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A MATROIDAL PERSPECTIVE ON THE TROPICAL PRYM VARIETY

FELIX RÖHRLE AND DMITRY ZAKHAROV

to the memory of Igor Krichever

Abstract. We associate a matroid M(rΓ{Γ) to a harmonic double cover π : rΓ → Γ of metric graphs.
The matroid M(rΓ{Γ) is a geometric interpretation of Zaslavsky’s signed graphic matroid. We show
that the principalization Prymp(

rΓ{Γ) of the tropical Prym variety of the double cover can be recon-

structed from M(rΓ{Γ), equipped with certain additional decorations. We describe the simplification
of the matroid M(rΓ{Γ) and show that the Prym variety does not change under simplification.
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1. Introduction

The two most-studied objects in algebraic geometry are curves and abelian varieties. The
construction of the Jacobian variety Jac(C) of an algebraic curve C, in the guise of abelian in-
tegrals, goes back to the foundations of algebraic geometry in the 19th century. In moduli, the
association C Þ→ Jac(C) is called the Torelli morphism τJ : Mg → Ag, where Mg and Ag are the
moduli spaces of smooth genus g curves and dimension g principally polarized abelian varieties
(ppavs), respectively. The Torelli morphism is injective, and an effective description of its image
is the still-unsolved Schottky problem.

There is another natural way to associate a ppav to an algebraic curve. Given an étale double
cover rC → C of smooth curves of genera 2g − 1 and g, respectively, the Prym variety Prym(rC{C)

is the connected component of the identity of the kernel of the norm map Jac(rC) → Jac(C). Prym
varieties have been extensively studied since their reintroduction by Mumford in [Mum74]. The
Prym variety carries a principal polarization that is half the polarization induced from Jac(rC),
and the assignment (rC → C) Þ→ Prym(rC{C) defines the Prym–Torelli map τP : Rg → Ag−1, where
Rg is the moduli space of connected étale double covers of smooth genus g curves. Unlike τJ,
the morphism τP is never injective, and it is likewise an open problem to describe its image.

Tropical geometry is a modern branch of mathematics that studies certain combinatorial,
piecewise-linear objects, which mimic concepts from algebraic geometry. A tropical curve of genus
g is a metric graph Γ with h1(Γ) = g, a harmonic morphism of tropical curves is a piecewise-linear
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map satisfying a certain balancing condition, and a tropical abelian variety is a real torus carrying
an auxiliary integral structure. By varying lengths and combinatorial types, we obtain moduli
spaces M

trop
g and A

trop
g of tropical curves and tropical ppavs, respectively.

We can naturally associate a tropical Jacobian Jac(Γ) to a tropical curve Γ (see [MZ08]). The
corresponding tropical Torelli map τtrop

J : M
trop
g → A

trop
g (which is not injective, unlike τJ) was

investigated in [CV10] and [BMV11]. The key insight in these works is that the tropical Jacobian
Jac(Γ) is in fact entirely governed by the graphic matroid M(Γ) of Γ . It is therefore possible to
study τJ, and in particular describe its fibers, from a purely matroidal perspective, and similarly
to give a matroidal interpretation of the image of τtrop

J . Indeed, the relevance of the graphic
matroid in this context was well-known before the advent of tropical geometry, see e.g. [Ger82].

The tropical analogue of an étale double cover is a harmonic morphism rΓ → Γ of metric graphs
of degree two. The tropical Prym variety Prym(rΓ{Γ) of rΓ → Γ was defined in [JL18], in analogy
with the algebraic setting, and is a polarized tropical abelian variety of dimension g(rΓ) − g(Γ).
The tropical Prym variety was further investigated in [LU21], [LZ22], [RZ22], and [GZ23].

The purpose of this paper is to develop a matroidal perspective on the tropical Prym variety,
with the aim of studying the tropical Prym–Torelli map. We show how to associate to a harmonic
double cover π : rΓ → Γ a dual pair of matroids M(rΓ{Γ) and M˚(rΓ{Γ) (see Definition 3.3). These
matroids turn out to be signed (co-)graphic matroids in the sense of [Zas82], and the precise trans-
lation of Zaslavsky’s definition into the language of double covers is given in Proposition 3.9. In
Proposition 3.10 we give interpretations of the cryptomorphic descriptions of M(rΓ{Γ) in terms
of the double cover rΓ → Γ . In Section 4 we prove the main result of our paper and show
that the matroid M(rΓ{Γ), suitably decorated, recovers all of the information of the Prym variety
Prym(rΓ{Γ) except for its polarization. We canonically associate a tropical ppav to Prym(rΓ{Γ), the
principalization Prymp(

rΓ{Γ), and signed cographic matroid recovers this object:

Theorem A (Theorem 4.9). Let π : rΓ → Γ be a harmonic double cover of metric graphs, and let M =

M(rΓ{Γ) be the signed graphic matroid equipped with index function ind : I(M˚) → Zą0 (Definition 4.3),

orientation
−→
M on M induced by an orientation of π (Section 4.4), and edge length function ℓ : E(Γ) → R.

Then we can associate a tropical ppav Prym(M) to the matroidal data such that

Prymp(
rΓ{Γ) – Prym(M).

It follows that two double covers with isomorphic decorated matroidal data have isomorphic
Prym varieties, see Corollary 4.11. Example 4.12 shows that distinct double covers may have
identical matroidal data and hence isomorphic Prym varieties.

For any matroid M, we can construct its simplification Msim, having no circuits of size 1 or
2. In [CV10] and [BMV11] it is shown that simplifying the cographic matroid of Γ (contracting
bridges and parallel edges, with an appropriate redistribution of edge lengths) does not change
the Jacobian Jac(Γ). In Section 5, we describe an analogous simplification procedure for double
covers, and show that it does not change the Prym variety.

Theorem B (Theorem 5.3). Let π : rΓ → Γ be a double cover of metric graphs and let πsim : rΓsim → Γsim

be a simplification of π (see Definition 5.2). Then Prymp(
rΓ{Γ) – Prymp(

rΓsim{Γsim).

In contrast to the case of metric graphs, we show by example that double covers with non-
isomorphic simple matroids may have isomorphic Prym varieties.
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In hindsight, it is clear that the signed graphic matroid M(rΓ{Γ) and its dual ought to have a
close relation to the Prym variety Prym(rΓ{Γ). For example, the papers [LZ22] and [GZ23] proved
a formula for the volume of Prym(rΓ{Γ) as a sum over certain subsets of E(Γ) called odd genus one

decompositions or ogods, and these turn out to be the bases of M˚(rΓ{Γ) (see Section 2.8 for details).
A natural question is to investigate the tropical Prym–Torelli morphism τ

trop
P that associates

to a harmonic double cover rΓ → Γ its Prym variety Prym(rΓ{Γ). There are two related issues
with defining τtrop

P . First, the polarization type of Prym(rΓ{Γ) may change when the double cover
rΓ → Γ is deformed, specifically if the number of connected components of the dilation subgraph
changes. Second, the behavior of Prym(rΓ{Γ) is not continuous under such deformations. In
future work, we plan to give an alternative definition of the tropical Prym variety that solves
these issues, and investigate the redefined Prym–Torelli map from a matroidal perspective. The
above Theorem shows that some of the non-injectivity of τtrop

P is purely matroidal in nature, and
describing the remaining non-injectivity is the subject of ongoing research.

We end by outlining a series of tropical problems inspired by Krichever’s solution to the
algebraic Schottky problems, which we now recall. Let X be a ppav of dimension g with prin-
cipal polarization Θ, and let K(X) be the Kummer variety of X, the image of X under the map
φ2Θ : X→ P

2g−1. Fay’s trisecant identity [Fay06] states that if X = Jac(C) is a Jacobian, then K(X)
admits a four-parameter family of trisecant lines, indexed by quadruples of points of C Ă Jac(C).
Gunning [Gun82] showed that the existence of such a family characterizes Jacobians among all
ppavs. Welters [Wel83], [Wel84] strengthened this result by showing that Jacobians are charac-
terized by the existence of a formal one-parameter family of flexes of K(X) (limit trisecants when
the three points are equal), and conjectured that the existence of a single trisecant of the Kum-
mer variety characterizes Jacobians among ppavs. After a number of progressively stronger re-
sults, Krichever proved Welters’s conjecture in [Kri06] and [Kri10]. An analogous solution to the
Prym–Schottky problem was given by Grushevsky and Krichever in [GK10]. Beauville and De-
barre [BD87] showed that if X = Prym(rC{C) is a Prym variety, then K(X) admits a four-parameter
family of quadrisecant planes, and it was shown in [GK10] that the existence of a symmetric pair
of quadrisecants (but not a single quadrisecant) characterizes Prym varieties among all ppavs.

It is natural to formulate an analogous series of questions in the tropical setting. A theory
of tropical theta functions has already been developed in [MZ08] and [FRSS18]. Fay’s trisecant
identity is based on an elementary property of divisorial rank (see Proposition 11.9.1 in [BL04]).
It turns out that the analogous statement for tropical Baker–Norine rank is false, so it is not
immediately clear what happens to Fay’s identity under tropicalization. Nevertheless it is natural
to ask whether the theta functions of a tropical Jacobian satisfy any identities, whether these
identities have a geometric manifestation, whether they characterize tropical Jacobians among all
tropical ppavs, and whether this characterization is computationally effective. Finally, all these
questions can be asked about the tropical Prym variety as well.

Acknowledgments. The authors would like to thank Kevin Kühn, Yoav Len, Dhruv Ran-
ganathan, Victoria Schleis, Benjamin Schröter, and Martin Ulirsch for insightful discussions. The
first author gratefully acknowledges support from the SFB-TRR 195 “Symbolic Tools in Mathe-
matics and their Application” of the German Research Foundation (DFG).
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2. Setup and definitions

We begin by reviewing a number of basic definitions concerning graphs, metric graphs, har-
monic morphisms, double covers, and tropical abelian varieties.

2.1. Graphs, harmonic morphisms, and double covers. A graph G consists of a set of vertices

V(G), a set of half-edges H(G), a root map r : H(G) → V(G), and a fixed-point-free involution
ι : H(G) → H(G). The edges of G are the orbits of ι, with each edge consisting of two half-edges,
and the set of edges is denoted E(G). We allow graphs with loops and multiedges. The tangent

space to a vertex v P V(G) is the set TvG = r−1(v) of half-edges rooted at v. The genus g(G) of a
graph G is its first Betti number:

g(G) = |E(G)| − |V(G)|+ 1.

Unless otherwise specified, we consider only finite connected graphs. Given a set of edges
F Ă E(G), we denote by G\F the (possibly disconnected) graph obtained by removing the edges
in F, but retaining all vertices, even isolated ones. We denote G[F] the minimal subgraph of G
containing all edges in F, in other words G[F] is obtained from G \

(

E(G)\F
)

by removing all
isolated vertices.

A morphism of graphs f : rG → G is a pair of maps f : V(rG) → V(G) and f : H(rG) → H(G)

commuting with the root and involution maps, and thus inducing a map f : E(rG) → E(G) on
the edges. A harmonic morphism of graphs is a pair (f, df) consisting of a morphism of graphs
f : rG → G and a local degree function df : V(rG) Y H(rG) → Zą0, such that df(rh) = df(rh 1) for any
edge re = {rh, rh 1} P E(rG) and such that the local balancing condition

df(rv) =
ÿ

rhPTrv rGXf−1(h)

df(rh) (1)

holds for each vertex rv P V(rG) and each half-edge h P Tf(rv)G. A harmonic morphism f : rG → G

to a connected target graph G is surjective and has a well-defined global degree given by

deg f =
ÿ

rvPf−1(v)

df(rv) =
ÿ

rhPf−1(h)

df(rh)

for any v P V(G) or any h P H(G).
A harmonic morphism p : rG→ G of global degree two is called a double cover, and we describe

its structure in detail. A vertex v P V(G) is called dilated if it has a unique preimage that we label
p−1(v) = {rv}, with local degree dp(rv) = 2. Similarly, a half-edge h P H(G) is dilated if p−1(h) = {rh}
with dp(rh) = 2, and a dilated edge e = {h, h 1} (consisting of dilated half-edges) has a unique edge
re = {rh, rh 1} lying over it. The root vertex of a dilated half-edge is dilated, so the dilated set forms
a subgraph Gdil Ă G called the dilation subgraph, which is isomorphic to its preimage p−1(Gdil).
We say that p is a free double cover if Gdil = H and dilated otherwise. We say that p is edge-free if
Gdil consists of only vertices. The dilation index of a double cover is defined to be

d(rG{G) =

{
number of connected components of Gdil, if p is dilated,

1, if p is free.

A vertex v P V(G) having two preimages is called undilated, and we label its preimages p−1(v) =
{rv+,rv−}, where the local degrees are dp(rv˘) = 1. Similarly, a half-edge h P H(G) is undilated if
p−1(h) = {rh+, rh−} with dp(rh˘) = 1. If the root vertex v = r(h) is undilated, we label the
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preimages of h so that r(rh˘) = rv˘ (if v is dilated then r(rh˘) = rv regardless of labeling). An
undilated edge e P E(G) is called free if both root vertices of e (which may be the same) are
undilated. The free subgraph Gfr Ă G consists of the undilated vertices and the free edges, and the
restriction p|p−1(Gfr)

: p−1(Gfr) → Gfr of p to the free subgraph is a degree two covering space in
the topological sense.

The structure of the graph rG is determined by the involution map on the preimages rh˘ of
the undilated half-edges, in other words by how the rh˘ pair up into edges. If the edge e ={
h, ι(h)

}
P E(G) is undilated but not free, then we can label the preimages of the half-edges in

such a way that the edges of rG lying above e are re+ =
{rh+, Ąι(h)

+}
and re− =

{rh−, Ąι(h)
−}

, in other

words the involution is ι(rh˘) = Ąι(h)
˘

. If e is free, however, then we record the involution by

σ(e) =






+1, if ι(rh˘) = Ąι(h)
˘
,

−1, if ι(rh˘) = Ąι(h)
¯
.

Given an orientation on G, we always give rG the induced orientation. We label the oriented
preimages of an oriented edge e = (h, ι(h)) as re+ = (rh+, ι(rh+)) and re− = (rh−, ι(rh−)).

The double cover p : rG → G is thus determined by G, the choice of a dilation subgraph
Gdil Ă G that also determines Gfr, and a parity assignment σ : E(Gfr) → {˘1}, in other words
the structure of a signed graph on Gfr (in fact, as we shall see in Proposition 3.9, the set of undi-
lated edges E(G)\E(Gdil) carries the structure of a signed graph, in the more general sense of
Zaslavsky [Zas82]). Exchanging the preimages of an undilated vertex v P V(Gfr) swaps the signs
of all free edges rooted at it, so the parity assignment σ is determined up to vertex switching

equivalence. In modern terminology, the switching equivalence class of a parity assignment σ is a
well-defined element of the simplicial cohomology group H1(Gfr,Z{2Z), which is identified with
the set of Hom

(

π1(Gfr), Z{2Z
)

of free double covers by covering space theory and the universal
coefficient theorem.

For another perspective on double covers note that p : rG → G determines an involution
i : rG → rG that changes signs on undilated elements and fixes dilated elements. Conversely,
given an involution i : rG → rG, the quotient map p : rG → rG{i naturally has the structure of a
double cover, with the dilation subgraph of G corresponding to the fixed subgraph of rG.

2.2. Edge contractions. We extensively use the edge contraction operation, which is a graph-
theoretic deformation that allows us to move through the moduli spaces of graphs and double
covers. Let G be a graph, let F Ă E(G) be a set of edges, and let H = G[F] be the subgraph
generated by these edges. We denote by GF the graph obtained by contracting each connected
component ofH to a separate vertex. An edge contraction induces a natural surjective contraction
homomorphism H1(G,Z) → H1(GF,Z).

An important property of contraction is that it can be performed for a harmonic morphism.
Let f : rG → G be a harmonic morphism of graphs, let F Ă E(G) be a set of edges, and let
rH = rG[rF] be the subgraph of rG generated by rF = f−1(F). Consider the map fF : rGrF → GF,

where the vertex rvi P V(rGrF) corresponding to a connected component rHi of rH is mapped to the

vertex corresponding to the connected component f(rHi) of H. It is elementary to check that fF is
harmonic, provided that we set the local degree of fF at the vertex rvi to be the global degree of f
on the subgraph rHi.

5
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Figure 1. Local picture of a dilated double cover p (left) with the edge contrac-
tions producing pef (middle). On the right: pfree with its contraction back to pef.

Example 2.1. Let p : rG → G be a double cover, let F Ă E(G) be a set of edges, and assume
for simplicity that the subgraph H = G[F] generated by F is connected. If H has no dilated
vertices, then the restricted cover p|p−1(H) : p

−1(H) → H is a free double cover, and p−1(H) has
two connected components if and only if this double cover is trivial. In this case, the vertex
v P V(GF) corresponding to H is undilated. However, if p|p−1(H) is free but nontrivial, or if H
has at least one dilated vertex, then the vertex v is dilated. In particular, the contraction of a free
double cover need not be free.

Example 2.2. We will frequently make use of the following construction, visualized in Figure 1.
Let p : rG→ G be a dilated double cover. We construct the edge-free double cover pef : rGef → Gef

by contracting all dilated edges, in other words by contracting each connected component Gi
of Gdil to a dilated vertex vi. We then resolve pef into a free double cover pfree : rGfree → Gfree

by adding a loop ei at each dilated vertex vi of Gef, and replacing the preimage vertex rvi with
two vertices rv˘

i joined by two parallel edges re˘
i mapping to the loop ei. The cover pfree is not

defined canonically (unlike pef), since we must choose how to reattach the edges of rGef to the
new vertices rv˘

i . The cover pef is obtained from pfree by contracting the new loops ei.

2.3. Metric graphs. Let G be a graph and let ℓ : E(G) → Rą0 be an edge length assignment. The
pair (G, ℓ) defines a metric graph Γ , which is the topological space obtained by viewing each edge
e P E(G) as a closed interval of length ℓ(e) and attaching the intervals according to the structure
of G. We endow Γ with the shortest-path metric. The pair (G, ℓ) is called a model for Γ , and the
genus of Γ is the genus of any underlying model. We will often abuse notation and refer to the
edges and vertices of a metric graph Γ , with respect to an implied choice of model.

A harmonic morphism of metric graphs φ : rΓ → Γ is a continuous, piecewise-linear map whose
slopes df(re) along the edges re P E(rG) are positive integers satisfying the slope-balancing con-
dition (1). In other words, there exist models (rG,rℓ) and (G, ℓ) of rΓ and Γ , respectively, and a
harmonic morphism of graphs f : rG → G modeling φ, such that dφ(re) = df(re) for all re P E(rΓ).
The continuity of φ imposes the restriction

ℓ
(

φ(re)
)

= dφ(re)rℓ(re)
6



for all edges re P E(rG). If φ : rΓ → Γ is a double cover of metric graphs, then φ is a factor two dila-
tion along a dilated edge and an isometry along an undilated edge, explaining the terminology.

2.4. Divisor theory on metric graphs. For the reader’s convenience, we briefly recall the divisor
theory on a metric graph Γ . The divisor group Div(Γ) is the free abelian group on the points of
Γ . A rational function on Γ is a real-valued piecewise-linear function with integer slopes, and the
group of rational functions is denoted Rat(Γ). The divisor of a rational function is

div : Rat(Γ) −→ Div(Γ), f Þ−→
ÿ

xPΓ

(sum of incoming slopes at x) ¨ x

The Picard group Pic(Γ) is the cokernel of div. The degree map

deg : Div(Γ) −→ Z,
ÿ

xPΓ

ax ¨ x Þ−→
ÿ

xPΓ

ax

descends to Pic(Γ), and we denote Picd(Γ) the set of equivalence classes of degree d divisors.

2.5. Tropical abelian varieties. A real torus with integral structure Σ of dimension g, or an integral

torus for short, is defined by a triple (Λ,Λ 1, [¨, ¨]), where Λ and Λ 1 are free abelian groups of rank
g and [¨, ¨] : ΛˆΛ 1 → R is a nondegenerate pairing. The torus itself is Σ = Hom(Λ,R){Λ 1, where
Λ 1 is embedded in Hom(Λ,R) via the assignment λ 1 Þ→ [¨, λ 1]. The integral lattice Hom(Λ,Z) in
the universal cover Hom(Λ,R) of Σ may be viewed as a tropical analogue of a complex structure
on a real torus.

Let Σ1 = (Λ1, Λ
1
1, [¨, ¨]1) and Σ2 = (Λ2, Λ

1
2, [¨, ¨]2) be integral tori, and let f# : Λ2 → Λ1 and

f# : Λ 1
1 → Λ 1

2 be homomorphisms satisfying the relation
[

f#(λ2), λ
1
1

]

1
=
[

λ2, f#(λ
1
1)
]

2

for all λ2 P Λ2 and λ 1
1 P Λ 1

1. The Hom-dual Hom(Λ1,R) → Hom(Λ2,R) of f# restricts to f# on Λ 1
1,

hence the pair f = (f#, f#) defines a homomorphism of integral tori f : Σ1 → Σ2. The maps f# and f#

have the same rank, which is denoted rk f and which is equal to the dimension of f(Σ1).
Let f : Σ1 → Σ2 be a homomorphism of integral tori. The group-theoretic kernel Ker f is the

direct sum of a finite abelian group and an integral torus (Ker f)0, which we call the kernel torus

of f. It is defined by the triple

(Ker f)0 =
(

(Coker f#)tf,Ker f#, [¨, ¨]K
)

,

where for an abelian group A we denote Atf the quotient by its torsion subgroup, and [¨, ¨]K is the
pairing (Coker f#)tf ˆ Ker f# → R induced by [¨, ¨]1. The pair i = (i#, i#), where i# : Ker f# →֒ Λ 1

1 is
the natural inclusion and i# : Λ1 ։ (Coker f#)tf is the quotient map, defines the natural injective
homomorphism of real tori i : (Ker f)0 → Σ1.

A polarization on an integral torus Σ = (Λ,Λ 1, [¨, ¨]) is a group homomorphism ξ : Λ 1 → Λ

with the property that the induced bilinear form (¨, ¨) = [ξ(¨), ¨] : Λ 1
R

ˆ Λ 1
R

→ R is symmetric
and positive definite. A polarization is necessarily injective, and its type is determined by the
invariant factors of its Smith normal form. A polarization is principal if it is bijective, in other
words if its type is (1, . . . , 1). An integral torus with a principal polarization is called a principally

polarized tropical abelian variety, or pptav for short. Given an integral torus Σ = (Λ,Λ 1, [¨, ¨]) with a
polarization ξ : Λ 1 → Λ, we define the principalization to be the integral torus Σp = (Imξ,Λ 1, [¨, ¨])

with the principal polarization ξ : Λ 1 → Imξ – Λ 1. The injection j : Imξ → Λ and the identity
7



map Id : Λ 1 → Λ 1 define a homomorphism (j, Id) : Σ → Σp, which is a dilation in the sense of
Definition 4.6 of [RZ22], so in particular it is a bijection on the underlying tori.1

Let f : Σ1 → Σ2 be a homomorphism of integral tori, and let ξ2 be a polarization on Σ2. If f
is finite, in other words if rk f = dimΣ1, then the homomorphism ξ1 = f# ˝ ξ2 ˝ f# determines
an induced polarization on Σ1. As in the algebraic setting, a polarization induced from a principal
polarization is not necessarily principal; we shall see that the Prym variety of a double cover is
an example of this.

Let Σ = (Λ,Λ 1, [¨, ¨]) be an integral torus of dimension n with polarization ξ. The bilinear form
(¨, ¨) = [ξ(¨), ¨] on Λ 1 extends to an inner product on the vector space Hom(Λ,R) Ą Λ 1, which is
the universal cover of Σ = Hom(Λ,R){Λ 1, and hence defines a translation-invariant Riemannian
metric on Σ. The volume of Σ is the volume of a fundamental parallelotope and is given by the
Grammian determinant

Vol2(Σ) = det
(

(λ 1
i , λ

1
j)
)

i,j
, (2)

where λ 1
1, . . . , λ

1
n is any basis of Λ 1.

2.6. The tropical Jacobian and the Abel–Jacobi map. Let Γ be a metric graph, and choose an
oriented model (G, ℓ). The simplicial chain group C1(G,Z) is the free abelian group on E(G)
and contains the simplicial homology group H1(G,Z) which is of rank g(Γ). The chain groups
naturally fit into a directed system with respect to refinements of models, and the images of the
homology groups agree. We denote the direct limits C1(Γ,Z) and H1(Γ,Z), and refer the reader
to [BF11] for details.

It is conceptually convenient to introduce the group Ω1
Γ of tropical 1-forms on Γ . This group is

canonically isomorphic to H1(Γ,Z), and a cycle γ =
ř
γ(e) ¨ e P H1(Γ,Z) is written

ř
γ(e)de when

it is viewed as a 1-form. There is a natural integration pairing

[¨, ¨] : Ω1
Γ ˆ C1(Γ,Z) −→ R,

[ÿ
γ(e)de,

ÿ
δ(e) ¨ e

]

=

∫

γ

ω =
ÿ
γ(e)δ(e)ℓ(e), (3)

which restricts to a perfect pairing Ω1
Γ ˆ H1(Γ,Z) → R. The Jacobian variety of Γ is the g(Γ)-

dimensional pptav

Jac(Γ) =
(

Ω1
Γ , H1(Γ,Z), [¨, ¨]

)

= Hom(Ω1
Γ ,R) {H1(Γ,Z),

where the principal polarization is the trivial isomorphism H1(Γ,Z) = Ω
1
Γ .

Remark 2.3. We note that the integration pairing (3), and hence the induced inner product on
the universal cover Hom(Ω1

Γ ,R) of Jac(Γ), has a physical peculiarity: it is linear, rather than
quadratic, in the edge lengths ℓ(e). Hence the units that are used to measure edge lengths on Γ
become units of area from the point of view of the Riemannian geometry of Jac(Γ).

Let q P Γ be a base point, and for p P Γ let γp P C1(Γ,Z) denote any path from q to p. The
Abel–Jacobi map φq : Γ → Jac(Γ) relative to q is given by

p Þ−→

(

ω Þ−→

∫

γp

ω

)

.

1In Lemma 4.11 of [RZ22] we introduced a different notion of principalization Σpp which naturally comes with a
dilation Σpp

→ Σ. The combined morphism Σpp
→ Σp is of degree 2g and is given by global multiplication by 2. In

this article, we work with Σp because it seems more natural from the matroidal perspective, but the reconstruction of
the Prym variety in Section 4 can be phrased for Prympp as well, see also Remark 4.10.
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The map φq extends to symmetric powers of Γ and thus to divisors. The map respects linear
equivalence, and hence induces a map Pic0(Γ) → Jac(Γ) that does not depend on the choice
of q. The tropical Abel–Jacobi theorem (see Theorem 6.3 in [MZ08]) states that this map is an
isomorphism. Under this identification, the Abel–Jacobi map sends p to the divisor class p− q.

2.7. The tropical Prym and the Abel–Prym map. Let φ : rΓ → Γ be a harmonic morphism of
metric graphs. We consider the natural pushforward and pullback homomorphisms

φ˚ = Nm# : Ω1
Γ −→ Ω1

rΓ , φ˚ = Nm# : H1(rΓ ,Z) −→ H1(Γ,Z),
ÿ

ePE(Γ)

γ(e)de Þ−→
ÿ

ePE(Γ)

γ(e)
ÿ

rePφ−1(e)

dφ(re)dre,
ÿ

rePE(rΓ )

γ(re) ¨ re Þ−→
ÿ

rePE(rΓ)

γ(re) ¨φ(re).

The pair Nm = (Nm#,Nm#) = (φ˚, φ˚) defines the surjective norm homomorphism Nm : Jac(rΓ ) →
Jac(Γ) of pptavs, which corresponds, under the identification of Jac with Pic0, to the direct image
homomorphism

Nm : Pic0(rΓ) −→ Pic0(Γ),
ÿ

rxPrΓ

arx rx Þ−→
ÿ

rxPrΓ

arx φ(rx).

We now consider a double cover π : rΓ → Γ of metric graphs of genera rg = g(rΓ) and g = g(Γ),
respectively. Let

π˚ : H1(rΓ ,Z) −→ H1(Γ,Z), π˚ : Ω1
Γ −→ Ω1

rΓ

denote the pushforward and pullback homomorphisms, denote

K = (Cokerπ˚)tf, K 1 = Kerπ˚,

and denote [¨, ¨]K : Kˆ K 1 → R the pairing induced by the integration pairing on Jac(rΓ).

Definition 2.4. The tropical Prym variety Prym(rΓ{Γ) of the double cover π : rΓ → Γ is the kernel
torus of the norm homomorphism:

Prym(rΓ{Γ) = (Ker Nm)0 =
(

K,K 1, [¨, ¨]K
)

=
Hom(Cokerπ˚,R)

Kerπ˚
.

The tropical Prym variety Prym(rΓ{Γ) has dimension h = rg−g and is the connected component
of the identity of the kernel Ker Nm of the norm homomorphism Nm : Jac(rΓ) → Jac(Γ). The
structure of the kernel is described by Proposition 6.1 in [JL18]. Let i : rΓ → rΓ denote the involution
associated to π, then any element in Ker Nm has a representative (viewed as an element of
Pic0(rΓ)) of the form E − i(E), where E is an effective divisor E on rΓ . If π is a free double cover,
then the parity of degE does not depend on the choice of E, and Ker Nm has two connected
components distinguished by the parity. If π is dilated, however, then Ker Nm is connected.

The tropical Prym variety Prym(rΓ{Γ) has a polarization induced from the principal polariza-
tion on Jac(rΓ). Its type was computed in Theorem 1.5.7 of [LU21] and Proposition 4.21 of [RZ22]
and is (1, . . . , 1, 2, . . . , 2) with d − 1 many 1’s, where d is the dilation index of the double cover.
For the most part of this article we will work with the principalization of the Prym variety, which
we denote by Prymp(

rΓ{Γ) and refer to as Prym variety as well. For later reference, we spell out

the defining data of Prymp(
rΓ{Γ) and introduce the following notation. Any element of Kerπ˚ is

9



contained in the Z-span of elements re+ − re− for e ranging over the undilated edges of Γ . Hence
we can view elements γ P Kerπ˚ as chains on Γ and write

γ =
ÿ

ePE(G)

γ(e) ¨ (re+ − re−) =
ÿ

ePE(G)

γ(e) ¨ e P C1(G,Z). (4)

Then Prymp(
rΓ{Γ) is the pptav defined by the triple (Kerπ˚,Kerπ˚, [¨, ¨]), where the pairing is

induced from H1(rΓ ,Z) and is given by

[γ, γ 1] =
ÿ

rePE(rΓ)

γ(re)γ 1(re)ℓ(re) =
ÿ

ePEud(Γ)

2γ(e)γ 1(e)ℓ(e) (5)

for all γ, γ 1 P Kerπ˚, where the second equality uses ℓ(re+) = ℓ(re−) = ℓ(e).
We also define the tropical Abel–Prym map. Let q P rΓ be a base point, and for p P rΓ let

γp P C1(rΓ ,Z) denote any path from q to p. Let i˚γp denote the image of this path under the
involution. The Abel–Prym map ψq : rΓ → Prym(rΓ{Γ) is given by

p Þ−→

(

ω Þ−→

∫

γp

ω −

∫

i˚γp

ω

)

.

We note that ψq = p − i(p) − (q − i(q)) when viewed as an element of Pic0(rΓ), hence lies in the
connected component of the identity of Ker Nm (which is not true of p− i(p) if the double cover
is free).

2.8. Volumes of the Jacobian and the Prym. One of the motivations for this paper are the for-
mulas for the volume of the tropical Jacobian Jac(Γ) found in [ABKS14] and the tropical Prym
variety Prym(rΓ{Γ) found in [LZ22] and [GZ23]. In both cases, the square of the volume is a
polynomial in the lengths of the edges of Γ . We shall see in the next section that the monomials
are in fact indexed by the bases of an appropriate matroid on the set of edges of Γ .

We recall the results of [ABKS14], [LZ22] and [GZ23].

Theorem 2.5 (Theorem 5.2 of [ABKS14]). Let Γ be a metric graph of genus g with model (G, ℓ). The

volume of the Jacobian of Γ is given by

Vol2
(

Jac(Γ)
)

=
ÿ

FĂE(G)

ź

ePF

ℓ(e), (6)

where the sum is taken over all g-element subsets F Ă E(G) such that G\F is a tree.

The dimensional peculiarity noted in Remark 2.3 makes its appearance: the square of the
volume of Jac(Γ) (which is a Riemannian manifold of dimension g) is a polynomial in the edge
lengths of degree g, not the expected 2g. The volume of the tropical Prym variety of a free and
dilated double cover was computed in [LZ22] and [GZ23], respectively.

Theorem 2.6 (Theorem 3.4 of [LZ22] and Theorem 3.3 of [GZ23]). Let π : rΓ → Γ be a double cover

of metric graphs of genera rg and g, respectively, and let h = rg − g. The volume of the Prym variety of π

is given by

Vol2
(

Prym(rΓ{Γ)
)

= 21−d(
rΓ{Γ)

ÿ

FĂEud(G)

4ind(F)−1
ź

ePF

ℓ(e). (7)

Here the sum is taken over all h-element subsets of undilated edges F Ă Eud(G) called ogods (see Defini-

tion 3.7), the index ind(F) of an ogod F is the number of connected components of G\F, and d(rΓ{Γ) is the

dilation index.
10



3. The matroid of a double cover

The papers [CV10] and [BMV11] studied the tropical Torelli map that associates to a metric
graph Γ its Jacobian Jac(Γ), and showed that its fibers are most conveniently understood in terms
of a combinatorial object, the graphic matroid M(Γ) (we note that many of these results earlier
appeared in German and without the use of the tropical language in [Ger82]). In this section, we
describe an analogous object, the signed graphic matroid M(rΓ{Γ) of a double cover π : rΓ → Γ , which
plays a role in describing the fibers of the tropical Prym–Torelli map (rΓ → Γ) Þ→ Prym(rΓ{Γ) in
Section 5. This matroid was originally defined by Zaslavsky [Zas82] in the framework of signed
graphs, and we translate his definition into the language of double covers. We begin with the
basic definitions.

3.1. Matroids and graph theory. A matroid M consists of a finite set E(M), called the ground set

of M, and a family of subsets I(M) of E(M), called the independent sets, satisfying the following
axioms:

(1) H P I(M).
(2) If A Ă B and B P I(M), then A P I(M).
(3) If A,B P I(M) and A has more elements than B, then there exists x P A\B such that

BY {x} P I(M).

The maximal elements of I(M) are the bases of the matroid, and the set of bases is denoted
B(M). All bases have the same cardinality, called the rank of M. A subset of E(M) that is not
independent is called dependent, and the set of dependent sets is denoted D(M). A minimal
dependent set is a circuit, and the set of circuits is denoted C(M). Each of the sets I(M), B(M),
D(M), and C(M) determines the others and satisfies a set of properties that can be used to give
an equivalent definition of a matroid (see Chapter 1 in [Oxl11]).

Starting with a matroid M, we construct several related matroids. The dual matroid M˚ has
the same ground set E(M), and B˚ Ă E(M) = E(M˚) is a basis of M˚ if and only if E(M)\B˚

is a basis of M. Given a subset X Ă E(M), the restriction of M to X is the matroid M|X with
ground set X and independent set I(M|X) = {I P I(M) : I Ă X}. The deletion of X from M is
the restriction M\X = M|E(M)−X to the complement. Finally, the contraction of M along X is the
matroid M{X = (M˚\X)˚.

An n-circuit of a matroid M is a circuit with n elements (a 1-circuit is sometimes called a
loop, but we avoid this terminology). Two elements e, f P E(M) are parallel if {e, f} is a 2-circuit,
and a parallel class of M is a maximal subset of F Ă E(M) containing no 1-circuits and such that
any 2-element subset is a 2-circuit. A parallel class is trivial if it consists of a single element,
and a matroid is called simple if it has no non-trivial parallel classes. Given a matroid M, the
simplification of M is the simple matroid Msim constructed by deleting all 1-circuits, and deleting
all but one element from each parallel class. The simplification procedure is non-canonical, since
it involves choosing a representative from each parallel class, but any two simplifications are
isomorphic as matroids.

Example 3.1. Let G be a connected graph of genus g. The graphic matroid M(G) has ground
set E(G), and a subset F Ă E(G) is independent if the subgraph G[F] generated by F is a forest
(equivalently, if the homology group H1

(

G[F],Z
)

is trivial). The bases of M(G) are the spanning
trees of G, the dependent sets are subgraphs having a nontrivial cycle, and the circuits are sub-
graphs consisting of a simple cycle. Given a set of edges F Ă E(G), the deletion M(G)\F and

11



contraction M(G){F are the graphic matroids of the graphs G\F and GF, respectively. A 1-circuit
of M(G) is a loop of G, and a parallel class is the set of edges between two vertices. The matroid
M(G) is simple if and only if the graph G is simple, and M(G)sim is the graphic matroid of the
simplification of the graph G, obtained by deleting all loops, and deleting all but one edge in
each set of multiedges between any pair of vertices.

The dual matroidM˚(G) is called the cographic or bond matroid. The independent sets ofM˚(G)

are the sets of edges F Ă E(G) whose removal does not disconnect G (equivalently, such that the
reduced homology group rH0(G\F,Z) is trivial). The bases of M˚(G) are the complements of
the spanning trees of G, and the rank of M˚(G) is equal to g. A 1-circuit of M˚(G) is a bridge
edge. A parallel class consists of a set of n edges whose removal disconnects G into n connected
components that are cyclically linked in G by the removed edges. The simplification of M˚(G)

is obtained by contracting the bridge edges and all but one edge from each parallel class (since
M˚(G) is the dual, matroid-theoretic deletion is graph-theoretic contraction).

3.2. The matroid of a double cover. In the seminal paper [Zas82], Zaslavsky introduces the
signed graphic matroid M(G,σ) on the edge set E(G) of a graph G equipped with an edge parity
assignment σ : E(G) → {˘1}. As described in Section 2.1, the pair (G,σ) determines a free
double cover p : rG→ G, and Zaslavsky shows that the matroid M(G,σ) is switching-equivalent,
in other words depends only on the cover p (Corollary 5.4 in [Zas82]). He then considers the
contraction of the matroid M(G,σ) along a subset F Ă E(G). Since the contracted double cover
pF : rGrF → GF may no longer be free, in order to stay within the framework of signed graphs,
Zaslavsky is forced to introduce a more complicated category of graphs, having half-arcs and free

loops in addition to ordinary edges (see Proposition 3.9 for details).
In this section, we give an elementary geometric description of the signed graphic matroid

and its dual in terms of double covers, which works equally well in the free and dilated cases.
In addition, the description via double covers allows us to define an auxiliary function on the
independent sets called the index (see Definition 4.3), which is crucial for reconstructing the
Prym variety and which cannot be seen from Zaslavsky’s approach. To motivate our definition,
we recall that a set of edges of a graph G is independent for the cographic matroid M˚(G) if
removing it does not disconnect G. We give an analogous definition for double covers.

Definition 3.2. Let p : rG→ G be a double cover of graphs, with G possibly disconnected. We say
that p is relatively connected if the preimage of each connected component of G is connected in rG.

A double cover p : rG → G of a connected graph G is relatively connected if and only if it is
not the trivial free double cover. If e P E(G) is a dilated edge, then G\{e} may or may not be con-
nected, but each connected component has a dilated vertex, and hence the double cover obtained
from p by deleting e from G and its preimage from rG is still relatively connected. Removing an
undilated edge, however, may relatively disconnect p. Hence we make the following definition.

Definition 3.3. Let p : rG → G be a nontrivial double cover of a connected graph G. We define
the matroid M˚(rG{G) of p as follows:

(1) The ground set of M˚(rG{G) is Eud(G) = E(G)\E(Gdil), the set of undilated edges of G.
(2) A set of undilated edges F Ă Eud(G) is independent for the matroid M˚(rG{G) if the

double cover p|rG\p−1(F)
: rG\p−1(F) → G\F obtained by removing these edges from G

and their preimages from rG is relatively connected. Equivalently, F is independent if
12



Figure 2. Elementary double covers of the first and second types.

the double cover p|rG\p−1(F)
induces an injective map on the reduced homology groups

rH0
(rG\p−1(F),Z

)

→ rH0(G\F,Z).

We show in Proposition 3.9 that M˚(rG{G) is a matroid, by identifying it with the signed
graphic matroid of Zaslavsky. We first investigate when it is possible to remove a single undilated
edge without relatively disconnecting the double cover. To simplify notation, given a double
cover p : rG → G and an undilated edge e P Eud(G), we denote Ge = G\{e}, rGe = rG\p−1(e), and
pe : rGe → Ge the restriction of p. We first determine the relatively connected double covers that
do not admit the removal of an edge.

Definition 3.4. An elementary double cover p : rG → G is one of the following two types (see
Figure 2):

(1) p is dilated, G and Gdil are connected, and g(Gdil) = g(G).
(2) p is free, G is connected of genus one, and p is not the trivial free double cover.

Lemma 3.5. Let p : rG → G be an elementary double cover. Then p is relatively connected, but for any

undilated edge e P E(G) the double cover pe : rGe → Ge is not relatively connected.

Proof. If p is of the first type, then G consists of the dilation subgraph Gdil together with a number
of undilated trees attached to it. Hence for any undilated edge e, the graph Ge has two connected
components, one of which is a tree with no dilation. Hence pe is not relatively connected since a
tree has no nontrivial free double cover.

Similarly, if p is free and g(G) = 1, then Ge is either a tree or a disjoint union of a genus one
graph and a tree, and in both cases pe is not relatively connected. �

The next lemma shows that no other double covers have this property.

Lemma 3.6. Let p : rG→ G be a double cover of connected graphs of any of the following three types:

(1) p is dilated and Gdil is not connected.

(2) p is dilated, Gdil is connected, and g(G) ą g(Gdil).

(3) p is free and g(G) ě 2.

There exists an undilated edge e P E(G) such that pe : rGe → Ge is relatively connected.
13



Proof. If Gdil has two distinct connected components, choose a path between them consisting of
undilated edges, and let e be any edge on this path. The graph Ge may be disconnected (if e is a
bridge), but each of its connected components has dilation, hence pe is relatively connected.

If Gdil is connected but g(G) ą g(Gdil), then the graph obtained by contracting Gdil to a single
vertex has genus g(G) − g(Gdil) ą 0 and hence a nontrivial cycle. Let e be an (undilated) edge
on this cycle. Removing e from the original graph G does not disconnect it, hence pe is relatively
connected since Ge has dilation.

Finally, if p is free, then there is a simple cycle C on G such that the restriction of p to C is not
trivial. If g(G) ě 2, we can also find a non-bridge edge e P G that does not lie on C. Removing e
does not disconnect G, and the cover pe remains relatively connected. �

We now prove that M˚(rG{G) is a matroid by showing that it is the dual of the signed graphic
matroid of Zaslavsky. For the convenience of the reader, we give the bases of the matroid
M˚(rG{G) as a separate definition.

Definition 3.7. Let p : rG → G be a nontrivial double cover of a connected graph G, let F Ă

Eud(G) be a set of undilated edges, let G\F = G1 Y ¨ ¨ ¨ YGk be the decomposition into connected
components, and let pi : p−1(Gi) → Gi be the restrictions of p. The set F is called an odd genus one

decomposition, or ogod for short, if each pi is an elementary double cover.

Remark 3.8. This terminology was introduced in [LZ22] in the context of free double covers. If
p : rG→ G is free, then each pi : p−1(Gi) → Gi is a non-trivial double cover of a genus one graph
by a genus one graph, corresponding to the nontrivial (i.e. odd) element of H1(Gi,Z{2Z) = Z{2Z.
If p is edge-free, then each Gi may also be viewed as a genus one graph by assigning each dilated
vertex an intrinsic genus. Hence the acronym “ogod”. The terminology breaks down for double
covers with edge dilation, however, we generally do not consider such covers (see Lemma 4.1).

Proposition 3.9. Let p : rG→ G be a nontrivial double cover of a connected graph G. Then M˚(rG{G) is

a matroid of rank g(rG) − g(G) on the set Eud(G) of undilated edges of G, whose bases are the ogods of p.

Proof. It follows immediately from Lemmas 3.5 and 3.6 that a subset F Ă Eud(G) is a basis, in
other words a maximal independent set of M˚(rG{G), if and only if each pi is an elementary
double cover. To show that M˚(rG{G) is a matroid, we show that its bases are the complements
of the bases of the matroid M(Σ) of a signed graph Σ defined by Zaslavsky in [Zas82]. We recall
the definitions. Consider a tuple Σ = (V, E,A, F, σ) of the following kind:

(1) V and E are respectively the vertex and edge sets of a graph G 1, which is not necessarily
connected. The set of connected components of G 1 is denoted π(Σ).

(2) A is a set of half-arcs, equipped with a root map r : A → V(G 1). An element e P A is
an edge having one end rooted on the graph G 1 and one loose end. When speaking of
connected components of G 1, we include the half-arcs rooted on it.

(3) F is a set of free loops, which are edges with no root vertices.
(4) σ : E Y F → {˘1} is a partial parity assignment on the edges, taking values σ(f) = +1 on

all f P F.

The set of arcs of Σ is EYAY F and it is the ground set of the matroid M(Σ). A closed edge path
e1 ¨ ¨ ¨ en in G 1 is called balanced if σ(e1) ¨ ¨ ¨ σ(en) = 1. A set of arcs is called balanced if it contains
no half-arcs and if every closed path in it is balanced. The set of connected components of G 1

whose arc set is balanced is denoted πb(Σ).
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The bases of the matroid M(Σ) are defined by Theorem 5.1 in [Zas82] (we note that part (g)
of Theorem 5.1, which specifically defines bases, is inaccurately stated, and was subsequently
corrected in [Zas83]). A set S Ă EYAY F is a basis if the following conditions hold:

(1) For each balanced component B P πb(Σ), the edges of S in B form a spanning tree for B.
(2) Each unbalanced connected component of the subgraph induced by S is either a tree

together with a unique half-arc, or a genus one graph with unbalanced cycle and no
half-arcs.

(3) S contains no free loops.

Now let p : rG → G be a double cover. We define the associated tuple Σ = (V, E,A, F, σ) as
follows:

(1) The graph G 1 is the free subgraph Gfr Ă G, and σ : E → {˘1} is the parity assignmend
defining the free double cover p|p−1(Gfr)

: p−1(Gfr) → Gfr with respect to some choice of
vertex labeling (see Section 2.1 for details).

(2) The half-arcs A are the undilated edges having one free root vertex on Gfr and one dilated
root vertex (which we discard).

(3) The free loops F are the undilated edges both of whose root vertices are dilated.

In other words, we delete the dilated vertices and edges fromG, and leave dangling any undilated
edges with missing root vertices, so that Eud(G) = EY AY F according to whether an undilated
edge loses none, one, or both root vertices.

Suppose further that G is connected. If p is free and nontrivial, then G 1 = G is the unique
(unbalanced) connected component, and there are no half-arcs or free loops. If p is dilated, then
each connected component of G 1 has at least one half-arc (an undilated edge with one dilated
and one undilated root vertex) or is a free loop. We see that πb(Σ) is empty in both cases.

Now let F Ă Eud(G) be a basis of M˚(rG{G), let G\F = G1 Y ¨ ¨ ¨Gk be the decomposition
into connected components, and let pi : p−1(Gi) → Gi be the corresponding elementary double
covers. If pi is of the first type, then Gi consists of its dilation subgraph (Gi)dil with a number
of attached undilated trees. Removing (Gi)dil, each tree acquires a unique half-arc, and no free
loops are formed. If pi is of the second type, then Gi is a genus one graph and its unique cycle
is unbalanced because the free double cover pi is nontrivial. Hence Eud(G)\F is a basis of the
signed graphic matroid M(Σ). Reversing this construction, we see that all bases are obtained in
this way. Hence M˚(rG{G) is the dual matroid to M(Σ).

To complete the proof, we show that the rank of M˚(rG{G) is equal to g(rG) − g(G). We use
the construction of Example 2.2. Let pef : rGef → Gef be the edge-free double cover obtained
from p : rG → G by contracting each of the n connected components of Gdil to a separate dilated
vertex. The matroids M˚(rG{G) and M˚(rGef{Gef) are canonically isomorphic. Indeed, G and Gef

have the same set of undilated edges, and for any F Ă Eud(G) = Eud(Gef), the connected com-
ponets of Gef\F are obtained from the connected components of G\F by contracting the dilated
edges. Hence F is independent for M˚(rG{G) if and only if it is independent for M˚(rGef{Gef).
Furthermore, g(rGef) − g(Gef) = g(rG) − g(G), since both rG and G lose genus equal to the total
genera of the components of Gdil.

Now let pfree : rGfree → Gfree be the free double cover obtained by resolving the n dilated vertices
ofGef. Then g(Gfree) = g(Gef)+n and g(rGfree) = g(rGef)+n, so g(rGfree)−g(Gfree) = g(rGef)−g(Gef).
Furthermore, under the natural inclusion Eud(Gef) Ă Eud(Gfree), any basis of M˚(rGef{Gef) is also
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Figure 3. 1-circuits of M˚(rG{G). Boxes denote arbitrary connected graphs. The
curved edge on the target may or may not be a loop.

a basis of M˚(rGfree{Gfree). Hence it is enough to prove the assertion for the free double cover
pfree : rGfree → Gfree. Let F Ă E(Gfree) = Eud(Gfree) be a basis ofM˚(rGfree{Gfree), then the connected
components Gfree\F = G1Y ¨ ¨ ¨ YGk all have genus one. Since the quantity g(¨)− 1 = |E(¨)|− |V(¨)|

is additive in connected components, it follows that

rkM˚(rG{G) = |F| = g(Gfree)−1−

kÿ

i=1

(

g(Gi)−1
)

= g(Gfree)−1 = g(rGfree)−g(Gfree) = g(rG)−g(G).

�

As an illustration, and for future reference, we describe the 1-circuits and 2-circuits of the
signed cographic matroid M˚(rG{G). A 1-circuit is an undilated edge e P Eud(G) whose removal
relatively disconnects the double cover. Figure 3 shows the two topological types of 1-circuits
of M˚(rG{G), depending on whether or not removing e disconnects the target graph G. In the
second diagram, the edge e may or may not be a loop.

Similarly, a 2-circuit is a subset {e, f} Ă Eud(G) whose removal relatively disconnects p but
such that neither {e} nor {f} is a 1-circuit. There are four topological types of 2-circuits, illustrated
on Figure 4, where the curved edges may or may not represent loops. We label the edges of the
2-circuit with multiplicities that are used to define the 2-simplification of the matroid M˚(rG{G)

(see Definition 5.1 for details, or simply note that an edge is labeled by a 2 if it is a bridge and 1
otherwise).

3.3. The dual matroid M(rG{G). In this section, we describe the signed graphic matroid M(rG{G),
which is the dual of the signed cographic matroidM˚(rG{G), in terms of the double cover rG→ G.
We first give a description of its bases, independent sets, and circuits. As motivation, recall that
a set of edges F Ă E(G) of a graph G is independent for the graphic matroid if the subgraph G[F]
induced by F is a forest, or equivalently if the group H1

(

G[F],Z
)

is trivial. We now show that a
similar statement holds for M(rG{G) as well.

Proposition 3.10. Let p : rG → G be a double cover and let F Ă Eud(G) be a set of undilated edges. Let

G[F] = G1Y ¨ ¨ ¨ YGk be the connected component decomposition of the subgraph G[F] generated by F, and

let p[F] : p−1(G[F]) → G[F] and pi : p
−1(Gi) → Gi denote the restrictions of p.

(1) F is a basis of M(rG{G) if and only if G[F] contains all undilated vertices of G and each pi is an

elementary double cover.

(2) F is independent if and only if the map p[F]˚ : H1
(

p−1(G[F]),Z
)

→ H1
(

G[F],Z
)

induced by p[F]

is injective.
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2 2
1 1

1
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1

1

Figure 4. 2-circuits of M˚(rG{G). Boxes denote arbitrary connected graphs. Num-
bers indicate multiplicities (see Definition 5.1).

(3) F is a circuit if and only if G[F] = G1 is connected, has no undilated vertices of valency one, and

either g(G[F]) = 1 and p[F] is the trivial free double cover (type I on Figure 5), or p[F] is one of

types II-VI shown on Figure 5.

Proof. The bases ofM(rG{G) are the complements of the bases of M˚(rG{G) in the set of undilated
edges Eud(G), so Part (1) is simply a restatement of Proposition 3.9. To prove Part (2), we note
that (pi)˚ is injective if pi is an elementary double cover, and that this property is preserved if
additional edges are removed. Hence p[F]˚ is injective for any independent set F. Conversely, it
is easy to see (for example, from the explicit description of the kernel given in Propositions 4.19
and 4.20 in [RZ22]) that if (pi)˚ is not injective, then either pi is a trivial double cover of a graph
Gi of genus g(Gi) ě 1, or else it is one of the three types listed in Lemma 3.6. In either case, it is
clear that F is not contained in a basis of M(rG{G), hence it is dependent.

We now describe the circuits of M(rG{G). Looking at each of the six double covers shown
in Figure 5, we see that the pushforward map on homology is not injective, but becomes so if
any edge is removed. Hence each of the double covers represents a minimal dependent set of
M(rG{G), in other words a circuit.

Conversely, let F be a dependent set of M(rG{G). We remove edges from F to find a minimal
dependent set. Since p[F]˚ is not injective, we can assume without loss of generality that (p1)˚ is
not injective and replace F by E(G1). If G[F] has an undilated cycle with disconnected preimage,
then we can remove all other edges and obtain a circuit of type I. If it does not, then it is one of
the three types listed in Lemma 3.6, and it is then elementary to verify that the circuits of types
II-VI are the minimal double covers of the types given in the lemma. �
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Figure 5 shows the six topological types of circuits of the signed graphic matroid M(rG{G).
Undilated vertices of valency 2 are not shown, so a single edge in the picture may represent a
chain of edges in G. Bold dots represent dilated vertices. In each type, the pushforward map
p[C]˚ : H1

(

p−1(G[C]),Z
)

→ H1
(

G[C],Z
)

has one-dimensional kernel, and the indicated cycle
γC P H1

(

p−1(G[C]),Z
)

is a generator.

4. Recovering the Prym variety from the matroid

In this section, we explain how to reconstruct the principalized Prym variety Prymp(
rΓ{Γ) of a

double cover π : rΓ → Γ of metric graphs from the signed graphic matroid equipped with certain
additional decorations. We always implictly choose a model for the double cover, and by abuse of
notation denote its signed graphic and cographic matroid by M(rΓ{Γ) and M˚(rΓ{Γ). To motivate
the reconstruction procedure, we first recall how to reconstruct the Jacobian variety of a metric
graph from the graphic matroid.

4.1. Matroidal reconstruction of Jacobian and Prym: an overview. Let Γ be a metric graph.
Choose an orientation for Γ . Given a circuit C of the graphic matroid M(Γ), there exists a simple
cycle δC =

ř
δC(e) ¨ e in H1(Γ,Z) supported on C with δC(e) = ˘1 for all edges e P C. The cycle

δC is unique up to sign. While the support of δC can be determined from M(Γ), the signs of its
coefficients depend on the chosen orientation and are determined by the condition that δC is a
closed cycle. This information is not contained in M(Γ).

To make the construction fully matroid-theoretic, we use the chosen orientation on Γ to define
the structure of an oriented matroid

−→
M(Γ) on M(Γ) (see Example 4.6 or [BLVS+99, Section 1.1]).

The coefficients of the cycles δC are then simply the signs with which the edges of C occur in an
oriented circuit

−→
C of

−→
M(Γ) with underlying (unoriented) circuit C.

It is an elementary fact that the cycles
{
δC : C P C

(

M(Γ)
)}

are a spanning set for H1(Γ,Z).
Moreover, we can choose a basis as follows. Let B = {e1, . . . , eg} be a basis of the cographic
matroid M˚(Γ), so that T = Γ\B is a spanning tree. For each i = 1, . . . , g let Ci be the unique
circuit of M(Γ) supported on T Y {ei}, then the cycles δCi

form a basis for H1(Γ,Z). Therefore, we
can associate a pptav Jac

(−→
M(Γ)

)

to the oriented matroid
−→
M(Γ) equipped with the edge length

function ℓ : E(Γ) → Rą0, and Jac
(−→
M(Γ)

)

is isomorphic to the Jacobian Jac(Γ).
However, even more is true. The graph Jacobian Jac(Γ) does not depend on the choice of orien-

tation of Γ . By [BL78, Corollary 6.2.8], graphic matroids have a unique reorientation class, hence
any oriented matroid having underlying matroid M(Γ) is in fact obtained from an orientation
of Γ . Therefore, we can construct Jac

(−→
M(Γ)

)

directly from the matroid M(Γ) by choosing any
structure of an oriented matroid, completely bypassing graphs. The resulting object, which we
denote Jac(M(Γ)), is isomorphic to the Jacobian Jac(Γ) of any graph whose matroid is isomorphic
(in a way that preserves edge lengths) to M(Γ). We summarize the reconstruction procedure in
the following diagram:
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Type I Type II

re−
re+ re+1

re−2

re+3re−1

re+2

re−3

e

e1
e2 e3

γC = re+ − re− γC = −(re+1 − re−1 ) + 2(re+2 − re−2 ) + (re+3 − re−3 )

Type III Type IV

re+1 re+2re−1 re−2

re+1

re−1

re+2re−2

e1 e2
e1 e2

γC = (re+1 − re−1 ) − (re+2 − re−2 ) γC = 2(re+1 − re−1 ) + (re+2 − re−2 )

Type V Type VI

re−
re+

re−

re+

e
e

γC = re+ − re− γC = re+ − re−

Figure 5. Circuits of the signed graphic matroid. Undilated vertices of valency 2
are not shown. Bold dots represent dilated vertices. The cycle γC is the funda-
mental cycle associated to C (see Definition 4.2).
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In this section, we describe an analogue of the fundamental cycle construction to determine
the principalized Prym variety Prymp(

rΓ{Γ) of a double cover π : rΓ → Γ from the signed graphic

matroid M(rΓ{Γ) and its dual M˚(rΓ{Γ):

oriented
double cover

oriented signed
graphic matroid
+ index function

double cover signed graphic matroid
+ index function

tropical Prym variety

orient cover ?

First, it is necessary to equip M˚(rΓ{Γ) with an auxiliary index function, this is explained in
Section 4.3. We then explain in Section 4.4 how an orientation of the double cover determines
an orientation on M(rΓ{Γ) and M˚(rΓ{Γ). We then construct the Prym variety Prymp(

rΓ{Γ) from

the oriented matroid
−→
M(rΓ{Γ), the index function, and the edge length function. Unlike the case

of graphs, it is not true that all orientations of M(rΓ{Γ) come from a choice of orientation on the
double cover (for example, we show in Section 5.2 that U2,4 is a signed graphic matroid, and
[GRS95, Example 1] shows that U2,4 has three reorientation classes). Hence we are not presently
able to fully reconstruct Prymp(

rΓ{Γ) solely from the matroid M(rΓ{Γ), we still need to retain the
reorientation class that is determined by the double cover. In addition, we are not currently able
to recover the induced polarization and reconstruct the non-principally polarized Prym(rΓ{Γ).

4.2. The fundamental cycle construction. In this section, we describe an analogue of the fun-
damental cycle construction for double covers. We first observe that the dilated edges of G do
not contribute to the matroid M(rG{G), and we show that they are not seen by the Prym variety
either.

Lemma 4.1. Let π : rΓ → Γ be a double cover of metric graphs and let πef : rΓef → Γef be the edge-free

double cover obtained by contracting all dilated edges of Γ (see Example 2.2). Then the signed graphic

matroids and the Prym varieties of the two double covers are isomorphic:

M(rΓ{Γ) – M(rΓef{Γef), Prym(rΓ{Γ) – Prym(rΓef{Γef), Prymp(
rΓ{Γ) – Prymp(

rΓef{Γef).

Proof. We already established that M(rΓ{Γ) – M(rΓef{Γef) in the last part of the proof of Propo-
sition 3.9. To prove that the Pryms are isomorphic, we consider what happens when a single
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dilated edge e is contracted. Let πe : rΓe → Γe be the double cover obtained by contracting e.
There are natural surjective contraction maps H1(rΓ ,Z) → H1(rΓe,Z) and H1(Γ,Z) → H1(Γe,Z),
given by setting the corresponding edges to zero. If γ is a cycle in Ker

(

H1(rΓ ,Z) → H1(Γ,Z)
)

,
then e does not occur in γ, hence γ corresponds to an element of Ker

(

H1(rΓe,Z) → H1(Γe,Z)
)

,
and therefore the two kernels are identified by the contraction maps. We similarly identify
(Cokerπ˚)tf and (Cokerπ˚

e )
tf, and it is clear that the pairings and polarizations agree. Hence we

have Prym(rΓ{Γ) – Prym(rΓe{Γe) and therefore Prymp(
rΓ{Γ) – Prymp(

rΓe{Γe) as well. �

By Lemma 4.1 it is possible to restrict attention to edge-free double covers, in other words
replace each connected component of the dilation subgraph by a single dilated vertex. We now
recall the notation for Kerp˚ of a double cover p : rG → G introduced in Sections 2.2 and 2.7.
Recall that we chose a labeling p−1(v) = {rv˘} of the undilated vertices v P V(G)\V(Gdil). We

then label p−1(h) = {rh˘} the preimages of the undilated half-edges, and require r(rh˘) = Ąr(h)
˘

if an undilated half-edge is rooted at an undilated vertex. The involution on rG is given by a

parity assignment σ : Eud(G) → {˘1} via ι(rh˘) = Ąι(h)
˘σ(e)

, where σ(h) = σ
(

ι(h)
)

= σ(e) for
an edge e =

{
h, ι(h)

}
P E(G), and we can further relabel to assume that σ(e) = +1 if e has at

least one dilated root vertex. Choosing consistent orientations for rG and G determines a labeling
p−1(e) = {re+,re−} for undilated edges e P Eud(G), and we represent elements γ P Kerp˚ as chains
on the target graph (see Equation (4)):

γ =
ÿ

ePE(G)

γ(e) ¨ (re+ − re−) =
ÿ

ePE(G)

γ(e) ¨ e P C1(G,Z).

A chain γ P C1(G,Z) represents an element of Kerp˚ if the above expression is closed as a chain
on rG. This is most conveniently stated in the language of oriented matroids, which we introduce
in Section 4.4.

We observed in Proposition 3.10 that a set F Ă E(G) is dependent for the signed graphic
matroid M(rG{G) if and only if the induced map p[F]˚ on homology has nontrivial kernel. If F is
a circuit, in other words a minimal dependent set, then the kernel is one-dimensional and has a
unique generator up to sign.

Definition 4.2. Let p : rG→ G be an oriented double cover, let C be a circuit of the signed graphic
matroid M(rG{G), and let p[C] : p−1(G[C]) → G[C] be the restriction of p. The fundamental cycle

γC associated to C

γC =
ÿ

ePE(G)

γC(e) ¨ (re+ − re−) =
ÿ

ePE(G)

γC(e) ¨ e

is the unique (up to sign) generator of Kerp[C]˚.

Figure 5 shows the six circuit types and gives formulas for the fundamental cycles. Specifically,
define the cycles γ 1

C P Kerp˚ by the formulas

γ 1
C(e) =






˘2, if e P C is a bridge of G[C],

˘1, if e P C is not a bridge of G[C],

0, if e R C,

(8)
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where the signs are chosen in such a way that γ 1
C is closed. Then it is easy to see that

γC =
γ 1
C

gcd
{∣
∣γ 1
C(e)

∣

∣ : e P C
} =

{
γ 1
C, if C is of types I-V,

γ 1
C{2, if C is of type VI.

(9)

4.3. The index function. We now describe the additional decorations of the signed cographic
matroid of a double cover that are needed to determine the coefficients of the cycles γC, and
hence reconstruct Kerp˚ and the Prym variety.

Equation (8) tells us that we need a way to detect whether an edge e of a circuit is a bridge
or not. This information is contained in the matroid M(G), but not in M(rG{G). Instead, we
observe that Equation (7) for the volume of the Prym (in contrast to Equation (6) for the Jacobian)
contains an extra quantity, namely the index of an ogod, which must therefore play a role in the
reconstruction. We now extend this function from the ogods, which are the bases of M˚(rG{G),
to all independent sets of M˚(rG{G).

Definition 4.3. For a double cover p : rG → G, we endow the matroid M˚(rG{G) with the index

function defined as

ind : I
(

M˚(rG{G)
)

−→ Zą0, F Þ−→ number of connected components of G\F.

We emphasize that the index function is defined graph-theoretically and cannot be computed
from the matroid M˚(rG{G). In particular, when counting the connected components of G\F,
isolated dilated vertices are taken into account, so Zaslavsky’s definition of M˚(rG{G) cannot
be used to determine the index. We collect some basic properties of the index function in the
following lemma, which we leave without proof.

Lemma 4.4. Let p : rG → G be a double cover of graphs, let M˚ = M˚(rG{G) be the signed cographic

matroid, and let ind be the index function. Then the following hold.

(1) If F P I(M˚) and F 1 Ă F, then ind(F 1) ď ind(F).
(2) For every F P I(M˚) we have ind(F) ď rkM˚ + 1. If F is a basis then we also have d(rG{G) ď

ind(F).
(3) If B,B 1 P B(M˚) differ by only one element, then

∣

∣ ind(B 1) − ind(B)
∣

∣ ď 1.

Let C be a circuit of the signed graphic matroid M(rG{G). We now show how to determine the
absolute values of the coefficients of the fundamental cycle γC P Kerp˚. Let e P C be an edge.
The set C\{e} is independent in M(rG{G) and is contained in a basis E(G)\F, where F Ă E(G)

is an ogod. Each connected component of G\F contains a unique undilated cycle or a dilated
component, but not both. Hence if e P C is a bridge, then the two connected components of C\{e}
lie in different connected components of G\F. In other words, e is a bridge of C if and only if G\F
has one more connected component than G \

(

F\{e}
)

. Therefore, we have proved the following.

Proposition 4.5. Let p : rG → G be a double cover and let C be a circuit of the signed graphic matroid

M(rG{G). Then the absolute values of the coefficients in Equation (8) can be computed as

∣

∣γ 1
C(e)

∣

∣ =

{
2ind(F)−ind(F\{e}), if e P C,

0, else,

where F is any ogod such that C\{e} Ă E(G)\F.
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4.4. Oriented matroids. To reconstruct the signs of the coefficients γC(e) of the fundamental
cycles, it is convenient to use the language of oriented matroids. We recall the definitions (a
standard reference is [BLVS+99]).

Given a finite set E = {e1, . . . , en}, a signed subset
−→
S of E is a subset of E+ \ E−, where E+ =

{e+1 , . . . , e
+
n } and E− = {e−1 , . . . , e

−
n } are copies of E. For a signed subset

−→
S of E define

‚ the opposite set −
−→
S =

{
e+ : e− P

−→
S
}

Y
{
e− : e+ P

−→
S
}

,
‚ the underlying set S =

{
e : e+ P

−→
S or e− P

−→
S
}

, and
‚ the positive (resp. negative) part S+ =

{
e : e+ P

−→
S
}

(resp. S− =
{
e : e− P

−→
S
}

).

It is understood that the underlying sets of S+ and S− are disjoint. Therefore, for e P E we write

−→
S (e) =






+1, if e+ P
−→
S ,

−1, if e− P
−→
S ,

0, otherwise.

For our purposes, it is convenient to define an oriented matroid
−→
M on the ground set E in terms

of its oriented circuits C(
−→
M), a family of signed subsets of E satisfying the following axioms:

(1) H R C(
−→
M).

(2) If
−→
S P C(

−→
M) then −

−→
S P C(

−→
M).

(3) For
−→
S ,

−→
T P C(

−→
M) with S Ă T we have either

−→
S =

−→
T or

−→
S = −

−→
T .

(4) For all
−→
S ,

−→
T P C(

−→
M) with

−→
S ‰ ˘

−→
T and e P S+ X T− there exists

−→
U P C(

−→
M) such that

U+ Ă (S+ Y T+) \ {e} and U− Ă (S− Y T−) \ {e}.

For any oriented matroid
−→
M on E, there is an underlying matroid M on E whose circuits are

the underlying sets C of the oriented circuits
−→
C P C(

−→
M). Furthermore, for every circuit C of M

there are precisely two circuits
−→
C 1,

−→
C 2 P C(

−→
M) with underlying set C and

−→
C 1 = −

−→
C 2. A matroid

M is called orientable if there is an oriented matroid
−→
M having underlying matroid M.

In [Zas91], Zaslavsky described how to orient the signed graphic matroid of a signed graph,
and here we translate his construction into the language of double covers. To simplify exposition,
we first describe how to orient the graphic matroid of an ordinary graph.

Example 4.6. Let G =
(

V(G), H(G), r, ι
)

be a graph. An orientation on G is defined by a function
o : H(G) → {˘1} on the half-edges satisfying the property

o(h)o
(

ι(h)
)

= −1 (10)

for any edge e = {h, h 1} P E(G). We view a half-edge h P H(G) rooted at v = r(h) as pointing
towards v if o(h) = +1 and away from v if o(h) = −1. With respect to this choice of orientation,
we can define the simplicial chain complex of G as

d : ZE(G) −→ Z
V(G), e Þ−→

ÿ

hPe

o(h) ¨ r(h),

and the simplicial homology group as

H1(G,Z) = Kerd =






ÿ

ePE(G)

γ(e) ¨ e P Z
E(G) :

ÿ

hPTvG

o(h)γ(h) = 0 for all v P V(G)





,

where γ(h) = γ(e) for h P e. Each circuit C of M(G) supports a primitive cycle δC P H1(G,Z),
unique up to sign, such that δC(e) = ˘1 for all e P C and 0 otherwise. The circuits

−→
C = C+ \C−
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of the oriented graphic matroid
−→
M(G) of the oriented graph G have the form

C+ =
{
e P C : δC(e) = +1

}
and C− =

{
e P C : δC(e) = −1

}
,

where C ranges over the circuits of M(G) and δC is one of the two primitive cycles supported
on C. It is elementary to verify that

−→
M(G) is an oriented matroid on the ground set E(G),

having underlying matroid M(G). The cycles δC can be recovered from
−→
M(G) up to sign and

span H1(G,Z). Hence the oriented matroid
−→
M(G) determines, after choosing a length function

ℓ : E(G) → Rą0, the tropical Jacobian.

We now consider a double cover p : rG → G. Choose an orientation for G, in other words
choose a function o : H(G) → {˘1} satisfying Equation (10). This induces an orientation on rG,
and in terms of the labeling introduced in Section 4.2, any element γ P Kerp˚ has the form

γ =
ÿ

ePEud(G)

γ(e) ¨ (re+ − re−).

Denoting γ(h) = γ(e) when h P e, it is then elementary to verify that

Kerp˚ =






ÿ

ePEud(G)

γ(e) ¨ (re+ − re−) :
ÿ

hPTvG

τ(h)γ(h) = 0 for all v P V(G)\V(Gdil)





(11)

where the function τ : Hud(G) → {˘1} is defined by

τ(h) =

{
σ(e), if o(h) = 1 and h P e,

−1, if o(h) = −1.

The function τ satisfies
τ(h)τ

(

ι(h)
)

= −σ(e)

and defines an orientation of the signed graph (G,σ) (see Equation (2.2) in [Zas91]). This in turn de-
fines the structure of an oriented matroid

−→
M(rG{G) onM(rG{G), and hence an induced orientation

on M˚(rG{G), as follows (see Theorem 3.3 in [Zas91]). Given an orientation τ : Hud(G) → {˘1},
Equation (11) determines which 1-chains supported on Eud(G) represent elements of Kerp˚. In
particular, given a circuit C P C

(

M(rG{G)
)

, we can now determine the signs of the coefficients of
the fundamental cycle γC, the absolute values having been determined in Section 4.3:

γC =
ÿ

ePEud(G)

−→
C (e)

∣

∣γC(e)
∣

∣ ¨ e =
ÿ

ePEud(G)

−→
C (e)

∣

∣γC(e)
∣

∣ ¨ (re+ − re−). (12)

The functions
−→
C (e) then represent the two oriented circuits of

−→
M(rG{G) lying over C, for the two

possible generators γC of Kerp[C]˚.

4.5. Reconstructing the Prym variety from the matroid. We now explain how to recover the
Prym variety of a double cover π : rΓ → Γ from the signed graphic matroid M(rΓ{Γ) equipped
with the index function ind : I

(

M˚(rΓ{Γ)
)

→ Zą0, orientation
−→
M(rΓ{Γ), and edge length function

ℓ : E(Γ) → Rą0. The circuits C P C
(

M(rΓ{Γ)
)

determine fundamental cycles γC P Kerπ˚. Specifi-
cally, the index determines the

∣

∣γC(e)
∣

∣ by Equation (9) and Proposition 4.5, while the orientation
determines the signs by Equation (12). This data is sufficient to reconstruct Kerπ˚.

Proposition 4.7. The lattice Kerπ˚ Ă H1(rΓ ,Z) of a double cover π : rΓ → Γ is spanned by the fundamen-

tal cycles γC, where C ranges over the circuits of M(rΓ{Γ).
24



Proof. By definition, γC P Kerπ˚ for all circuits C of M(rΓ{Γ). Conversely, let π : rΓ → Γ be
a double cover. If the dilation index d(rΓ{Γ) = 1, then in fact Kerπ˚ has a basis consisting of
fundamental cycles γC obtained by choosing an ogod F Ă B

(

M˚(rΓ{Γ)
)

of minimal index; we
prove this in Proposition 4.14. Hence we assume that d(rΓ{Γ) ą 1. Let γ P Kerπ˚. Choose an
edge e1 P Eud(Γ) lying on a type VI circuit C1 (for example, choose any path connecting distinct
connected components of Γdil). Then γC1

(e1) = ˘1, and we choose γC1
so that γC1

(e1) = 1. We
then have γ = γ(e1)γC1

+ γ1, where γ1 P Kerπ˚ and is supported on Γ\{e1}.
We now remove e1 from Γ and proceed by induction to obtain γ =

ř
γ(ei)γCi

+ γ 1, where
each γCi

is a type VI circuit and γ 1 P Kerπ˚ is supported on the disconnected graph Γ 1 =

Γ\{e1, . . . , ek}, which has no type VI circuits. It follows that each connected component of Γ 1

has connected dilation subgraph and hence dilation index one, so the restriction of γ 1 to each
connected component lies in the span of the fundamental circuits by Proposition 4.14. This
completes the proof. �

For the reconstruction of Prymp(
rΓ{Γ) it is convenient to collect all the necessary matroidal data

in a definition.

Definition 4.8. Consider the following data:

‚ A signed graphic matroid M on a ground set E, together with an orientation
−→
M induced

by an oriented double cover representing M.
‚ An index function ind : I(M˚) → Zą0 induced from the oriented double cover represent-

ing
−→
M.

‚ An edge length function ℓ on E.

We define a pptav
(

Λ,Λ, [¨, ¨]
)

, which depends on all of this data but which we simply denote
Prym(M). For each circuit C P C(M), let γC P Z

E be the fundamental cycle given by Equation (12).
We let Λ be the lattice spanned in Z

E by the γC for C ranging over the oriented circuits of M, and
define the pairing to be

[γC1
, γC2

] =
ÿ

ePE

2γC1
(e)γC2

(e)ℓ(e). (13)

Finally, the polarization ξ : Λ→ Λ is the identity map.

We now state the main result of our paper.

Theorem 4.9. Let π : rΓ → Γ be a double cover of metric graphs. Choose an orientation for π, and let

M = M(rΓ{Γ) be the signed graphic matroid of π with induced orientation
−→
M. Let ind : I(M˚) → Zą0

be the index function and let ℓ : E(Γ) → Rą0 be the edge length function. Then Prym(M) is a pptav and

Prymp(
rΓ{Γ) – Prym(M)

as pptavs. In particular, Prym(M) only depends on the reorientation class of
−→
M and not on

−→
M itself.

Proof. Recall that the Prym variety Prym(rΓ{Γ) is the polarized tropical abelian variety defined
by the lattices K = (Cokerπ˚)tf, K 1 = Kerπ˚, and the pairing [¨, ¨] and polarization ξ : K 1 → K

induced by the integration pairing and polarization on rΓ . The principalization Prymp(
rΓ{Γ) is

obtained by replacing K by the image Imξ. By Proposition 4.7, K 1 = Imξ = Λ is the lattice
spanned by the fundamental cycles γC corresponding to the oriented circuits of M. To verify
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that (13) is the pairing on Prymp(
rΓ{Γ) given in Equation (5), we simply note that

[re+1 − re−1 ,re+2 − re−2 ] =
{
2ℓ(e1), if e1 = e2,

0, if e1 ‰ e2

for any two undilated edges e1, e2 P Eud(Γ). In particular, Prym(M) is a pptav and does not
change under reorientation of M, which is equivalent to reorienting the cover rΓ → Γ . �

Remark 4.10. We note that we are not currently able to reconstruct, directly from the matroid, the
Prym variety Prym(rΓ{Γ), except in the following two cases. Recall that the induced polarization
on Prym(rΓ{Γ) has type (1, . . . , 1, 2, . . . , 2), where the number of 1s is equal to d(rΓ{Γ) − 1. If
d(rΓ{Γ) = 1 (in other words, if π : rΓ → Γ is free or has connected dilation subgraph), then the
induced polarization is twice a principal polarization, and we can reconstruct K by doubling
the lattice K 1 = Kerπ˚. On the other hand, if d(rΓ{Γ) = g(rΓ) − g(Γ) + 1 (equivalently, if Γ is a
tree, as in Example 4.12), then the induced polarization on Prym(rΓ{Γ) is already principal and
Prymp(

rΓ{Γ) = Prym(rΓ{Γ). We also note that the dilation index d(rΓ{Γ) (and hence the polarization

type) can in fact be read off the indexed matroid M(rΓ{Γ) as the minimal index of an ogod
F P B

(

M˚(rΓ{Γ)
)

(see Lemma 4.4 and Lemma 4.13).

The following is an immediate consequence of Theorem 4.9.

Corollary 4.11. Let πi : rΓi → Γi for i = 1, 2 be double covers. Let (Mi,
−→
Mi, indi, ℓi) be the associated

matroidal data packages, i.e. Mi =M(rΓi{Γi) with oriented matroid structure
−→
Mi induced by the choice of

some orientation on πi, indi is the index function on M˚
i and ℓi the edge-length function on Mi. If there is

an isomorphism of the matroidal data packages, i.e. a bijection Eud(Γ1) → Eud(Γ2) commuting with the ℓi
which induces a bijection I(M˚

1 ) → I(M˚
2 ) commuting with the indi and which induces an isomorphism

between
−→
M1 and a reorientation of

−→
M2 then Prymp(

rΓ1{Γ1) – Prymp(
rΓ2{Γ2) as pptavs.

A natural question is to what extent a double cover can be recovered from the associated
matroid (cf. Problem 5.1 in [Zas82]). We give an example, and explore this question from a
matroid-theoretic perspective in Section 5.

Example 4.12. Consider a double cover π : rΓ → Γ where Γ is a tree consisting of n undilated edges
all of length 1, and such that every vertex is dilated. We claim that all such covers have the same
Prym variety. Indeed, since all vertices are dilated, removing edges never relatively disconnects
π. Therefore the signed cographic matroid M˚(rΓ{Γ) = Un,n is uniform, and the index function is
ind(F) = |F| + 1, neither of which depend on the tree Γ . Moreover, since Un,n is in fact a graphic
matroid, it is uniquely orientable up to reorientation. This shows that up to reorientation the
matroidal package of π depends only on n, and we conclude from Corollary 4.11 that any two
double covers π1 and π2 of the aforementioned form have the same Prym variety.

4.6. Effective reconstruction and a basis of fundamental cycles. In Theorem 4.9 we reconstruct
the principalized tropical Prym variety from the matroidal data of the double cover, by con-
sidering the fundamental cycles corresponding to all circuits of M(rΓ{Γ). This procedure is not
computationally effective. In the case of graphs, to reconstruct the Jacobian, it is sufficient to use
the circuits associated to a single spanning tree, obtained by adding each of the complementary
edges one by one. We now explore whether an analogous construction produces the Prym va-
riety. In Lemma 4.4, we noted that the index function on a basis of M˚(rG{G) is bounded from
below by the dilation index d(rG{G). We now show that this bound is sharp.
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Figure 6. Double cover with no ogod producing a basis for Kerp˚

Lemma 4.13. Let p : rG → G be a double cover with d(rG{G) = 1 (so p is either free or has connected

dilation subgraph). Then there exists an ogod F Ă E(G) of index one.

Proof. If p is free, we pick an odd cycle on G, having connected preimage in rG. We then construct
F by iteratively removing edges of G without disconnecting G or breaking the chosen cycle. If p
is dilated with connected dilation subgraph, we assume for simplicity that p is edge-free with a
unique dilated vertex. Then F is the set of edges in the complement of any spanning tree. �

We now show that a basis for Kerp˚ can be constructed by starting with an ogod of index one.
This gives an exact analogue for Pryms of the fundamental cycle construction for Jacobians.

Proposition 4.14. Let p : rG→ G be a double cover, and suppose that F = {e1, . . . , eh} Ă E(G) is an ogod

of index one. For each i = 1, . . . , h, let Ci denote the unique circuit of M(rG{G) in G\FY {ei}. Then the

fundamental cycles γCi
are a basis for Kerp˚ .

Proof. By Lemma 4.4 the index function is monotonous, so ind(F) = 1 implies that ind(F\{ei}) = 1
for all i = 1, . . . , h. Hence Proposition 4.5 shows that γCi

(ei) = ˘1, and we choose signs so that
γCi

(ei) = 1. In addition, ej R Ci and therefore γCi
(ej) = 0 for j ‰ i.

Now let γ P Kerp˚. Since F is an ogod, the map p−1(G\F) → G\F is injective on H1. Hence
γ = 0 if γ(ei) = 0 for all i. It follows that

γ = γ(e1)γC1
+ ¨ ¨ ¨ + γ(eh)γCh

,

and therefore the γCi
are a basis. �

The argument above shows that the fundamental cycles γCi
associated to an ogod F of index

ind(F) ě 2 are linearly independent and span a finite index sublattice of Kerp˚. The index of
this lattice in Kerp˚ does not seem to be directly related to ind(F). For example, the unique ogod
of Example 4.12 has index n but gives a basis for Kerp˚. On the other hand, Figure 6 gives an
example of a double cover with dilation index two for which no ogod gives a basis for Kerp˚.
Hence the fundamental cycle construction using a single ogod cannot generally be used when
the dilation subgraph is disconnected.
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5. Invariance of Prymp(
rΓ{Γ) under the simplification of M˚(rΓ{Γ)

The papers [CV10] and [BMV11] considered the tropical Torelli problem, in other words
whether and to what extent a metric graph Γ can be reconstructed from its Jacobian Jac(Γ).
The authors reconstruct Jac(Γ) from the graphic matroid M(Γ) and show that the Jacobian does
not change when M(Γ) is replaced by its simplification, and that conversely the simplification
class of the matroid determines the Jacobian.

In this section, we construct the simplification of the signed cographic matroid M˚(rΓ{Γ) of
a double cover of metric graphs π : rΓ → Γ , and show that Prymp(

rΓ{Γ) does not change under
simplification. We then give an example of two double covers having non-isomorphic simple
matroids but isomorphic Pryms, contrary to the case of Jacobians. Hence the fibers of the tropical
Prym–Torelli map are not fully described by the simplification procedure.

5.1. Simplification of the signed cographic matroid. We recall that the simplification Msim of a
matroid M is given by deleting all 1-circuits, and then iteratively deleting elements in 2-circuits
until there are no more 2-circuits. For the cographic matroid M˚(Γ), the simplification M˚

sim(Γ) is
obtained by contracting all bridges in Γ , and an edge e1 in each pair {e1, e2} of separating edges.
It is shown in [CV10] that if we also set the new length of e2 to be ℓ(e1) + ℓ(e2), then Jac(Γ) does
not change.

We now adapt this procedure to the signed cographic matroid M˚(rΓ{Γ) of a double cover
π : rΓ → Γ of metric graphs. A circuit of M˚(rΓ{Γ) is a minimal set of undilated edges F of Γ
such that the restricted cover π−1(Γ\F) → Γ\F is not relatively connected. The types of the 1-
and 2-circuits of M˚(rΓ{Γ) are shown on Figures 3 and 4. We label the edges of a 2-circuit with
multiplicities as follows.

Definition 5.1. Let fi be an edge lying in a 2-circuit F = {f1, f2} of the signed cographic matroid
M˚(rΓ{Γ). The multiplicity of fi is

mult(fi) = 2ind({fi})−ind(H) = 2ind({fi})−1 P {1, 2}.

We note that mult(f) = 2 if and only if f is a bridge edge of Γ . We now define a non-canonical
simplification process for double covers of metric graphs.

Definition 5.2. Let π : rΓ → Γ be a double cover of metric graphs. The simplification πsim : rΓsim →

Γsim of π is defined as follows. First, we contract all edges of Γ that are 1-circuits of M˚(rΓ{Γ) (see
Figure 3). Then, for every 2-circuit {f1, f2} of M˚(rΓ{Γ) (see Figure 4), we contract one of the edges,

say f1, and redefine the length of the other edge to be ℓ(f2) +
(

mult(f1)
mult(f2)

)2
ℓ(f1). The contracted

edge can be chosen arbitrarily except for a 2-circuit {f1, f2} with mult(f1) = 2 and mult(f2) = 1

(lower left diagram on Figure 4), for which we always contract the edge f1 having multiplicity 2.

By construction,M˚(rΓsim{Γsim) is the simplification ofM˚(rΓ{Γ). We note that we do not contract
a loop whose preimage is a pair of parallel edges, except for the 2-circuit on the top right of
Figure 4. This type of circuit only occurs for free double covers, and the resulting contraction
is a double cover with a single dilated vertex. Therefore, simplification does not change the
dilation index of a double cover. We now show that the Prym variety does not change under
simplification.

Theorem 5.3. Let π : rΓ → Γ be a double cover of metric graphs and let πsim : rΓsim → Γsim be a

simplification of π. Then Prymp(
rΓ{Γ) – Prymp(

rΓsim{Γsim).
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Proof. Choose an orientation for the double cover π. This induces oriented matroid structures on
M(rΓ{Γ) andM˚(rΓ{Γ). By [BLVS+99, Theorem 3.4.3] for every oriented circuit

−→
C P C

(−→
M(rΓ{Γ)

)

and

every oriented circuit
−→
D P C

(−→
M

˚
(rΓ{Γ)

)

, either CXD = H or there are distinct edges e, f P CXD

such that
−→
C (e)

−→
D(e) = −

−→
C (f)

−→
D(f). This implies that if D = {f} is a 1-circuit of M˚(rΓ{Γ), then

f does not lie in any circuit of M(rΓ{Γ). But the Prym variety is generated by the fundamental
cycles of the circuits of M(rΓ{Γ), and thus contracting f does not change the Prym variety.

Now let D = {f1, f2} be a 2-circuit of M˚(rΓ{Γ) and let C1, C2 be any circuits of M(rΓ{Γ), possibly
C1 = C2. We show that the pairing (5)

[γC1
, γC2

] =
ÿ

ePE(Γ)

2γC1
(e)γC2

(e)ℓ(e) =
ÿ

ePC1XC2

2
∣

∣γC1
(e)
∣

∣

∣

∣γC2
(e)
∣

∣

−→
C 1(e)

−→
C 2(e)ℓ(e)

does not change under the suggested contraction of f1. If C1 X C2 XD = H then neither f1 nor
f2 contribute to [γC1

, γC2
], so we assume without loss of generality that f1 P C1 X C2, and hence

f2 P C1 X C2 as well by the aforementioned theorem. Still without loss of generality we may
assume that

−→
C 1(f1) =

−→
C 2(f1) (if not, simply replace

−→
C 1 with −

−→
C 1) and hence

−→
C 1(f1)

−→
C 2(f1) = 1.

It follows that

−
−→
C 1(f2)

−→
D(f2) =

−→
C 1(f1)

−→
D(f1) =

−→
C 2(f1)

−→
D(f1) = −

−→
C 2(f2)

−→
D(f2),

and hence
−→
C 1(f2) =

−→
C 2(f2) and

−→
C 1(f2)

−→
C 2(f2) = 1 as well. Therefore, the combined contribution

from f1 and f2 to [γC1
, γC2

] is equal to

2
∣

∣γC1
(f1)

∣

∣

∣

∣γC2
(f1)

∣

∣ℓ(f1) + 2
∣

∣γC1
(f2)

∣

∣

∣

∣γC2
(f2)

∣

∣ℓ(f2). (14)

We now contract f1 and rescale the length of f2 to ℓ 1(f2) = ℓ(f2) +
(

mult(f1)
mult(f2)

)2

ℓ(f1). Denote

C 1
1 = C1\{f1} and C 1

2 = C2\{f1} the contractions of C1 and C2, respectively. Orientations are

preserved under contraction, hence
−→
C

1

1(f2)
−→
C

1

2(f2) =
−→
C 1(f2)

−→
C 2(f2) = 1 and the contribution from

f2 to [γC 1

1
, γC 1

2
] is equal to

2
∣

∣γC 1

1
(f2)

∣

∣

∣

∣γC 1

2
(f2)

∣

∣ℓ 1(f2) = 2
∣

∣γC 1

1
(f2)

∣

∣

∣

∣γC 1

2
(f2)

∣

∣

(

mult(f1)
mult(f2)

)2

ℓ(f1) + 2
∣

∣γC 1

1
(f2)

∣

∣

∣

∣γC 1

2
(f2)

∣

∣ℓ(f2). (15)

To show that the right hand side of (15) is equal to (14), it is enough to check for any circuit
C P M(rΓ{Γ) containing D = {f1, f2} and contracting to C 1 = C\{f1}, we have

∣

∣γC(f2)
∣

∣ =
∣

∣γC 1(f2)
∣

∣ and
∣

∣γC(f1)
∣

∣ =
∣

∣γC 1(f2)
∣

∣

mult(f1)
mult(f2)

.

This can be verified on a case-by-case basis by comparing types of 2-circuits ofM˚(rΓ{Γ) (Figure 4)
and circuits ofM(rΓ{Γ) (Figure 5). Hence the Prym variety does not change when f1 is contracted.
Proceeding in this manner, we see that Prymp(

rΓsim{Γsim) is isomorphic to Prymp(
rΓ{Γ). �

5.2. The Prym does not determine the simplified matroid. We now show that, unlike the case
of graphs, double covers with non-isomorphic simple matroids may still have isomorphic Prym
varieties.

Consider the double cover π : rΓ → Γ depicted on Figure 7 on the left, with edges E(Γ) =

{e1, e2, e3, e4} of lengths xi = ℓ(ei). The signed graphic matroid M(rΓ{Γ) – U2,4 is the uniform
matroid of rank 2 on 4 elements and its dual M˚(rΓ{Γ) = U˚

2,4 = U2,4 is simple. To compute the
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e1

e2

e3

e4

f1

f2

f3

Figure 7. Double covers with isomorphic Pryms and non-isomorphic simple ma-
troids.

Prym variety, we apply Proposition 4.14 to the index-1 ogod {e3, e4}. We obtain the following
basis for Kerπ˚:

γ1 = e1 + e2 + e3, γ2 = e1 + 2e2 + e4

Thus the pairing [¨, ¨] on Prymp(
rΓ{Γ) has Gram matrix
(

x1 + x2 + x3 x1 + 2x2
x1 + 2x2 x1 + 4x2 + x4

)

.

Now we study the double cover σ : r∆→ ∆ on the right of Figure 7 with edges E(∆) = {f1, f2, f3}

of lengths ℓ(fj) = yj. This time the signed graphic matroid is M(r∆{∆) = U1,3 and again the dual
matroid M˚(r∆{∆) = U˚

1,3 = U2,3 is simple, but obviously U2,3 fl U2,4. The ogod {f2, f3} produces
the basis

δ1 = f1 + f2, δ2 = 2f1 + f3

for Kerσ˚, and the Gram matrix of the pairing is
(

y1 + y2 2y1
2y1 4y1 + y3

)

.

It is elementary to verify that the two Gram matrices are equal, and hence Prymp(
rΓ{Γ) –

Prymp(
r∆{∆), for appropriate positive values of xi and yi.
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