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A discrete analogue of the modified Novikov-Veselov hierarchy

D.V.Zakharov ∗

Abstract

We construct a discrete analogue of the integrable two-dimensional Dirac operator and describe

the spectral properties of its eigenfunctions. We construct an integrable discrete analogue of the

modified Novikov-Veselov hierarchy. We derive the first two equations of the hierarchy and give

explicit formulas for the eigenfunctions in terms of the theta-functions of the associated spectral

curve.

1 Introduction

The purpose of this paper is to construct a discrete analogue of the modified Novikov-Veselov hierarchy
and its algebro-geometric solutions, and to describe the spectral theory of the corresponding discrete
Dirac operator.

The modified Novikov–Veselov (mNV) hierarchy is an integrable hierarchy of equations introduced
by Bogdanov in [1], [2] as a special reduction of the Davey–Stewardson equation. The equations of
the hierarchy have the form of Manakov L,A,B-triples

∂L

∂tn
= [L,An] − BnL, (1.1)

where L = D is the two-dimensional Dirac operator

Dψ =

(

u ∂
−∂̄ u

)(

ψ1

ψ2

)

, (1.2)

and An and Bn are (2 × 2)-matrix differential operators. The mNV hierarchy describes deformations
of the Dirac operator that preserve the zero energy level, i.e. isospectral deformations of the equation

Dψ = 0. (1.3)

The first equation of the hierarchy has the form

ut =

(

uzzz + 3uzv +
3

2
uvz

)

+

(

uz̄z̄z̄ + 3uz̄v +
3

2
uvz̄

)

, vz̄ = (u2)z. (1.4)

In [3], [4] Taimanov constructed algebro-geometric solutions of the mNV hierarchy and described
the spectral theory of the Dirac operator (1.2). In recent times, the mNV hierarchy and its algebro-
geometric solutions have attracted significant attention due to their applications to the classical theory
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of two-dimensional surfaces in three-dimensional Euclidean space, and in particular to the Willmore
conjecture (see the survey [5] for an extensive bibliography).

It is possible to consider a more general two-dimensional Dirac operator of the form

D =

(

u ∂
−∂̄ v

)

. (1.5)

The spectral theory of the two-dimensional Dirac operator (1.5) is equivalent to that of the two-
dimensional scalar Schrödinger operator in a magnetic field

H = ∂∂̄ + V ∂̄ + U. (1.6)

The reduction of the Dirac operator (1.5) to the form (1.2) corresponds to a reduction on the
Schrödinger operator in which the functions U and V satisty the relation

V = −∂ lnU. (1.7)

The analytic properties of Baker–Akhiezer functions which describe general Schrödinger operators of
the form (1.6) that are integrable on the zero energy level were formulated in [10]. The reductions
on the algebro-geometric data that describe the potential Schrödinger operator (V = 0), which is the
auxiliary operator for the Novikov–Veselov hierarchy, were found in [8], [9].

The problem of constructing an integrable discretization of an integrable differential equation is
not well-posed and does not have a universal solution. However, there are several methods in soliton
theory that allow us to construct integrable discretizations. Most of them are based on constucting a
discrete analogue of the auxiliary linear problems, which involves an appropriate deformation of the
analytic properties of the solutions of these linear problems.

In the finite-gap case, the eigenfunction of the auxiliary linear differential operator, known as
the Baker–Akhiezer function, is defined on an algebraic Riemann surface and is required to have
exponential singularities controlled by the continuous variables at one or more marked points of the
surface. To construct a discrete analogue of the operator, we replace each exponential singularity
with a pair of meromorphic singularities consising of a pole and a zero of the same order, which
we consider as the discrete variable. This deformed eigenfunction then satisfies a infinite system of
linear difference and differential equations, whose compatibility conditions are the discretization of the
original integrable hierarchy. This method was used for constructing algebro-geometric solutions of
the Ablowitz–Ladik equation [11], [12], which is a discretization of the nonlinear Schrödinger equation,
and for constructing Darboux–Egoroff lattices, which are the discrete analogue of Darboux–Egoroff
metrics [6].

Using this approach, Grushevsky and Krichever have given an algebro-geometric construction of an
integrable discretization of the two-dimensional Schrödinger operator (1.6). In the second paragraph,
we describe a matrix variant of this construction, which leads to a two-dimensional matrix difference
operator of the form

Dψ =

[(

T2 0
0 T1

)

−

(

α β
γ δ

)](

ψ1

ψ2

)

, (1.8)

where the functions ψi and the coefficients of the operator are functions of two discrete variables
n,m ∈ Z, and T1, T2 denote the translation operators in the discrete variables. The operator D, which
we call the discrete Dirac operator, can be considered as a discrete analogue of the general Dirac
operator of the form (1.5).
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The coefficients of a discrete Dirac operator (1.8) depend, up to gauge transformation, on two
arbitrary functions of the discrete variables. In the second paragraph, we show that a discretization
of the algebro-geometric data corresponding to operators of the form (1.2) leads to operators whose
coefficients depend on only one arbitrary function, namely operators of the form

Dψ =

[(

T2 0
0 T1

)

−

(

α β
β α

)](

ψ1

ψ2

)

, (1.9)

where the coefficients satisfy the relation

α2 − β2 = 1 (1.10)

In the third paragraph we introduce time dependence into the eigenfunctions and construct an inte-
grable hierarchy of isospectral deformations of the zero energy level of the operator (1.9). We call
this hierarchy, which has the form of Manakov L,A,B-triples, the discrete modified Novikov-Veselov
hierarchy.

In the fourth paragraph we derive the explicit form of the first two equations of the hierarchy
(equations (4.22), (4.24), (4.26)). The first equation has the following form:

∂ψ(n,m)

∂τ 1
1

=
√

(e2ϕ(n−1,m+1) − e2ϕ(n−1,m)) (e−2ϕ(n,m) − e−2ϕ(n,m+1)), (1.11)

where the two functions satisfy the non-local relation

ϕ(n,m+ 1) − ϕ(n,m) = ψ(n+ 1, m) − ψ(n,m). (1.12)

In the final paragraph we give explicit formulas for the Baker–Akhiezer functions in terms of theta-
functions associated to the spectral curve.

2 Reduction of general discrete Dirac operators

Consider the following discrete linear equation

Dψ =

[(

T2 0
0 T1

)

−

(

α β
γ δ

)](

ψ1

ψ2

)

= 0, (2.1)

where ψ = (ψ1(n,m), ψ2(n,m))T is a vector function of two discrete variables n,m ∈ Z, and

(

α β
γ δ

)

=

(

α(n,m) β(n,m)
γ(n,m) δ(n,m)

)

(2.2)

is a (2 × 2)-matrix function of the discrete variables. We call D the discrete Dirac operator. We use
T1 and T2 to denote the translation operators in the discrete variables

T1f(n,m) = f(n+ 1, m), T2f(n,m) = f(n,m+ 1), (2.3)

while t1 and t2 will be used to denote the translated functions, so that for example T1(fg) = (t1f)(t1g).
In this chapter, we construct algebro-geometric solutions of equation (2.1) and some of its reductions.

The main method of constructing algebro-geometric solutions of linear differential or difference
equations such as (2.1) is to consider functions ψi defined on an auxiliary Riemann surface, called
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the spectral curve, and having certain prescribed singularities on that curve. Generally, to construct
solutions of difference equations, we consider functions that are meromorphic on the spectral curve
with prescribed pole singularities, while constructing solutions of differential equations requires us to
consider functions with prescribed essential singularities, called Baker-Akhiezer functions.

Let X be a smooth Riemann surface of genus g. We consider the following data on X:
Data A.

• Four distinct marked points P±
1 , P

±
2 on X.

• Local parameters z±i = (k±i )−1 defined in some neighborhoods of these points.

• An effective divisor D = γ1 + · · ·+ γg+1 of degree g + 1 on X, supported away from the marked
points, which satisfies the following condition of general position:

h1(D + (n− 1)P+
1 − nP−

1 + (m− 1)P+
2 −mP−

2 ) = 0 for all n,m ∈ Z. (2.4)

To construct solutions of equation (2.1), we consider spaces of meromorphic functions on X with
singularities controlled by the discrete variables:

Ψn,m = H0(D + nP+
1 − nP−

1 +mP+
2 −mP−

2 ) ⊂ Mer(X), n,m ∈ Z.

The Riemann-Roch theorem implies the following

Proposition 1 Suppose that X is an algebraic curve with data A defined above. Then each of the
spaces Ψn,m is two-dimensional:

dim Ψn,m = h0(D + nP+
1 − nP−

1 +mP+
2 −mP−

2 ) = 2 for all n,m ∈ Z,

the intersection of two of these spaces at adjacent lattice points is one-dimensional:

dim Ψn,m ∩ Ψn,m−1 = h0(D + nP+
1 − nP−

1 + (m− 1)P+
2 −mP−

2 ) = 1 for all n,m ∈ Z,

dim Ψn,m ∩ Ψn−1,m = h0(D + (n− 1)P+
1 − nP−

1 +mP+
2 −mP−

2 ) = 1 for all n,m ∈ Z,

and these two one-dimensional subspaces of Ψn,m span the entire space, i.e. their intersection is trivial:

dim Ψn,m ∩ Ψn,m−1 ∩ Ψn−1,m = h0(D + (n− 1)P+
1 − nP−

1 + (m− 1)P+
2 −mP−

2 ) = 0 for all n,m ∈ Z.

Therefore, we can fix a basis ψ1(n,m, P ), ψ2(n,m, P ) in each of the spaces Ψn,m by letting ψ1(n,m, P )
be any non-zero element of Ψn,m ∩ Ψn,m−1, and letting ψ2(n,m, P ) to be any non-zero element of
Ψn,m ∩ Ψn−1,m:

ψ1(n,m, P ) ∈ H0(D + nP+
1 − nP−

1 + (m− 1)P+
2 −mP−

2 ) − {0}, (2.5)

ψ2(n,m, P ) ∈ H0(D + (n− 1)P+
1 − nP−

1 +mP+
2 −mP−

2 ) − {0}. (2.6)

The principal observation concerning these functions can be summarized in the following statement:
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Proposition 2 Suppose that X is a Riemann surface with data A as defined above. Then there
exist functions α(n,m), β(n,m), γ(n,m), δ(n,m) such that the functions ψ1(n,m, P ) and ψ2(n,m, P )
defined by (2.5)-(2.6) satisfy the Dirac equation:

Dψ =

[(

T2 0
0 T1

)

−

(

α(n,m) β(n,m)
γ(n,m) δ(n,m)

)](

ψ1(n,m, P )
ψ2(n,m, P )

)

= 0. (2.7)

Proof. Indeed, by construction, both ψ1(n,m+1, P ) and ψ2(n+1, m, P ) actually lie in the space Ψn,m,
hence they can be expressed as linear combinations of the basis functions ψ1(n,m, P ) and ψ2(n,m, P ),
which is equivalent to saying that the satisfy the Dirac equation (2.7).

Therefore, a Riemann surfaceX together with the additional data given above allows us to construct
a family of solutions (ψ1(n,m, P ), ψ2(n,m, P ))T of the Dirac equation (2.1), parametrized by the points
P of X.

In order to construct reductions on the Dirac equation (2.7), we first express the coefficients α(n,m),
β(n,m), γ(n,m) and δ(n,m) in terms of the principal parts of the basis functions at the marked
points. In terms of the chosen local coordinates, the basis functions ψ1(n,m, P ) and ψ2(n,m, P ) have
the following expansions at the marked points, where k denotes the appropriate local parameter ki±:

ψ1(n,m, P ) =















a+
1 (n,m)kn +O(kn−1), as P → P+

1

a−1 (n,m)k−n +O(k−n−1), as P → P−
1

O(km−1), as P → P+
2

a−2 (n,m)k−m +O(k−m−1), as P → P−
2

(2.8)

ψ2(n,m, P ) =















O(kn−1), as P → P 1
+

b−1 (n,m)k−n +O(k−n−1), as P → P 1
−

b+2 (n,m)km +O(km−1), as P → P 2
+

b−2 (n,m)k−m +O(k−m−1), as P → P 2
−

(2.9)

where the a±i (n,m) and b±i (n,m) are functions of the discrete variables n and m. Considering the
Dirac equation (2.7) near the marked points P±

1 , P
±
2 gives us the following system of equations (in

what follows, we usually suppress the indices n and m and replace them with the shift operators t1
and t2):

t2a
+
1 = αa+

1 ,
t2a

−
1 = αa−1 + βb−1 ,

0 = αa−2 + βa+
2 ,

0 = γa−1 + δb−1 ,
t1b

+
2 = δb+2 ,

t1b
−
2 = γa−2 + δb−2 .

(2.10)

The functions ψ1 and ψ2 have so far been defined up to multiplication by a constant factor dependent
on n and m. We impose the following additional condition on the functions ψ1 and ψ2:

a+
1 a

−
1 = 1, b+2 b

−
2 = 1. (2.11)

It is easy to show using (2.10) that these conditions imply the following relations on the coefficients
α, β, γ, δ:

αδ − βγ =
α

δ
=
δ

α
=

(t2a
+
1 )(t1b

−
2 )

a+
1 b

−
2

= ±1. (2.12)

Condition (2.11) defines the constants a+
1 and b−2 , and hence the functions ψ1 and ψ2, only up to a

factor of ±1 that depends on n and m. This allows us to impose the following additional condition on
the functions ψ1 and ψ2:

(t2a
+
1 )(t1b

−
2 ) = a+

1 b
−
2 . (2.13)
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In other words, we can choose the sign for the function ψ2 arbitrarily, and then choose the sign for
the function ψ1 using the above relation. With this condition, the sign in equation (2.12) is positive.
Therefore, reductions (2.11) and (2.13) impose the following relations on the coefficients of the Dirac
operator (2.7):

αδ − βγ = 1, α = δ (2.14)

In other words, the coefficients of a general Dirac operator of the form (2.7) depend, up to gauge
equivalence, on two arbitrary functions of the discrete variables.

We now introduce a reduction under which the coefficients of the Dirac operator (2.7) depend on
only one function of the variables n, m. Suppose that, in addition to data A described above, the
spectral curve X has the following
Data B.

• A holomorphic involution σ :X → X that interchanges the marked points and the local param-
eters at the marked points as follows:

σ(P±
i ) = P∓

i , σ(k±i ) = k∓i . (2.15)

• A meromorphic 1-form ω on X which has simple poles at the marked points P±
i with residues

±1 and no other singularities, whose zero divisor is D+ σ(D), and which is odd with respect to
the involution.

Consider the meromorphic 1-form ψ1(n,m, P )ψ2(n,m, σ(P ))ω(P ). Comparing the singularities of the
three terms, we see that this 1-form has simple poles at P+

1 and P−
2 with residues a+

1 b
−
1 and −a−2 b

+
2 ,

respectively, and no other singularities. Hence, the existence of the additional data above implies that
the coefficients of the functions ψ1 and ψ2 satisfy the following additional condition:

a+
1 b

−
1 = a−2 b

+
2 . (2.16)

Using (2.10) and (2.11), it is easy to show that this condition implies the following additional relation
on the coefficients of the Dirac operator:

β = γ. (2.17)

Using the involution σ we can rewrite the normalization conditions (2.11) and (2.13) in the following
equivalent form:

ψ1(P )ψ1(σ(P ))|P=P+

1

= 1, (2.18)

ψ2(P )ψ2(σ(P ))|P=P+

2
= 1, (2.19)

t2ψ1(P )

ψ1(P )

∣

∣

∣

∣

P=P+

1

=
t1ψ2(P )

ψ2(P )

∣

∣

∣

∣

P=P−

2

. (2.20)

Therefore, we can summarize the result of this reduction as follows.

Proposition 3 Suppose that X is a Riemann surface with data A and data B as defined above, and
suppose the functions ψ1(P ) and ψ2(P ) defined by (2.5) and (2.6) satisfy the normalization conditions
(2.18)-(2.20). Then there exist functions of the discrete variables α and β that satisfy the relation

α2 − β2 = 1 (2.21)

and such that the functions ψ1(P ) and ψ2(P ) satisfy the discrete Dirac equation:

Dψ =

[(

T2 0
0 T1

)

−

(

α β
β α

)](

ψ1(P )
ψ2(P )

)

= 0. (2.22)
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We now construct a further reduction of the discrete Dirac equation (2.22) which is the discrete
analogue of the real-valued reduction in the differential case. Suppose that, in addition to data A and
data B above, the spectral curve X has the following
Data C.

• An anti-holomorphic involution τ :X → X that interchanges the marked points and acts on the
local parameters at the marked points as follows:

τ(P±
1 ) = P±

2 , τ(P±
2 ) = P±

1 , τ(k±1 ) = k̄±2 , τ(k±2 ) = k̄±1 . (2.23)

• A meromorphic function f(P ) on X with divisor (f) = D − τ(D) satisfying the conditions

f(P )f̄(τ(P )) = −1 for all P ∈ X, f(P+
1 )f(P−

1 ) = 1. (2.24)

For a function f(n,m) of the discrete variables, we introduce the notation f ∗(n,m) = f̄(m,n).
Consider the two functions ψ∗

2(n,m, τ(P )) and ψ1(n,m, P )f(P ). Both these functions are meromorphic
and lie in the one-dimensional space H0(τ(D) + (n− 1)P+

2 − nP−
2 +mP+

1 −mP−
1 ), hence there exists

a function C(n,m) of n and m such that

ψ̄2(m,n, τ(P )) = ψ1(n,m, P )f(P )C(n,m). (2.25)

Considering this equation at P = P+
1 and P = P−

1 and using conditions (2.11) and (2.24), we see that

C(n,m)2 = 1 for all n,m ∈ Z. (2.26)

We recall that the function ψ2 was normalized by condition (2.11), which specifies it up to multiplica-
tion by a factor ±1 dependent on n and m. Therefore, we can choose this factor in such a way that
C(n,m) = 1 for all n and m, in other words we may impose the additional following condition:

ψ̄2(m,n, τ(P )) = ψ1(n,m, P )f(P ). (2.27)

Equation (2.24) then implies that the functions ψ1 and ψ2 chosen in this way satisfy the following
relations:

ψ̄2(m,n, τ(P )) = ψ1(n,m, P )f(P ), ψ̄1(m,n, τ(P )) = −ψ2(n,m, P )f(P ). (2.28)

Plugging these relations into the reduced Dirac equation (2.22) gives us the following relations on the
coefficients of the operator:

α∗ = α, β∗ = −β. (2.29)

We summarize the results of this reduction in the following proposition:

Proposition 4 Suppose that X is an algebraic curve with data A, B and C as defined above, and
suppose the functions ψ1(P ) and ψ2(P ) defined by (2.5) and (2.6) satisfy the normalization conditions
(2.18)-(2.20) and (2.27). Then there exist functions of the discrete variables α and β that satisfy the
relations

α2 − β2 = 1, α∗ = α, β∗ = −β (2.30)

that the functions ψ1(P ) and ψ2(P ) satisfy the discrete Dirac equation:

Dψ =

[(

T2 0
0 T1

)

−

(

α β
β α

)](

ψ1(P )
ψ2(P )

)

= 0. (2.31)
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3 The discrete modified Novikov-Veselov hierarchy

In the previous section, we constructed algebro-geometric solutions of the discrete Dirac operator
(2.7) and its reductions (2.22) and (2.31) by considering spaces of meromorphic functions Ψn,m on an
algebraic curve X with poles and zeroes determined by the numbers n and m. In this section, we
embed these meromorphic solutions into a family of transcendental functions, called Baker-Akhiezer
functions, and construct a hierarchy of commuting flows on the space of these functions. The set
of compatibility conditions of these flows is the discrete analogue of the modified Novikov-Veselov
hierarchy.

Let τ = {τ 1
s , τ

2
s , s = 1, 2, . . .} ∈ C

∞ ⊕ C
∞ denote two sequences of complex numbers, only finitely

many of which are non-zero, which we think of as continuous time variables. We construct deformations
Ψn,m,τ of the function spaces Ψn,m constructed in Section 2 by considering functions which in addition
have essential singularities at the marked points controlled by the times τ .

Proposition 5 Suppose that X is an algebraic curve with data A and data B given as in the previous
section. Denote by X̃ = X − P+

1 − P−
1 − P+

2 − P−
2 the curve X with the marked points removed.

Consider the space Ψn,m,τ ∈ Mer(X̃) of functions on X̃ defined by the following conditions

1. For all ψ(n,m, τ ;P ) ∈ Ψn,m,τ we have (ψ) +D ≥ 0, where (f) denotes the divisor of f .

2. At the marked points P±
i the elements ψ(n,m, τ ;P ) of Ψn,m,τ have essential singularities of the

following form, where by k we denote the appropriate local coordinate k±i :

ψ(n,m, τ ;P ) = exp

(

±

∞
∑

s=1

τ 1
s k

s

)

O(k±n) as P → P±
1 ,

ψ(n,m, τ ;P ) = exp

(

±

∞
∑

s=1

τ 2
s k

s

)

O(k±m) as P → P±
2 .

(3.1)

Then each of the spaces Ψn,m,τ is two-dimensional:

dim Ψn,m,τ = 2 for all n,m ∈ Z, (3.2)

the intersection of two of these spaces at adjacent lattice points is one-dimensional:

dim Ψn,m,τ ∩ Ψn,m−1,τ = 1 for all n,m ∈ Z, (3.3)

dim Ψn,m,τ ∩ Ψn−1,m,τ = 1 for all n,m ∈ Z, (3.4)

and these two one-dimensional subspaces of Ψn,m,τ span the entire space, i.e. intersection is trivial:

dim Ψn,m,τ ∩ Ψn,m−1,τ ∩ Ψn−1,m,τ = 0 for all n,m ∈ Z. (3.5)

Proof. The proof of this proposition is a standard application of the Riemann–Roch theorem.
This proposition allows us to define functions ψ1(n,m, τ ;P ) and ψ2(n,m, τ ;P ) using the same

relations as in Section 2. We observe the normalization conditions (2.18)-(2.20) can be applied to
elements of Ψn,m,τ , since the exponential singularities cancel out.
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Proposition 6 There exist unique functions ψ1(n,m, τ ;P ) and ψ2(n,m, τ ;P ) that form a basis for
the vector space Ψn,m,τ such that

ψ1(n,m, τ ;P ) ∈ Ψn,m,τ ∩ Ψn,m−1,τ − {0}, (3.6)

ψ2(n,m, τ ;P ) ∈ Ψn,m,τ ∩ Ψn−1,m,τ − {0}. (3.7)

and which satisfy the normalization conditions (2.18)-(2.20). These functions satisfy the discrete Dirac
equation

Dψ =

[(

T2 0
0 T1

)

−

(

α β
β α

)](

ψ1

ψ2

)

= 0, (3.8)

where α and β are functions of the variables n, m, and τ that satisfy the condition

α2 − β2 = 1. (3.9)

In Section 6, we give explicit formulas for the functions ψi in terms of theta-functions.
We now show that these functions satisfy a system of commuting linear equations. Let R denote

the ring of functions in the variables n, m and τ . We consider the ring O = R[T1, T
−1
1 , T2, T

−1
2 ] of finite

difference operators with coefficients in R, and the ring M of (2×2) matrix operators with coefficients
in O. By ψ we denote the column vector (ψ1(n,m, τ ;P, ψ2(n,m, τ ;P ))T .

Proposition 7 There exist unique matrix difference operators Ais in M

Ais =

(

Ais,1 0
0 Ais,2

)

, i = 1, 2, (3.10)

Ais,j =
s
∑

µ=−s

f is,j,µ(n,m, τ)T
µ
i , (3.11)

such that the functions ψ1(n,m, τ ;P ) and ψ2(n,m, τ ;P ) satisfy the following system of differential
equations:

∂

∂τ is
ψ = Aisψ. (3.12)

Proof. The proof is standard. For a given s we show how to construct the operator A1
s,1, the other

cases being similar.
The derivative of the function ψ1(n,m, τ ;P ) with respect to τ 1

s has the following expansions at the
marked points P±

i , where by k we denote the appropriate local coordinate k±i :

∂

∂τ 1
s

ψ1(n,m, τ ;P ) = exp

(

±
∞
∑

σ=1

τ 1
σk

σ

)

·O(k±n+s) as P → P±
1 , (3.13)

∂

∂τ 1
s

ψ1(n,m, τ ;P ) = exp

(

∞
∑

σ=1

τ 2
σk

σ

)

O(km−1) as P → P+
2 , (3.14)

∂

∂τ 1
s

ψ1(n,m, τ ;P ) = exp

(

−
∞
∑

σ=1

τ 2
σk

σ

)

·O(k−m) as P → P−
2 . (3.15)

9



Therefore, for an appropriate choice of functions f 1
s,i,µ(n,m, τ), the function

ψ̃(n,m, τ ;P ) =
∂

∂τ 1
s

ψ1(n,m, τ ;P ) −
s
∑

µ=−s

f 1
s,1,µ(n,m, τ)ψ1(n + µ,m, τ ;P ) (3.16)

has the following expansions at P±
1 :

ψ̃(n,m, τ ;P ) = exp

(

±

∞
∑

σ=1

τ 1
σk

σ

)

·O(kn−1) as P → P+
1 , (3.17)

ψ̃(n,m, τ ;P ) = exp

(

±

∞
∑

σ=1

τ 1
σk

σ

)

·O(k−n) as P → P−
1 , (3.18)

and the same expansions (3.14)-(3.15) at P±
2 as ∂

∂τ1
s
ψ1(n,m, τ ;P ). Therefore, by (3.5) this function is

identically zero on X. Hence, the function ψ1(n,m, τ ;P ) satisfies the system of equations (3.12).

Proposition 8 The left ideal of matrix difference operators in M that annihilate ψ is the principal
left ideal generated by the operator D.

Proof. Suppose that A and B are two operators in O that satisfy the following equation:

Aψ1 +Bψ2 = 0. (3.19)

We need to show that there exist elements C,D ∈ O such that A = C(T2 − α) − Dβ and B =
−Cβ +D(T1 − α).

First, we multiply equation (3.19) on the left by sufficiently high powers of T1 and T2 so that the
operators A and B become polynomial in T1 and T2. Next, we show that we can eliminate all terms
containing mixed powers of T1 and T2. Indeed, suppose

A =

n−1
∑

i=1

aiT
i
1T

n−i
2 + (terms with no T1T2) + (terms of order < n),

B =
n−1
∑

i=1

biT
i
1T

n−i
2 + (terms with no T1T2) + (terms of order < n),

then we can write

A =
n−1
∑

i=1

[

aiT
i
1T

n−i−1
2 (T2 − α) − biT

i
1T

n−i−1
2 β

]

+ (terms with no T1T2) + (terms of order < n),

B =

n−1
∑

i=1

[

biT
i
1T

n−i−1
2 (T1 − α) − aiT

i
1T

n−i−1
2 α

]

+ (terms with no T1T2) + (terms of order < n),

and proceeding in this way, we can eliminate all terms which are not powers of only T1 or T2. Therefore,
we can assume that A = A1(T1) + A2(T2), B = B1(T1) +B2(T2), where the Ai, Bi are polynomials in
only Ti.
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Suppose that A1 =
∑n

i=0 aiT
i
1 and B1 =

∑m

j=0 bjT
j
1 . Comparing the singularities in (3.19) at the

point P+
1 , we see that m = n + 1. Subtracting bn+1T

n
1 [(T1 − α)ψ2 − βψ1] from (3.19), we reduce the

degree of B1, and hence of A1. In this way we can eliminate A1, and similarly B2. Therefore, we are
left with showing that if A = A2(T2) and B = B1(T1) are linear polynomials satisfying (3.19), then
they can be expressed as A = f(T2 − α) − gβ and B = −fβ + g(T1 − α) for some functions f and g,
which can be easily shown.

Proposition 9 There exist matrix difference operators Bi
s in M such that the following equations are

satisfied:

−
∂

∂tis
D = DAis +Bi

sD (3.20)

Proof. Equations (3.8) and (3.12) imply that

[

∂

∂tis
− Ais, D

]

ψ = 0. (3.21)

Since the operator in the left hand side does not contain derivation in time, it is inside M, hence by
the above proposition it is a left multiple of D, which proves the statement.

Proposition 10 The equations
∂

∂tis
D +DAis ≡ 0 mod D (3.22)

define a commuting hierarchy of differential-difference equations.

We call this system the discrete modified Novikov-Veselov (dmNV) hierarchy. In the next section,
we give the explicit form of the first two pairs of equations of the dmNV hierarchy.

4 First and second equations: explicit forms

In this section, we write down the explicit form of the dmNV hierarchy corresponding to times τ 1
1 , τ 2

1 ,
τ 1
2 and τ 2

2 . We give the explicit calculations for τ 1
1 , the derivations for the other times being similar.

It is difficult to write down the dmNV as they are defined in (3.22), since this involves performing
division with remainder in a matrix algebra over a non-commutative operator ring. To circumvent this
difficulty, we notice that the discrete Dirac equation (3.8), which is a difference equation of degree one
on the two functions ψ1 and ψ2, is equivalent to a degree two difference equation on one of the ψ1 or
ψ2.

Proposition 11 Suppose the functions ψ1 and ψ2 satisfy the discrete Dirac equation (3.8). Then the
functions ψ1 and ψ2 satisfy the following discrete Schrödinger equations

H1ψ1 =

[

T1T2 − (t1α)T1 −
α(t1β)

β
T2 +

t1β

β

]

ψ1 = 0 (4.1)

H2ψ2 =

[

T1T2 − (t2α)T2 −
α(t2β)

β
T1 +

t2β

β

]

ψ2 = 0. (4.2)
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Proof. This follows from excluding ψ1 or ψ2 from the system (3.8).
Conversely, we have an analogue of Proposition 3.4 for the operators Hi:

Proposition 12 The left ideal of difference operators in O that annihilate ψi is the principal left ideal
generated by the operator Hi.

Proof. Suppose that A ∈ O is an operator such that Aψ1 = 0. Then Proposition 3.4 implies that
there exist operators C,D ∈ O such that

A = C(T2 − α) −Dβ, −Cβ +D(T1 − α) = 0.

Expressing C = D(T1 − α)(β)−1 from the second equation and plugging it in to the first, we get that
A = D(t1β)−1H1. The case of ψ2 is similar.

These two propositions allow us to write our hierarchy as a system of rank one difference equations
of degree two.

Proposition 13 The discrete modified Novikov-Veselov hierarchy (3.22) is equivalent to either of the
following two systems of equations

∂

∂τ is
H1 +H1A

i
s,1 ≡ 0 mod H1, (4.3)

∂

∂τ is
H2 +H2A

i
s,2 ≡ 0 mod H2. (4.4)

We now use this approach to construct the equations corresponding to times τ 1
1 , τ 2

1 , τ 1
2 and τ 2

2 .
The functions ψ1 and ψ2 have the following power series expansions at the marked points P±

i ,
where by k we denote the appropriate local coordinate k±i :

ψ1(n,m, τ ;P ) = k±n exp

(

±

∞
∑

σ=1

τ 1
σk

σ

)

·

(

∞
∑

α=0

ξ±1,α(n,m, τ)k
−α

)

as P → P±
1 ,

ψ1(n,m, τ ;P ) = k±m exp

(

±
∞
∑

σ=1

τ 2
σk

σ

)

·

(

∞
∑

α=0

ξ±2,α(n,m, τ)k
−α

)

as P → P±
2 ,

ψ2(n,m, τ ;P ) = k±n exp

(

±
∞
∑

σ=1

τ 1
σk

σ

)

·

(

∞
∑

α=0

χ±
1,α(n,m, τ)k

−α

)

as P → P±
1 ,

ψ2(n,m, τ ;P ) = k±m exp

(

±
∞
∑

σ=1

τ 2
σk

σ

)

·

(

∞
∑

α=0

χ±
2,α(n,m, τ)k

−α

)

as P → P±
2 ,

(4.5)

where the ξ±i,s(n,m, τ) and χ±
i,s(n,m, τ) are analytic functions in the variables τ , and ξ+

2,0 = 0, χ+
1,0 = 0.

To make our notation consistent with (2.8)-(2.9), we denote

a±i = ξ±i,0, b±i = χ±
i,0 (4.6)

c±i = ξ±i,1, d±i = χ±
i,1 (4.7)

Plugging these expressions into (3.8), we see that these coefficients satisfy the following system of
equations:

t2ξ
±
1,α = αξ±1,α + βχ±

1,α (4.8)
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t2ξ
±
2,α±1 = αξ±2,α + βχ±

2,α (4.9)

t1χ
±
1,α±1 = βξ±1,α + αχ±

1,α (4.10)

t1χ
±
2,α = βξ±2,α + αχ±

2,α (4.11)

Also, since the functions ψ1 and ψ2 satisfy the normalization conditions (2.18)-(2.20), we also have

a+
1 a

−
1 = 1, b+2 b

−
2 = 1. (4.12)

We now derive the dmNV equation corresponding to time τ 1
1 using its equivalent form (4.3). Let

ḟ denote differentiation by τ 1
1 . We denote A1

1,1 = AT1 + BT−1
1 + C and H1 = T1T2 + xT1 + yT2 + z.

The equation in time τ 1
1 has the form

− ẋT1 − ẏT2 − ż ≡ (T1T2 + xT1 + yT2 + z)(AT1 +BT−1
1 + C) mod H1. (4.13)

First, we express all of the coefficients of the above equation in terms of the variables a+
1 , b+2 , α and

β. The coefficients x, y, z of H1 were found above in Proposition 4.1:

x = −t1α, y = −
α(t1β)

β
, z =

t1β

β
. (4.14)

To calculate the coefficients of the operator A1
1,1, we use the method of Proposition 3.3. Comparing

singularities, we see that if

A = f 1
1,1,1 =

a+
1

t1a
+
1

, B = f 1
1,1,−1 = −

a−1
t−1
1 a−1

= −
t−1
1 a+

1

a+
1

, (4.15)

then the functions ψ1 and ψ̇1 − AT1ψ1 − BT−1
1 ψ are proportional. Hence we can determine the

third coefficient C = f 1
1,1,0 by comparing these two functions at either P+

2 or P−
2 , which gives us two

alternative expressions:

C = f 1
1,1,0 =

1

c+2

(

∂c+2
∂τ 1

1

−
a+

1

t1a
+
1

t1c
+
2 +

a−1
t−1
1 a−1

t−1
1 c+2

)

=
1

a−2

(

∂a−2
∂τ 1

1

−
a+

1

t1a
+
1

t1a
−
2 +

a−1
t−1
1 a−1

t−1
1 a−2

)

. (4.16)

We first these expressions by removing the coefficients a−2 and c+2 . From the system (4.8-4.11) we get
that c+2 = (t−1

2 β)(t−1
2 b+2 ) and a−2 = −β/(αb+2 ). Using t1b

+
2 = αb+2 , the first expression becomes

C =
t−1
2 β̇

t−1
2 β

+
t−1
2 ḃ+2
t−1
2 b+2

−
a+

1

t1a
+
1

(t−1
2 α)(t1t

−1
2 β)

t−1
2 β

+
t−1
1 a+

1

a+
1

t−1
1 t−1

2 β

(t−1
2 β)(t−1

1 t−1
2 α)

and the second expression becomes

C = f 1
1,1,0 =

β̇

β
−
α̇

α
−
ḃ+2
b+2

−
a+

1

t1a
+
1

t1β

β(t1α)
+
t−1
1 a+

1

a+
1

α(t−1
1 β)

β
.

Expanding the right hand side of (4.13), we get

H1A
1
1,1 = (t1t2A)T 2

1 T2 + x(t1A)T 2
1 + [t1t2C + y(t2A)]T1T2 + [x(t1C) + zA] T1+

+ [t1t2B + y(t2C)]T2 + x(t1B) + zC + y(t2B)T−1
1 T2 + zBT−1

1 .
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This expression is a Laurent polynomial in T1 and T2 whose terms have degrees i and j in T1 and T2,
respectively, where i = −1, 0, 1, 2 and j = 0, 1. We need to express it as a left multiple of H1 plus
an operator containing terms of degrees (0, 0), (0, 1) and (1, 0). First, to cancel the term containing
T 2

1 T2, we subtract the following left multiple of H1:

(t1t2A)T1H1 = (t1t2A)T 2
1 T2 + (t1t2A)(t1x)T

2
1 + (t1t2A)(t1y)T1T2 + (t1t2A)(t1z)T1.

Using (4.1), (4.15) and (4.8), we see that the coefficient in front of T 2
1 in this difference vanishes:

x(t1A) − (t1x)(t1t2A) = −(t1α)
t1a

+
1

t21a
+
1

+ (t21α)
t1t2a

+
1

t21t2a
+
1

= 0.

Similarly, to cancel the term containing T−1
1 T2, we subtract

y(t2B)T−1
1 y−1H1 =

y(t2B)

t−1
1 y

T2 +
y(t2B)

t−1
1 y

(t−1
1 x) + y(t2B)T−1

1 T2 +
y(t2B)

t−1
1 y

(t−1
1 z)T−1

1 ,

and using (4.1), (4.15), (4.8) and the relation (4.12), we show that the coefficient in front of T−1
1

vanishes:

zB −
y(t2B)

t−1
1 y

(t−1
1 z) = 0.

Hence, we see that

H1A
1
1,1 ≡ [t1t2C + y(t2A) − (t1t2A)(t1y)]T1T2 + [x(t1C) + zA− (t1t2A)(t1z)]T1+

+

[

t1t2B + y(t2C) −
y(t2B)

t−1
1 y

]

T2 + x(t1B) + zC −
y(t2B)

t−1
1 y

(t−1
1 x) mod H1.

Finally, to obtain the evolution equation, we subtract [t1t2C + y(t2A) − (t1t2A)(t1y)]H1 from the right
hand side of the equation, and obtain the following equations:

− ẋ = x(t1C) + zA− (t1t2A)(t1z) − x [t1t2C + y(t2A) − (t1t2A)(t1y)] , (4.17)

− ẏ = t1t2B + y(t2C) −
y(t2B)

t−1
1 y

− y [t1t2C + y(t2A) − (t1t2A)(t1y)] , (4.18)

− ż = x(t1B) + zC −
y(t2B)

t−1
1 y

(t−1
1 x) − [t1t2C + y(t2A) − (t1t2A)(t1y)] . (4.19)

Since the coefficients x, y, z of H are expressed in terms of α and β, which are in turn related by
the equation α2 − β2 = 1, it is sufficient to find one of the derivatives, for example ẋ. Expanding
the expression for ẋ and using the expressions for the coefficients x, y, z and A, B, C obtained above
(using the first expression for C in t1t2C and using the second one in t1C), we obtain the following
equation

t1ḃ
+
2

t1b
+
2

=
a+

1

t1a
+
1

β(t1β)

t1α
, (4.20)

which is the first equation of the dmNV hierarchy.
It seems natural to replace the variables a+

1 and b+2 with their logarithms, i.e. to introduce new
variables a+

1 = eϕ and b+2 = eψ. Since α = t2a
+
1 /a

+
1 = t1b

+
2 /b

+
2 , these variables are related by the

equation
t2ϕ− ϕ = t1ψ − ψ. (4.21)
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Writing the evolution equation (4.20) in terms of these new variables, we get

∂ψ

∂τ 1
1

=

√

(

e2t
−1

1
t2ϕ − e2t

−1

1
ϕ

)

(e−2ϕ − e−2t2ϕ) (4.22)

To derive the evolution equation for time τ 2
1 , we use its equivalent form (4.4). The calculations

in this case are identical to those performed above. In fact, since our problem is symmetric with
respect to exchanging the marked points P±

1 and P±
2 , we can obtained the desired equation simply by

exchanging the functions a+
1 and b+2 and simultaneously exchanging the shift operators t1 and t2 in the

evolution equation in time τ 1
1 (4.22). This gives us the following equation:

t2ȧ
+
1

t2a
+
1

=
β(t2β)

t2α

b+2
t2b

+
2

. (4.23)

In terms of the logarithmic variables, this equation reads

∂ϕ

∂τ 2
1

=

√

(

e2t1t
−1

2
ψ − e2t

−1

2
ψ

)

(e−2ψ − e−2t1ψ) (4.24)

The derivation of the equations for times τ 1
2 and τ 2

2 involves similar calculations. For time τ 1
2 , we

use the equivalent form (4.3):

−
∂H1

∂τ 1
2

= H1A
1
2,1 mod H1. (4.25)

Here A2,1 is a Laurent polynomial in T1 with terms of degree −2 to 3. As above, we successively
subtract appropriate left multiples of H1 to cancel the terms containing T i1T2 for i = 3,−2, 2,−1. At
every step, the corresponding T i1 term vanishes. Finally, canceling the T1T2 term gives us the following
equation:

t1ḃ
+
2

t1b
+
2

=
β(t1β)

t1α

1

t1a
+
1

c+1 −
β(t1β)

t1α

a+
1

(t1a
+
1 )(t21a

+
1 )
t21c

+
1 +

β(t21β)

(t1α)(t21α)

a+
1

t21a
+
1

+
α(t−1

1 β)(t1β)

t1α

t−1
1 a+

1

t1a
+
1

, (4.26)

where the functions a+
1 , b+2 , c+1 , α and β in the equation satisfy the following relations:

α =
t2a

+
1

a+
1

=
t1b

+
2

b+2
, α2 − β2 = 1, t2c

+
1 = αc+1 + β(t−1

1 β)(t−1
1 a+

1 ). (4.27)

5 Explicit formulas

In this section we give explicit formulas for the functions ψi(n,m, τ ;P ) in terms of the theta-functions
of the surface X. Choose a basis aj , bj , j = 1, . . . , g of H1(X,Z) with canonical intersection form, i.e.
such that aj ◦ak = 0, bj ◦ bk = 0, aj ◦ bk = δjk. Let B be the period matrix of the curve X with respect
to this basis. Let Ω1

1 and Ω1
2 denote Abelian differentials of the third kind with poles at P±

1 and P±
2 :

Ω1
i = d(k±i )−1

(

∓k±i +O(1)
)

as P → P±
i

which are normalized to have zero periods over the a-cycles. Let Ωs
i denote Abelian differentials of the

second kind with poles at P±
i and principal parts

Ωs
i = d(k±i )−1

(

∓s(k±i )s+1 +O(1)
)

as P → P±
i ,
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and with zero a-periods, and which are odd with respect to the involution σ. It is a standard fact that
these differentials exist and are unique. Let U1

i and Uk
i denote the vectors of the b-periods of these

differentials:

(U1
i )j =

1

2πi

∮

bj

Ω1
i , (Us

i )j =
1

2πi

∮

bj

Ωs
i .

Choose a base point P0 ∈ X away from the marked points P±
i and the divisor D, and let A : X → J(X)

denote the Abel map with base point P0, where J(X) is the Jacobian variety of X. Let θ(z|B) denote
the theta function of J(X) for z ∈ Cg. Introduce the functions

r1(P ) =
θ(A(P ) − A(P+

2 ) −
∑g

i=2A(Pi) −K|B)θ(A(P ) −
∑g+1

i=1 A(Pi) + A(P+
2 ) −K|B)

θ(A(P ) −
∑g

i=1A(Pi) −K|B)θ(A(P ) −
∑g+1

i=2 A(Pi) −K|B)
,

r2(P ) =
θ(A(P ) − A(P+

1 ) −
∑g

i=2A(Pi) −K|B)θ(A(P ) −
∑g+1

i=1 A(Pi) + A(P+
1 ) −K|B)

θ(A(P ) −
∑g

i=1A(Pi) −K|B)θ(A(P ) −
∑g+1

i=2 A(Pi) −K|B)
.

By construction, these are meromorphic functions on X whose pole divisor is D =
∑g+1

i=1 Pi and whose
zero divisors are P+

2 +D1 and P+
1 +D2, respectively, where D1 and D2 are some divisors of degree g.

We define the functions ψ1 and ψ2 by the following formulas:

ψi(n,m, τ ;P ) = ri(P )Ci(n,m, τ)Fi(n,m, τ ;P ) exp

[

n

∫ P

P0

Ω1
1 +m

∫ P

P0

Ω1
2 +

∞
∑

s=1

2
∑

i=1

τ is

∫ P

P0

Ωs
i

]

, (5.1)

where the function F (n,m, τ ;P ) is defined as

Fi(n,m, τ ;P ) =

θ

(

A(P ) −A(Di) + nU1
1 +mU1

2 +
∞
∑

s=1

2
∑

i=1

τ isU
s
i

)

θ (A(P ) −A(Di) −K)

and the path of integration in the exponent is the same as in the Abel map in Fi. By construction,
these are single-valued functions on the curve X, having the required meromorphic and exponential
singularities at the marked points, and having pole divisor D away from the marked points.

The constants Ci(n,m, τ) are determined by the normalization conditions (2.18)-(2.20). Choose
paths of integration γi : [0, 1] → X from P0 to P+

i and a path γ from P0 to σ(P0). We assume that the
integration path in ψi(P ) is γi and that the path in ψi(σ(P )) is γ followed by the image of γi under σ.
Writing out the expression for ψi(P )ψi(σ(P )) using (5.1), we see that we need to choose the constants
Ci(n,m, τ) as follows:

1

Ci(n,m, τ)2
= ri(P

+
i )ri(P

−
i )Fi(n,m, τ ;P

+
i )Fi(n,m, τ ;P

−
i ) exp

[

nI1
i +mI2

i +

∞
∑

s=1

2
∑

i=1

τ is

∫

γ

Ωs
i

]

(5.2)

where the path of integration in the Fi(n,m, τ ;P
−
i ) factor is γ followed by σ(γi), and the constants I1

i

and I2
i are the principal values of the integrals of Ω1

1 and Ω1
2 along the path −γi + γ + σ(γi):

Iki = lim
t→1

(

∫ γ(t)

γ(0)

Ω1
k +

∫

γ

Ω1
k +

∫ σ(γ(t))

σ(γ(0))

Ω1
k

)

, k = 1, 2. (5.3)

Finally, we choose the signs of Ci(n,m, τ) in such a way that the functions ψi satisfy the equation
(2.20).
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