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Abstract

We construct a broad class of solutions of the KP-I equation by using a reduced version of the Grammian form
of the τ-function. The basic solution is a linear periodic chain of lumps propagating with distinct group and wave
velocities. More generally, our solutions are evolving linear arrangements of lump chains, and can be viewed as the
KP-I analogues of the family of line-soliton solutions of KP-II. However, the linear arrangements that we construct for
KP-I are more general, and allow degenerate configurations such as parallel or superimposed lump chains. We also
construct solutions describing interactions between lump chains and individual lumps, and discuss the relationship
between the solutions obtained using the reduced and regular Grammian forms.
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1. Introduction

The Kadomtsev–Petviashvili equation

[ut + 6uux + uxxx]x = −3α2uyy (1)

was derived in [15], and was first mentioned by its current name in [41]. The KP equation is the subject of hundreds of
research papers and several monographs [2, 16, 18, 25, 26]. The KP-I and KP-II forms of the equation are physically
distinct and correspond to α2 = −1 and α2 = 1, respectively.

The KP-I and KP-II equations are universal models describing weakly nonlinear waves in media with dispersion
of velocity. However, from a mathematical point of view they are quite distinct. They have numerous physical
applications, such as the theory of shallow water waves (see, for instance, the monographs [2, 16]) and plasma physics
(Kadomtsev and Petviashvili were both renowned plasma physicists). Both KP-I and KP-II are Hamiltonian systems.
The Cauchy problem for both equations is uniquely solvable for initial data in L1 (see [11, 22, 44]). However, KP-II
is completely integrable, while KP-I, in general, is not (see the paper [40] for the analysis of the difference between
the two equations).

Both versions of the KP equation are solvable using the inverse scattering method. The KP equation is the com-
patibility condition for an overdetermined linear system

αΨy + Ψxx + uΨ = 0, Ψt + 4Ψxxx + 6uΨx + (3ux + 3αw)Ψ = 0, wx + uy = 0. (2)

The Lax representation for KP was found independently by Zakharov and Shabat [41] and Dryuma [10]. For KP-I we
have α = i and Equation (2) is a non-stationary one-dimensional Schrödinger equation with the potential −u, while
α = 1 corresponds to KP-II, and the linear problem is a heat equation with a source term. This fact alone reveals the
substantial underlying difference between the theories of KP-I and KP-II.

The KP-I equation has a rich family of rational solutions, describing the interactions of stable, spatially local-
ized solitons known as lumps. A lump solution of KP-I was first constructed numerically by Petviashvili [31], who
developed an original method for numerically constructing stationary solutions for a wide class of nonlinear PDEs.
Lumps and their interactions were first studied analytically in [23], and received their name in [32], where they were
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constructed using the Hirota transform. Krichever [19, 20] showed that the dynamics of the lumps in KP-I is con-
trolled by the Calogero–Moser system. Lumps with distinct asymptotic velocities retain their velocities and phases
after scattering, but lumps with the same velocity undergo anomalous scattering, and may form bound states known
as multilumps [12, 14, 27, 28, 29, 34]. Lump and multilump solutions of KP-I were described in the framework of the
inverse scattering method in [1, 35].

Unlike the KP-I equation, KP-II is not known to have spatially localized solutions, nor does it have nonsingular
rational solutions. Instead, the KP-II equation has an interesting family of line-soliton solutions. An individual line-
soliton is a translation-invariant traveling wave. When several line-solitons interact, they form complicated evolving
polyhedral arrangements [3, 4, 5, 6, 8] that are described by an elaborate combinatorial theory (see [17] and the
monograph [16]). Line-soliton solutions also exist for KP-I but are unstable with respect to transverse perturbations;
this was shown in the original paper [15] for large perturbations and in [30, 37] for all scales. For stability of three-
dimensional solitons, see [21].

The goal of this paper is to describe a new class of solutions of the KP-I equation, which we call lump chains.
A simple chain consists of lumps evenly spaced along a line, with the lumps propagating with a single velocity at
an arbitrary angle to the line. Lump chains can interact by splitting or merging, and the large-scale structure of
lump chain solutions of KP-I resembles that of the line-soliton solutions of KP-II. However, lump chains may have
degenerate behavior that does not occur with line-solitons, such as parallel and superimposed chains. More generally,
we construct solutions consisting of lump chains that emit individual lumps, which may be then absorbed by other
chains. Solutions of KP-I containing a periodic chain of lumps have been described by a number of authors [7, 13,
18, 30, 36, 43]. However, to the best of our knowledge, solutions consisting of several interacting lump chains have
never been considered before.

We construct solutions of KP-I using the Grammian form of the τ-function. This form was derived using the
dressing method in [41], and using Sato theory in [24], and is perhaps less known than the Wronskian form. The
dressing method was first used to solve the KdV equation in the pioneering paper [33], and was generalized and
applied to the KP-II equation in [41]. A more modern treatment can be found in the papers [38, 39, 42].

As we have noted, individual lump solutions of KP-I are stable, while line-solitons and lump chains are unstable.
In [30] it was shown that a line-soliton can emit a lump chain, hence the latter should be considered as an intermediate
stage of the instability development. In the long run, a line-soliton transforms into an expanding cloud of lumps,
which can be treated as a model of integrable turbulence.

2. The Grammian form of the τ-function

The purpose of this paper is to study a family of solutions of the KP-I equation that can be constructed using the
Grammian form of the τ-function, which we now recall [24, 25, 30]. Fix a positive integer M, which we call the rank
of the solution. Let ψ j = ψ+

j (x, y, t) for j = 1, . . . ,M be a linearly independent set of solutions to the linear system

i∂yψ + ∂2
xψ = 0, ∂tψ + 4∂3

xψ = 0, (3)

and similarly let ψ−j (x, y, t) be solutions to the conjugate system

i∂yψ − ∂
2
xψ = 0, ∂tψ + 4∂3

xψ = 0.

Assume that all ψ±j lie in L2((−∞, x0]) with respect to the variable x for any x0, and let c jk be an arbitrary constant
M × M-matrix. Then the function

u(x, y, t) = 2∂2
x log τ, τ(x, y, t) = det

[
c jk + 〈ψ+

j , ψ
−
k 〉

]
, 〈ψ+

j , ψ
−
k 〉 =

∫ x

−∞

ψ+
j (x′, y, t)ψ−k (x′, y, t)dx′ (4)

is a solution of the KP-I equation (1). To obtain real-valued solutions, we let c jk be real-valued, and we set ψ−j = ψ j.
It is customary to choose c jk = δ jk to ensure that the solution (4) is non-singular; we call solutions of KP-I obtained

in this way regular. In this paper, however, we are more interested in the case c jk = 0; we call such solutions reduced.
We note that if the solutions ψ j are linearly independent, then the reduced τ-function (4) is the determinant of a Gram
matrix, and hence the solution is nonsingular. We discuss the relationship between regular and reduced solutions of
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KP-I in Section 4, for now we note that the latter can be obtained from the former by setting ψ+
j = Cψ j, where C is a

real constant, and taking the limit C → +∞. It would also be interesting to consider solutions where the matrix c jk is
nonzero but does not have maximal rank, however this is beyond the scope of our paper.

In this paper, we restrict our attention to functions ψ j with finite spectral support. Fix a positive integer N, called
the order of the solution, and fix distinct eigenvalues λ1, . . . , λN with positive real parts. Denote

φ(x, y, t, λ) = λx + iλ2y − 4λ3t,

and let ps(x, y, t, λ) denote the polynomial (homogeneous of degree s in x, y, and t) defined by

ps(x, y, t, λ) = e−φ(x,y,t,λ)∂s
λeφ(x,y,t,λ),

so that for example
p0 = 1, p1 = x + 2iλy − 12λ2t, p2 = p2

1 + 2iy − 24λt, . . .

Any function of the form ∂s
λeφ = pseφ is a solution of (3).

We now consider solutions of KP-I given by the tau-function (4), where the eigenfunctions ψ j are given by

ψ j(x, y, t) =

N∑
n=1

S∑
s=0

C jns ps(x, y, t, λ jn)eφ(x,y,t,λ jn). (5)

The highest degree S of a polynomial ps that occurs in any of the ψ j is called the depth of the solution. The
complex constants C jns are required to satisfy a non-degeneracy condition to ensure that the functions ψ j are linearly
independent. We do not spell out this condition, and instead verify it in each particular example.

An exhaustive classification of the solutions of KP-I obtained in this manner is far beyond the scope of this paper.
Instead, our goal is to describe several interesting families of solutions that illuminate the behavior of the generic
solution.

1. Line-solitons. The simplest solution of KP-I, called a line-soliton, is the regular solution obtained from (4)
and (5) for M = 1, N = 1, and S = 0, in other words by setting ψ(x, y, t) = Ceφ(x,y,t,λ). This solution is a
translation-invariant traveling wave, and a similar solution exists for KP-II. However, unlike the KP-II case, a
line-soliton solution of KP-I is unstable (see [30, 37]).

2. Rational solutions: lumps and multi-lumps. A distinguishing feature of the KP-I equation is the existence of
rational, spatially localized solutions, which are not known for KP-II. Consider the solution of KP-I given by (4)
and (5), where each function ψ j is a polynomial multiple of a single exponential eφ(x,y,t,λ j) (the eigenvalues λ j

corresponding to the ψ j may or may not be distinct). In this case the integral 〈ψ+
j , ψ

−
k 〉 occurring in (4) is

a polynomial multiple of e(λ j+λk)x. In the regular case (when c jk = δ jk), the τ-function is a sum of distinct
exponentials. However, in the reduced case (when c jk = 0), the τ-function is a polynomial multiple of a single
exponential term exp

∑
(λ j +λ j)x, and the exponential disappears when taking the second logarithmic derivative.

Therefore, the corresponding solution u is a rational function of x, y, and t. These are the so-called lump and
multi-lump solutions of KP-I. Corresponding to each distinct eigenvalue λ j there is a lump, or, more generally,
a collection of lumps, whose number is related to the depth S . The lumps in each collection are either bounded
or undergo anomalous scattering, while the collections of lumps corresponding to different λ j undergo normal
scattering without phase shifts. Multilump solutions of KP-I were obtained in a number of papers (see for
example [12, 14, 19, 20, 27, 28, 29, 34]). The most general Grammian form of the multilump solutions of KP-I
was considered in [9].

3. Lump chains. In this paper, we are mostly concerned with reduced solutions of depth S = 0, in other words
when each function ψ j is a linear combination of exponentials. In order for the solution to be non-singular, we
require N ≥ M. As we will see, the corresponding reduced solution u of KP-I is an arrangement of lump chains,
which are sequences of lumps moving along parallel trajectories (the group velocity of the chain is in general
distinct from the velocity of the individual lumps). The time evolution of the underlying linear arrangement
supporting the lumps is very similar to that of the line-soliton solutions of KP-II (see [16]). However, the linear
arrangements that can occur for lump chains are more general than those of KP-II line-solitons, and allow for
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various degenerate configurations such as parallel or superimposed lump chains. The regular solution of KP-I
of depth S = 0 and rank M = 1 consists of a linear arrangement of lump chains interacting with a single line-
soliton of KP-I. We give a detailed description of certain families of reduced lump chain solutions in Section 3,
and we give a single example of a regular solution of depth S = 0 in Section 4.

4. Lumps and lump chains. In Section 4, we also construct an example of a reduced solution of depth S > 0
that is not rational. The solution consists of a chain of lumps that emits, at a certain moment of time, a single
lump which propagates away from the chain. We conjecture that the general reduced solution of KP-I with
depth S > 0 consists of an arrangement of lump chains, with an additional number of individual lumps being
either emitted or reabsorbed by the chains. The general regular solution consists of such an arrangement, and
additional line-solitons.

3. Lump chains: reduced solutions of depth S = 0.

In this section, we consider solutions of KP-I given by (4) that are reduced (c jk = 0), and where the auxiliary
ψ-functions are given by (5) with depth S = 0, in other words are sums of pure exponential terms with no polynomial
multiples. We mostly focus on solutions of rank M = 1, in other words having the form

u(x, y, t) = 2∂2
x log τ, τ(x, y, t) =

∫ x

−∞

|ψ(z, t, y)|2 dz, (6)

where the ψ-function is a sum of N exponentials. We will see that such a solution is an arrangement of linear lump
chains, with the individual lumps moving with constant velocity along the chains, and the entire assembly evolving
with time. Such lump chain solutions of KP-I bear a strong resemblance to the well-known line-soliton solutions of
KP-II, which are the subject of an elaborate combinatorial theory (see [16]).

The ψ-function defining a lump chain solution of rank M = 1 and order N is defined by 2N complex parameters.
It is convenient to introduce them as follows. Let

λn = an + ibn, θn = ρn + iϕn, n = 1, . . . ,N,

be complex constants, where we assume that 0 < a1 ≤ a2 ≤ · · · ≤ aN and that λn , λm for n , m. Define the functions

Φn(x, y, t) = λnx + iλ2
ny − 4λ3

nt + θn,

then the function

ψ(x, y, t) =

N∑
n=1

√
2aneΦn(x,y,t)

satisfies the linear system (3). Plugging ψ into (6), we obtain the following formula for the τ-function:

τ(x, y, t) =

N∑
n=1

e2Fn +

N−1∑
n=1

N∑
m=n+1

2µnmeFn+Fm cos(Gn −Gm − ϕnm), (7)

where we have denoted
Fn(x, y, t) = Re Φn(x, y, t), Gn(x, y, t) = Im Φn(x, y, t),

and the constants µnm and ϕnm are given by

µnm = 2
√

anam

(an + am)2 + (bn − bm)2 , ϕnm = tan−1
(

bn − bm

an + am

)
.

The large-scale structure of the solution is governed by the linear functions

Fnm(x, y, t) = Fn(x, y, t) − Fm(x, y, t) = Anmx + Bnmy + Cnmt + Dnm = 0,

where
Anm = Re(λn − λm), Bnm = − Im(λ2

n − λ
2
m), Cnm = −4 Re(λ3

n − λ
3
m), Dnm = Re(θn − θm). (8)

We now describe the structure of the corresponding solution u(x, y, t) for N ≥ 2 (the solution is trivial for N = 1). We
note that adding a common complex constant to the θn multiplies τ by a real constant, and hence does not change u,
therefore the solution is in fact determined by 2N − 1 complex parameters.
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3.1. Lump chain of rank M = 1 and order N = 2.

The solution of KP-I with τ-function (7) of rank M = 1 and order N = 2 is the basic building block for solutions of
order N ≥ 3, so we study it in detail. This solution is a linear traveling wave consisting of an infinite chain of lumps,
and is analogous to the simple line-soliton solution of KP-II. In the N = 2 case, the τ-function (7) can be simplified
by factoring out the exponential term eF1+F2 . The corresponding solution of KP-I is given by

u(x, y, t) = 2
∂2

∂x2 log
[
cosh(F21) + µ12 cos(G2 −G1 − ϕ21)

]
. (9)

The arguments of the cosh and cos functions are linear:

F21 = A21x + B21y + C21t + D21, G2 −G1 − ϕ21 = α21x + β21y + γ21t + δ21,

where we have denoted

α21 = Im(λ2 − λ1), β21 = Re(λ2
2 − λ

2
1), γ21 = −4 Im(λ3

2 − λ
3
1), δ21 = Im(θ2 − θ1).

Introduce the quantities

X =
B21γ21 −C21β21

A21β21 − B21α21
, Y =

C21α21 − A21γ21

A21β21 − B21α21
,

then the non-degeneracy condition 0 < a1 ≤ a2 implies that the vector (X,Y) is nonzero, and that the denominators do
not vanish. The functions F21 = F2−F1 and G2−G1, and therefore u, satisfy the differential equation ft+X fx+Y fy = 0,
hence u(x, y, t) = u(x − Xt, y − Yt) is a traveling wave with the velocity vector (X,Y). Furthermore, u satisfies the
stationary Boussinesq equation [

−Xux − Yuy + 6uux + uxxx

]
x

= 3uyy.

For a fixed moment of time t, the solution (9) is localized near the line F21 = 0 in the (x, y)-plane. Indeed, away from
the line, the argument of cosh has a large absolute value, so the τ-function has a single dominant exponential term and
hence u is exponentially small. The normal direction vector U21 = (A21, B21) of the line F21 = 0 may be an arbitrary
nonzero vector, and is not in general parallel to the velocity (X,Y). In particular, if a1 = a2 then the line F21 = 0 is
parallel to the x-axis, which cannot happen for a line-soliton of KP-II. The line F21 = 0 propagates with the wave
vector

V21 = −
C21

A2
21 + B2

21

(A21, B21), (10)

and is stationary if C21 = 0 (which also cannot happen for a KP-II line-soliton). Note, however, that C21 , 0 if the
line F21 = 0 is vertical.

Along the line F21 = 0, the phase of the solution (9) is determined by the argument of the cosine function. The
solution is periodic along the line, and consists of a sequence of lumps (see Figure 1). The distance between two
consecutive lumps is equal to

L21 = 2π

√
A2

21 + B2
21

A21β21 − B21α21
. (11)

The individual lumps propagate with velocity vector (X,Y), which may be oriented arbitrarily relative the chain
F21 = 0. To see that the individual peaks are indeed KP-I lumps, we note that the distance L21 between two consecutive
lumps diverges as λ2 → λ1. Setting

a1 = a − ε, b1 = b − εµ, a2 = a + ε, b2 = b + εµ, θ1 = θ2 = 0,

in the limit ε→ 0 we obtain (for t = 0 and arbitrary µ) the lump solution of KP-I:

u(x, y) = 2
∂2

∂x2 log[1 + a2(x − by)2 + a4y2] =
4a2(1 − a2(x − by)2 + a4y2)

(1 + a2(x − by)2 + a4y2)2 . (12)

5



Figure 1: Reduced lump chain of order M = 1 and rank N = 2, given by Equation (9) with λ1 = 1/2 + i/2 and λ2 = 3/8 − i/4 at t = 0. (a) 2D
profile of u(x, y). (b) Amplitude of u(x̃, y) along the line F12 = 0.

The KP-I equation has infinitely many integrals of motion, the simplest being
∫ ∞

−∞

u(x, y, t)dx (in general, this

integral is a linear function of y, but for our solutions it is in fact constant). It is easy to verify that for a lump chain of
order N = 2 we have

1
4

∫ ∞

−∞

u(x, y, t) dx = A21.

We call the quantity A21 the flux of the lump chain.

We note that the integral
∫ ∞

−∞

u(x, y, t) dx is equal to zero for a one-lump solution (12), since u(x, y) is the x-

derivative of a rational function that vanishes at infinity. This agrees with the limiting procedure, since A21 → 0 as
λ2 → λ1. However, for the one-lump solution u(x, y) given by (12) the integral over the entire plane is nonzero:∫

R2
u(x, y) dx ∧ dy =

4π
a
> 0.

There is no contradiction here, since u(x, y) does not vanish sufficiently rapidly as x2 + y2 → ∞, and this improper
integral cannot be evaluated using Fubini’s theorem.

It has already been observed by a number of authors that a linear chain of lumps can occur as part of a solution of
the KP-I equation. A chain of lumps appears in [43], and formula (9) occurs in [18] (see p. 74), but is not analyzed
in detail. In [30], chains of lumps parallel to the y-axis are shown to result from the decay of an unstable line-soliton.
Zaitsev [36] developed a procedure for constructing stationary wave solutions of integrable systems out of spatially
localized solitons, and constructed a lump chain for KP-I in this manner. Burtsev showed in [7] that a lump chain is
unstable with respect to transverse perturbations, as is the case for a line-soliton. The development of the instability
of the chain soliton was studied in [30]

3.2. Lump chains of rank M = 1 and order N = 3.
We now consider the reduced solutions u(x, y, t) of KP-I with τ-function given by (7) in the case N = 3. A generic

solution of this form consists of three lump chains meeting at a triple point, and a number of degenerate configurations
are also possible.

The τ-function (7) for N = 3 consists of three purely exponential terms e2F1 , e2F2 , and e2F3 , and three mixed terms.
Introduce the normal vectors Umn = (Amn, Bmn), where Amn and Bmn are given by (8). The normal vectors satisfy
U31 = U21 + U32, and their collinearity is controlled by the quantity

η123 = A21B31 − A31B21 = a1b1(a2 − a3) + a2b2(a3 − a1) + a3b3(a1 − a2). (13)
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Figure 2: N = 3 lump chain with λ1 = 1/2 + i/2, λ2 = 3/8 − i/4 and λ3 = 1/4 + i/8 at different moments of time.

Figure 3: N = 3 lump chain with λ1 = 1/2 + i/2, λ2 = 3/8 − i/4 and λ3 = 1/4 + i/8 at t = 0, and with different relative phases. (a) δ12 = 0 and
δ13 = 0 (b) δ12 = π and δ13 = 0 (c) δ12 = 0 and δ13 = π.

For generic values of λ1, λ2, and λ3 we have η123 , 0, and no two of the three vectors Umn are collinear. In this case,
the (x, y)-plane is partitioned, for fixed t, into three sectors meeting at a triple point. In each sector, one of the pure
exponential terms e2Fm is dominant, and the solution u is exponentially small. Along the boundary of two sectors,
given by the equation Fmn = 0, two of the exponentials e2Fm and e2Fn are equal and are comparable to the mixed
exponential term containing eFm+Fn . The triple point is given by the equation F1 = F2 = F3 = 0, moves linearly with
t, and passes through (0, 0) at t = 0 if the phases θm are purely imaginary.

The solution itself is localized on the boundaries of the sectors. Along the boundary Fmn = 0, the solution can
be approximated by an order N = 2 solution described in Subsection 3.1. In other words, it is a lump chain with
normal vector Umn, which we call an [m, n]-chain. Depending on the values of the spectral parameters, there are two
possibilities. In the first, shown on Figure 2, the [2, 1]- and [3, 2]-lump chains meet at the triple point. The individual
lumps from the two chains interlace one by one and form the new [3, 1]-chain. Conversely, the lumps on the [3, 1]-
chain may split at the triple point into two new chains. In either case, individual lumps are preserved, and the fluxes
of the three chains satisfy the local conservation law A31 = A21 + A32. In addition to the orientation of the chains,
the position of the triple point, and the velocities of the lumps along the chains, there are two free parameters that
determine the solution, namely the relative phases δmn = Im(θm − θn). Figure 3 shows the solution for three different
sets of values of the relative chain phases.

There are additionally a number of degenerate configurations, corresponding to η123 = 0. In this case the vectors
U21, U31, and U32 are collinear, and hence so are the lines F21 = 0, F31 = 0 and F32 = 0. Depending on the values
of the λm, for fixed t, either the (x, y)-plane consists of half-planes in which e2F1 and e2F3 are dominant, or there is an
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additional intermediate strip in which e2F2 is dominant. For generic λ1, λ2, and λ3 (satisfying η123 = 0), the solution
may consist of two parallel [2, 1]- and [3, 2]-chains merging into the [3, 1]-chain, as shown on Figure 4. The opposite
case is also possible: a single [3, 1]-chain may, at a certain moment of time, split into two lump chains, both parallel
to the original chain. A similar splitting process was observed in [30].

Figure 4: Two parallel lump chains merging into one: N=3, λ1 = 1/2 + i/2, λ2 = 3/8 − i/4 and λ3 = 3/7 + i/8 at different moments of time. (a)
t = −15.0 (b) t = −10.0 (c) t = −5.0 (d) t = 0.0 (e) t = 10.0 (a) t = 20.0

Imposing the additional condition A21C31 − A31C21 = 0, we obtain a further degeneration: the three lines F21 = 0,
F31 = 0, and F32 = 0 that can support the chains move are not only parallel, but move with equal velocity. In this
case, the solution consists either of two parallel lump chains propagating at a fixed distance, or of a single lump chain
(in the latter case, the solution may be visually indistinguishable from a lump chain of order N = 2).

Finally, it is possible that the three lines F21 = 0, F31 = 0, and F32 = 0 are the same for all values of t. The
three lump chains merge into a complex, periodic or quasi-periodic chain supported along the common line, which
propagates linearly (see Figure 5).

Figure 5: Quasi-periodic lump chain of order M = 1 and rank N = 3, λ1 = 1 + i/2, λ2 = 1/4 − i/4 and λ3 = 0.443 + 0.186i, at times
t = −20.0, t = 0.0, and t = 20.0. Inset in (a) shows amplitude along the quasi-periodic lump chain.

3.3. Lump chains of rank M = 1 and order N ≥ 4.
We now discuss the general form of the solution (7) for arbitrary N, which is determined by the spectral parameters

λn. The τ-function is a sum of purely exponential terms e2Fn and mixed exponentials eFn+Fm with trigonometric
multipliers. For fixed t, the shape of the solution is determined by the relative values of the Fn: if one exponential
e2Fn is dominant in the τ-function, then the solution u is exponentially small (a mixed term containing eFn+Fm cannot
be the only dominant term). Hence the (x, y)-plane is divided into finitely many polygonal regions, in the interior of
which a single term Fn is dominant. In fact, a given term Fn may in general fail to be dominant anywhere, so there
may be fewer than N regions, and there may be only two. On the boundary of Fnm = Fn − Fm = 0 of two regions,
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where Fn = Fm and all other Fk are significantly smaller, the solution can be approximated by an order N = 2 solution
described in Subsection 3.1. In other words, it is a lump chain with normal vector Unm = (Anm, Bnm), which we call
an [n,m]-chain. Hence the (x, y)-plane decomposes into finitely many polygonal regions with lump chains along the
boundaries, and the entire arrangement evolves linearly with t. The structure of the lump chains closely resembles the
arrangement of line-solitons in KP-II (see [3, 16]).

We do not develop a general theory describing the line structure of the solutions. Instead, we give two generic
examples of order N = 4, and discuss the possible degenerate behavior. The first example, shown on Figure 6, may be
called an H-configuration. It consists two triple points that are separated by a lump chain bridge. The bridge contracts
and disappears at t = 0, and the triple points scatter along a different bridge. A similar configuration appears in the
KP-II equation (see [3, 16]).

Figure 6: H-shaped arrangement of chains of order M = 1 and rank N = 4, with eigenvalues λ1 = 17/32 + i/8, λ2 = 3/8 − i/8, λ3 = 11/32 + i/5,
λ4 = 3/32 + i/4 and times t = −20.0, t = 0 and t = 20.0.

The second example, shown on Figure 7, has three triple points bounding a finite triangular region. The region
shrinks and disappears at t = 0, and the solution henceforth resembles a solution of order N = 3. This configuration
can be reversed in time, with a triangular region appearing out of a triple point. We stress that both these examples
are generic, in other words the structure of the lump chains does not change under small perturbations of the λn.

Figure 7: Triangular arrangement of chains of order M = 1 and rank N = 4, with eigenvalues λ1 = 1, λ2 = 1/2 + i
√

3/2, λ3 = 1/2 − i
√

3/2,
λ4 = 1/

√
3 − i/(2

√
3), and times t = −2.0, t = −1.0 and t = 0.0.

The reader may recognize that the structure of lump chain solutions of KP-I is very similar to the structure of
line-soliton solutions of KP-II. We point out that the line structure in the KP-I case may in fact be more complex.
Specifically, the following kinds of behavior, all of them forbidden for KP-II line-solitons, can occur for KP-I lump
chains of rank M = 1 and order N.
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3.3.1. Generic solutions: the number of chains at infinity and forbidden configurations.
We first consider the case when the eigenvalues λn are sufficiently generic. A natural first question is to determine

the linear configurations of chains that may occur, in particular, the number of lump chains extending to infinity. An
order N line-soliton of KP-II always has N solitons extending to infinity, but a generic order N solution of KP-I may
have anywhere between 3 and N infinite lump chains. Similarly, certain configurations of lines are forbidden for KP-II
line-solitons but may occur for KP-I lump chain solutions. For example, the solution given on Figure 7 has N = 4 and
three infinite chains, and represents a line arrangement that cannot occur in KP-II (see Exercise 4.6 in [16]).

3.3.2. Degenerate solutions: stable points, parallel chains, and higher order chains.
Various degenerate configurations may be achieved by imposing appropriate conditions on the eigenvalues λn.

The triple points where lump chains meet may be stationary relative to one another, and may even coincide for all
times, producing stable quadruple points and points of higher multiplicity. A solution may have sets of parallel lump
chains, in which case the number of chains at infinity may be greater than the order N. Finally, lump chains may
coincide, producing quasiperiodic chains of higher order.

3.4. Lump chains of rank M ≥ 2.

The structure of reduced solutions of KP-I of depth S = 0 and higher rank M ≥ 2 is broadly similar to the M = 1
case. The τ-function (4) is a sum of purely exponential terms and mixed terms involving trigonometric multipliers.
For a given moment of time t, the (x, y)-plane is partitioned into finitely many polygons, and this decomposition
evolves linearly with time. Polygonal regions may appear and disappear at certain moments of time. The boundaries
of the polygons support lump chains, and the total flux of the lump chains arriving at a given vertex is equal to the
flux of the chains that are leaving. In degenerate cases, there may be coinciding polygonal boundaries supporting
quasiperiodic superpositions of lump chains. We give a single example of such a solution with rank M = 2 and order
N = 4 in Figure 8.

Figure 8: The time evolution of a rank 2 order 4 solution with eigenvalues λ11 = 1/2 + i/8, λ12 = 3/8 − i/8, λ13 = 1/4 + i/5, λ14 = 1/8 + i/4,
λ21 = 4/9 + i/9, λ22 = 3/9 − i/9, λ23 = 2/9 + i/3, λ24 = 1/9 + i/7

4. Regular solutions and solutions of depth S > 0: line-solitons and individual lumps.

We now discuss the relationship between regular and reduced solutions of depth S = 0, and solutions of positive
depth. We first consider regular solutions, and for simplicity restrict our attention to rank N = 1. The τ-function of
such a solution is nearly identical to that of the reduced solution (7), and has the form

τ(x, y, t) = 1 +

N∑
n=1

e2Fn +

N−1∑
n=1

N∑
m=n+1

2µnmeFn+Fm cos(Gn −Gm − ϕnm). (14)
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As before, the (x, y)-plane is partitioned into polygonal regions, in each of which one of the terms in (14) is dominant.
However, there is now a new region, on which the dominant term in the τ-function is the constant 1. Since an =

Re λn > 0, this region contains, for a given fixed y, all points (x, y) with sufficiently large negative x. Inside this region
the τ-function is approximately constant, and the solution u is exponentially small. At the boundary of this region,
the two dominant terms in the τ-function are the 1 and one of the exponentials e2Fn . Hence the boundary of the region
where 1 dominates is a line-soliton of KP-I, instead of a lump chain. In other words, the solution consists of an infinite
line-soliton of KP-I coupled with an arrangement of lump chains (see Figure 9).

Figure 9: Regular solution of rank M = 1 and order N = 3, with eigenvalues λ1 = 1/2 + i/2, λ2 = 3/8 − i/4, and λ3 = 1/4 + i/8, at different
moments of time.

It is possible to degenerate a regular solution to a reduced solution by replacing the 1 in Equation (14) with an ε
and taking the limit ε → 0. The line-soliton occurs on the boundary of the region where the ε is the dominant term,
and this region moves in the negative x-direction as ε→ 0. In the limit, the line-soliton disappears to infinity, and we
are left with a solution consisting entirely of lump chains. Therefore, the limiting procedure that produces reduced
solutions out of regular solutions has the effect of removing the line-soliton and isolating the lump chain structure.

Figure 10: A lump chain radiates an individual lump, which propagates away. λ1 = 1/4, λ2 = 1/2 with multiplicities of 1 and 2, respectively.

We also briefly consider the structure of reduced solutions of depth S > 0. Consider again the general form of
the τ-function (4), where c jk = 0 and the ψ j are given by (5). As discussed in Section 2, the τ-function is rational if
each ψ j is a polynomial multiple of a single exponential term eφ(x,y,t,λ j). The corresponding solution is localized in the
(x, y)-plane and represents the normal (if all λ j are distinct) or anomalous scattering of lumps, or even bound states of
lumps. We now consider what happens in general, when each ψ j is a multiple of several exponentials. For sufficiently
large x and y, the polynomial terms are negligible compared to the exponentials, and the ψ j can be assumed to be
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purely exponential. Hence the solution can be assumed to have depth S = 0 and is an arrangement of lump chains, as
described in Section 3. In the finite part of the (x, y)-plane, however, the polynomial terms in the ψ j produce individual
lumps. Hence, the overall structure of the solution is an arrangement of lump chains interacting with finitely many
individual lumps: a lump chain may emit or absorb an individual lump, and the lumps may scatter on one another.
A detailed classification of such solutions appears to be a challenging combinatorial problem. In Figure 10, we give
a single example of such a solution, consisting of a lump chain emitting an individual lump. We note that the local
number of lumps is conserved: two lumps from the chain meet and scatter, with one lump propagating away and the
other filling the resulting gap in the chain. Figure 10 gives an example of such a solution with rank M = 1, order
N = 2, and depth S = 1, with the ψ-function given by

ψ(x, y, t) = e
1
4 (−2t+2x+iy)(−3t + x + iy + 1) + e

1
16 (−t+4x+iy).

5. Summary and conclusion

We have constructed a new family of lump chain solutions of the KP-I equations using the Grammian form of
the τ-function. A simple lump chain consists of an infinite line of equally spaced lumps. The lumps propagate with
equal velocity, which is in general distinct from the group velocity of the line. The general solution consists of an
evolving polyhedral arrangement of lump chains. At a point where three or more lump chains meet, the individual
lumps from the incoming chains are redistributed along the outgoing chains, with the number of lumps being locally
conserved. The linear structure of the solutions is very similar to that of the line-soliton solutions of KP-II. However,
various degenerate configurations may occur for KP-I lump chains that cannot occur for KP-II line-solitons: parallel
chains, chains of equal velocity, quasiperiodic superimposed chains, stable points of high multiplicity, and forbidden
polyhedral configurations. We have also constructed more general solutions of KP-I using the Grammian method.
Such solutions consist of an arrangement of lump chains as described above, together with line-solitons and individual
lumps that are emitted and/or absorbed by the lump chains. A detailed classification of the solutions of KP-I that may
be obtained by the Grammian method is an interesting and difficult problem, and is beyond the scope of this paper.
We plan to return to this problem in future work.
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