characterized as

a minimal connected subgraph containing all vertices of X. Our goal is to define an analogous

property for subgraphs of the target graph of a double cover.

Let rX be a graph with a Z{2Z-action and let p : rX → X be the corresponding double cover.

We say that a (possibly disconnected) subgraph Y Ă X is relatively connected if each connected

component of Y has connected preimage in rX. We now characterize connected subgraphs Y Ă X

that are minimal with respect to this property, in other words we require that p−1(Y) be connected

but that the graph obtained from Y by removing any edge or leg (and retaining the root vertices)

have a connected component with disconnected preimage in rX. We make the following simple

observations.

(1) A connected subgraph Y Ă X having at least one dilated vertex is relatively connected. In

particular, Y is not minimally relatively connected if it has at least one dilated edge or leg,

since this edge or leg may be removed, or if it has at least two dilated vertices. Similarly,

if Y has exactly one dilated vertex but is not a tree, then Y is not minimally relatively

connected.

(2) A relatively connected subgraph Y Ă X having at least one even leg is not minimally

relatively connected, since the leg may be removed.

(3) A connected subgraph Y Ă X having at least one odd leg l P L(Y) is relatively connected,

since the preimage edge e = p−1(l) connects the (possibly disjoint) preimages of Y\{l}.

The subgraph Y is not minimally relatively connected unless it is a tree.

(4) Let Y Ă X be a subgraph containing no dilated vertices and no legs. By covering space

theory, the restricted double cover p|p−1(Y) : p−1(Y) → Y corresponds to an element of

Hom(π1(Y),Z{2Z) = H1(Y,Z{2Z). If Y is a tree then the cover is trivial and hence discon-

nected, so Y is not relatively connected. If Y has genus one (in other words, if it has a
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unique cycle), then H1(Y,Z{2Z) = Z{2Z and Y has two covers: the trivial disconnected one

and the nontrivial connected one. In the latter case, it is clear that Y is minimally relatively

connected, since removing any edge produces a tree. Finally, suppose that Y has genus at

least two (in other words, it has at least two independent cycles) and p|p−1(Y) : p
−1(Y) → Y

is a nontrivial double cover. It is an easy exercise to show that Y is not minimally relatively

connected, in other words there is an edge e P E(Y) such that each connected component

of Y\{e} (there may be one or two) has connected preimage in rX.

We can therefore characterize minimal relatively connected subgraphs of X that contain all

vertices of X, which are the double cover analogues of spanning trees. One important difference

is that these subsets now come with a weight assignment.

Definition 5.2. Let rX be a graph with a Z{2Z-action and let p : rX → X be the quotient map. An

ogod component Y of weight w(Y) is a connected subgraph Y Ă X having no dilated edges, dilated

legs, or even legs, and that is of one of the following three types:

(1) Y is a tree having a unique dilated vertex, and no legs. We say that w(Y) = 1.

(2) Y is a tree having no dilated vertices and a unique odd leg. We say that w(Y) = 2.

(3) Y has no legs and a unique cycle, and p−1(Y) Ă rX is connected. We say that w(Y) = 4.

Now let B be a set of n undilated edges and odd legs of X, where n is the number of undilated

vertices of X. Let X|B be the graph obtained from X by deleting all edges and legs not in B,

including all dilated edges and legs, and retaining all vertices, and let X1, . . . , Xk be the connected

components of X|B. We say that B is an ogod if each of the Xi is an ogod component, and the

weight w(B) of the ogod is the product of the weights of the Xi.

The term ogod is an acronym for odd genus one decomposition: for a free double cover p : rX → X

without legs, the connected components Xi of an ogod are graphs of genus one such that the re-

stricted covers p|p−1(Xi)
: p−1(Xi) → Xi are given by the odd (nontrivial) elements of H1(Xi,Z{2Z).

This terminology was introduced by the second author in [LZ22], who was unaware of the his-

tory of this definition going back to the seminal paper [Zas82]. Howver, to the best of the

authors’ knowledge, there does not appear to be an established term describing such subsets in

the combinatorics literature.

We are now ready to state the analogue of Kirchhoff’s matrix tree theorem for a dilated double

cover p : rX → X, with ogods playing the role of spanning trees.

Theorem 5.3. Let rX be a graph with a non-free Z{2Z-action and let p : rX → X be the quotient map. The

order of the voltage Laplacian is equal to

| Jac0 | =
ÿ

B

w(B), (26)

where the sum is taken over all ogods B of X.

For free double covers, this result already occurs in [Zas82], and was explicitly interpreted as

a formula for the order of the voltage Laplacian in [RT14]. It was subsequently independently

derived by the second author in [LZ22]. We note that for a free double cover there is an additional

1{2 coefficient in the right hand side of Equation (26).

Proof. Let Xfr be the free graph, and let ε be the parity assignment on H(Xfr) defined above. By

Proposition 5.1, we may compute the voltage Laplacian L0 = rfr˝(Id−ιfr)˝τfr and voltage Jacobian
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Jac0 = (Im rfr ˝ (Id−ιfr)){ ImL0 using the diagram (24) of Xfr. Let n = |V(Xfr)| and m = |H(Xfr)|.

The n ˆ n matrix of the voltage Laplacian factors as L0 = DT , where D is the n ˆ m matrix of

rfr ˝ (Id−ιfr) and T is the m ˆ n matrix of τfr:

Dvh =






+1, r(h) = v and h lies on a non-loop edge or is a null leg,

+1, r(ι(h)) = v and h lies on an odd non-loop,

−1, r(ι(h)) = v and h lies on an even non-loop,

+2, r(h) = v and h lies on an odd loop or is an odd leg,

0, otherwise,

Thv =

{
+1, v = rfr(h),

0, otherwise.

By the Cauchy–Binet formula,

detL0 =
ÿ

BĂH(Xfr):|B|=n

detD|B det T |B, (27)

where we sum over all n-element subsets B Ă H(Xfr) of half-edges of Xfr and where D|B and T |B
are the matrices obtained from D and T by deleting respectively all columns and all rows except

those indexed by B.

We make a number of simple observations:

(1) detD|B = 0 if B contains a half-edge that lies on an even loop or is an even leg. Indeed,

the corresponding column of D is zero.

(2) detD|B = 0 if B contains both half-edges of a single edge e = {h, h 1}. Indeed, the h- and

h 1-columns of D are equal if e is odd and sum to zero if e is even. Hence we only consider

only those n-element subsets B Ă H(Xfr) that have at most one half-edge from each edge.

We represent each such B as a choice of a total of n edges and legs, as well as an orientation

for each edge, in other words an arrow pointing in the direction of the chosen half-edge.

(3) detT |B = 0 unless each half-edge in B is rooted at a distinct vertex of Xfr. Viewing B as a

choice of oriented edges and legs, we require that each arrow point to a different vertex.

We now show that the nonzero contributions in Equation (27) come from ogods, and that

the contribution from each ogod B is exactly w(B). Fix B, and let Xfr|B be the subgraph of X

obtained by deleting all edges and legs not in B. Let Xfr|B = X1 Y ¨ ¨ ¨ Y Xk be the decomposition

into connected components, and let Bi = H(Xi) X B for i = 1, . . . , k. The matrices D|B and T |B
are block-diagonal with blocks corresponding to the Xi, and a block-diagonal matrix has nonzero

determinant only if each block is square, in other words if |Bi| = |V(Xi)| for each i. In other words,

the product detD|B det T |B is nonzero only if each Xi is a connected oriented graph having an

equal number of legs and edges as vertices, with each leg and edge pointing to a distinct vertex.

A moment’s thought shows that there are only two possibilities for each Xi:

(1) Xi has a unique leg (odd or null but not even) and is a tree, and all edges are oriented

away from the root vertex of the leg. Hence Xi is an ogod component of weight w(Xi) = 1

if the leg is null and w(Xi) = 2 if the leg is odd.

(2) Xi has no legs and a unique cycle. The edges on the cycle are oriented cyclically, while

the remaining edges (lying on trees attached to the cycle) are oriented away from the

cycle. Hence Xi is an ogod component of weight w(Xi) = 4 if the preimage of the cycle is

connected, which happens if an odd number of edges on the cycle are odd. If there is an

even number of odd edges, then the preimage of the cycle is disconnected and Xi is not

an ogod.
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It is now an elementary linear algebra exercise to show that the product detD|Bi
det T |Bi

equals

1 or 2 in the first case, depending on whether the unique leg is null or odd. Similarly, in the

second case the product is equal to 2 if there is an odd number of odd edges along the cycle and

zero if there is an even number. In this case, there are two contributions corresponding to the

two possible choices of orientation along the cycle. Hence we see that the total contribution of

detD|Bi
det T |Bi

from an ogod component Xi is equal to w(Xi). Since weights and determinants

are multiplicative in connected components, it follows that the contribution of each ogod B to

the sum of the detD|B det T |B (taken over the possible choices of orientations) is equal to w(B).

We have shown that detL0 is equal to the right hand side of Equation (26). To complete the

proof, we show that the map rfr˝(Id−ιfr) : Z
H(Xfr) → ZV(Xfr) is surjective (this is in contrast to free

double covers, where the image has index two). Again, we may pass to connected components

and assume that Xfr is connected. Since the double cover p : rX → X is dilated, there is at least one

dilated vertex v P V(X)\V(Xfr) connected by an undilated edge to an undilated vertex u P V(Xfr).

Let l P L(Xfr) be the corresponding null leg rooted at u. By the proof of Proposition 5.1 we

have rfr ˝ (Id − ιfr)(l) = u, so u P Im(rfr ˝ (Id − ιfr)). Now let e = {h, h 1} P E(Xfr) be an edge

rooted at r(h) = u and another vertex r(h 1) = u 1. Again by the proof of Proposition 5.1 we have

rfr ˝ (Id− ιfr)(h) = u˘u 1, and since u P (Im rfr ˝ (Id− ιfr)) we have u 1 P (Im rfr ˝ (Id− ιfr)). Since

Xfr is connected, we may proceed in this way and show that w P (Im rfr ˝ (Id − ιfr)) for every

generator w of ZV(Xfr). This completes the proof.

�

Example 5.4. We consider the two Z{2Z-quotients of the Petersen graph P shown on Figure 7.

We recall that Jac(P) = Z{2Z ‘ (Z{10Z)3 and thus | Jac(P)| = 2000.

Taking the quotient by the order two subgroup G Ă Aut(P) generated by (ab), we obtain

the top center graph P{G. There are three undilated vertices ac, ad, and ae and six undilated

edges that we denote Eu = {eac,de, ead,cd, eae,cd, eac,ad, ead,ae, eac,ae}. We consider the 20 three-

element subsets of Eu. If we remove the three edges of P{G incident to ac, then the lone vertex

ac P V(P{G) has disconnected preimage p−1(ac) = {ac, bc}. Hence B = {eac,de, eac,ad, eac,ae}

is not an ogod, and the same is true for the tangent spaces to ad and ae. The outside cycle

B = {eac,ad, ead,ae, eae,ac} lifts to a closed loop in P and hence is an ogod of weight 4. For each

of the 16 remaining 3-element subsets B Ă Eu, every connected component of the graph (P{G)|B
is a tree having a unique dilated vertex, hence B is an ogod of weight 1. Proposition 4.6 and

Theorem 5.3 imply that

| Jac(P)|

| Jac(P{{G)|
= | Jac0 | = 16+ 1 ¨ 4 = 20.

This agrees with Figure 6, since Jac(P{{G) = (Z{10Z)2 and hence | Jac(P{{G)| = 100.

We also consider the order two subgroup H Ă Aut(P) generated by (ab)(cd), the quotient

graph for which is the top left graph in Figure 7. The graph P{{H has six undilated edges

Eu = {eab,ce, eac,ce, eac,ae, ead,ae, ead,ce, eae,cd} and two odd legs L = {lac, lad}. Out of the 70 4-

element subsets of EuYL, there are 46 ogods in 15 symmetry classes. Figure 8 lists all ogods up to

symmetry together with their weights. The total weight of all ogods is 100, so by Proposition 4.6

and Theorem 5.3 we have
| Jac(P)|

| Jac(P{{H)|
= | Jac0 | = 100

This agrees with Figure 6, since Jac(P{{G) = Z{2Z ‘ Z{10Z and hence | Jac(P{{G)| = 20.
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ogod number of symmetric ogods weight

{eac,ae, eac,ce, ead,ae, ead,ce} 1 4

{eab,ce, eac,ae, eac,ce, ead,ae} 4 1

{eab,ce, eac,ae, eac,ce, ead,ce} 4 1

{eab,ce, eac,ae, ead,ae, eae,cd} 2 1

{eab,ce, eac,ae, ead,ce, eae,cd} 2 1

{lac, eac,ae, ead,ae, ead,ce} 4 2

{lac, eac,ae, eac,ce, ead,ae} 4 2

{lac, eab,ce, eac,ae, ead,ce} 4 2

{lac, eab,ce, ead,ae, ead,ce} 4 2

{lac, eab,ce, eac,ae, ead,ae} 4 2

{lac, eab,ce, ead,ae, eae,cd} 4 2

{lac, lad, eac,ae, eac,ce} 2 4

{lac, lad, eab,cd, eac,ae} 4 4

{lac, lad, eac,ae, ead,ce} 2 4

{lac, lad, eab,ce, eae,cd} 1 4

Figure 8. Ogods of the quotient P → P{H of the Petersen graph for H =

{1, (ab)(cd)}.

which agrees with Figure 6 since Jac(P{{G) = (Z{10Z)2 and hence | Jac(P{G)| = 100.
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