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Abstract. We prove an analogue of Kirchhoff’s matrix tree theorem for computing the volume of
the tropical Prym variety for double covers of metric graphs. We interpret the formula in terms
of a semi-canonical decomposition of the tropical Prym variety, via a careful study of the tropical
Abel–Prym map. In particular, we show that the map is harmonic, determine its degree at every
cell of the decomposition, and prove that its global degree is 2g−1. Along the way, we use the Ihara
zeta function to provide a new proof of the analogous result for finite graphs. As a counterpart, the
appendix by Sebastian Casalaina-Martin shows that the degree of the algebraic Abel–Prym map is
2g−1 as well.
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1. Introduction

Kirchhoff’s celebrated matrix tree theorem states that the number of spanning trees of a con-
nected finite graph G, also known as the complexity of G, is equal to the absolute value of the
determinant of the reduced Laplacian matrix of G. From a tropical viewpoint, this number is
also equal to the order of the Jacobian group Jac(G) of G.

In [ABKS14], Kirchhoff’s theorem was generalized to metric graphs and given a geometric
interpretation. The Jacobian variety Jac(Γ) of a metric graph Γ of genus g is a real torus of
dimension g, and its volume can be computed as a weighted sum over all spanning trees of Γ .
Given a set F Ă E(Γ) of g edges of Γ (with respect to a choice of model), denote by w(F) the
product of the lengths of the edges in F. Then (see Theorem 1.5 in [ABKS14])

Vol2(Jac(Γ)) =
ÿ

F

w(F), (1)

where the sum is taken over those subsets F such that Γ\F is a spanning tree of Γ .
The weighted matrix-tree theorem can be proved by a direct application of the Cauchy–

Binet formula (see Remark 5.7 in [ABKS14]), but the authors give a geometric proof in terms
of a canonical representability result for tropical divisor classes, that we briefly recall. Let
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Φ : Symg(Γ) → Picg(Γ) be the tropical Abel–Jacobi map, sending an effective degree g divi-
sor D to its linear equivalence class. A divisor D = P1 + ¨ ¨ ¨ + Pg is a called a break divisor if each
Pi is supported on an edge ei in such a way that {e1, . . . , eg} is the complement of a spanning
tree of Γ . By a result of Mikhalkin and Zharkov [MZ08], the map Φ has a canonical continuous
section, whose image is the set of break divisors in Symg(Γ). Hence Picg(Γ) (and, by translation,
Jac(Γ)) has a canonical cellular decomposition coming from the cells of Symg(Γ) parametrized by
the spanning trees of Γ . Computing the volume of Jac(Γ) in terms of this decomposition gives
Equation (1), where the terms in the right hand side correspond to the volumes of the individual
cells. We note that the results of [ABKS14] can be reinterpreted as saying that the Abel–Jacobi
map Φ is a harmonic morphism of polyhedral spaces of degree one (see Remark 2.5).

The purpose of this paper is to prove analogous results for the tropical Prym variety associated
to a free double cover of metric graphs. Given an étale double cover f : rC→ C of smooth algebraic
curves of genera 2g− 1 and g respectively, the kernel of the norm map Nm : Jac(rC)→ Jac(C) has
two connected components, and the even component is an abelian variety of dimension g − 1,
known as the Prym variety Prym(rC{C) of the double cover. Prym varieties have been extensively
studied following Mumford’s seminal paper [Mum74], as they are one of only few instances of
abelian varieties that can be described explicitly. Furthermore, they play a key role in rationality
questions for threefolds [CG72] and in constructing compact hyper-Kähler manifolds [LSV17].

The notion of an étale cover of algebraic curves has two natural analogues in tropical geometry.
One can consider free covers π : rΓ → Γ , which are covering spaces in the topological sense: the map
π is a local homeomorphism at each point, and an isometry if the graphs are metric. It is often
necessary to consider the more general unramified covers, which are finite harmonic morphisms
of metric graphs satisfying a numerical Riemann–Hurwitz condition. This notion does not have
an analogue for finite graphs. The tropicalization of an étale cover of algebraic curves is an
unramified cover of metric graphs, but not necessarily free.

The tropical Prym variety Prym(rΓ{Γ) associated to an unramified double cover π : rΓ → Γ of
metric graphs is defined in analogy with its algebraic counterpart [JL18, Definition 6.2]. Specif-
ically, Prym(rΓ{Γ) is the connected component of the identity of the kernel of the tropical norm
map Nm : Jac(rΓ) → Jac(Γ) (note that in the tropical case, the kernel has two connected compo-
nents if π is free, and one if π is unramified but not free). As shown in [LU19, Theorem B], this
construction commutes with tropicalization. Namely, if π is the tropicalization of an étale double
cover f : rC→ C of algebraic curves, then the tropical abelian variety Prym(rΓ{Γ) is the skeleton of
the Berkovich analytification of Prym(rC{C), and the corresponding Abel–Prym maps commute
(the corresponding result for Jacobians was proved in [BR15]). This observation has recently
led to new results concerning the dimensions of Brill–Noether loci in Prym varieties [CLRW20,
Corollary B].

In the current paper, we consider only free double covers of finite and metric graphs. We first
compute the order of the Prym group Prym(rG{G) of a free double cover p : rG → G of a finite
graph G of genus g. The finite group Prym(rG{G) is a canonically defined index two subgroup of
the kernel of the norm map Nm : Jac(rG)→ Jac(G). In the spirit of Kirchhoff’s formula, the order
of Prym(rG{G) is a weighted sum over certain (g − 1)-element subsets of E(G): given a subset
F Ă E(G) of g − 1 edges of G, we say that F is an odd genus one decomposition of rank r if G\F
consists of r connected components of genus one, each having connected preimage in rG.
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Kirchhoff–Prym formula (Proposition 3.2). The order of the Prym group Prym(rG{G) of a free double
cover p : rG→ G of finite graphs is equal to

|Prym(rG{G)| =
1

2
|Ker Nm | =

g
ÿ

r=1

4r−1Cr,

where Cr is the number of odd genus one decompositions of G of rank r.

This formula has already been obtained by Zaslavsky in the seminal paper [Zas82] as the
determinant of the signed Laplacian matrix of the graph G (see Theorem 8A.4 in loc. cit.), and was
later explicitly interpreted as the order of the kernel of the norm map by Reiner and Tseng (see
Proposition 9.9 in [RT14]). We give an alternative proof, by comparing the Ihara zeta functions
ζ(s, rG) and ζ(s,G) of the graphs rG and G. By the work of Stark and Terras [ST96, ST00], the
quotient ζ(s, rG){ζ(s,G) for a free double cover p : rG→ G is the L-function of the cover evaluated
at the nontrivial representation of the Galois group Z{2Z, and we use the L-function to compute
the order of the Prym group. To the best of our knowledge, this is the first application of the
Ihara zeta function to tropical geometry.

We then derive a weighted version of the Kirchhoff–Prym formula for the volume of the Prym
variety of a free double cover of metric graphs, in the same way that Equation (1) generalizes
Kirchhoff’s theorem.

Theorem A (Theorem 3.4). The volume of the tropical Prym variety Prym(rΓ{Γ) of a free double cover
π : rΓ → Γ of metric graphs is given by

Vol2(Prym(rΓ{Γ)) =
ÿ

FĂE(Γ)

4r(F)−1w(F),

where the sum is taken over all odd genus one decompositions F of Γ , and where w(F) is the product of the
lengths of the edges in F.

In the second part of our paper, we derive a geometric interpretation for the volume formula
for the tropical Prym variety, in the spirit of [ABKS14]. Let π : rΓ → Γ be a free double cover
of metric graphs, and let ι : rΓ → rΓ be the associated involution. Consider the Abel–Prym map Ψ
associated to π

Ψ : Symg−1(rΓ)→ Prym[g−1](rΓ{Γ), Ψ(D) = D− ι(D),

where Prym[g−1](rΓ{Γ) denotes the component of Ker Nm of the same parity as g− 1.
Our principal result states that Ψ is a harmonic morphism of polyhedral spaces of degree 2g−1 (as

in Definition 2.12). The space Symg−1(rΓ) has a natural polyhedral decomposition, with the top-
dimensional cells C(rF) indexed by multisets rF Ă E(rΓ) of g − 1 edges of rΓ . We define the degree
of a top-dimensional cell to be deg(rF) = 2r(

rF)−1 if p(rF) consists of distinct edges and is an odd
genus one decomposition of rank r(rF), and zero otherwise. Then the Abel–Prym map Ψ contracts
the cell C(rF) if and only if deg(rF) = 0. Furthermore Ψ is harmonic with respect to the degree,
meaning that it satisfies a balancing condition around every codimension one cell of Symg−1(rΓ).
This implies that we can extend the degree function to all of Symg−1(rΓ) in such a way that the sum
of the degrees in each fiber of Ψ is a finite constant, called the global degree of Ψ. To compute the
global degree, we first observe that the harmonicity of the Abel–Prym map allows us to express
the volume of Prym(rΓ{Γ) in terms of its degree. Comparing the result with Theorem A, we find
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that the global degree is in fact 2g−1. The factors 4r(F)−1 in the weighted Kirchhoff–Prym formula
represent squares of the local degrees of Ψ.

Summarizing, we obtain a semi-canonical representability result for tropical Prym divisors:

Theorem B (Theorem 5.1). The Abel–Prym map Ψ : Symg−1(rΓ)→ Prym[g−1](rΓ{Γ) associated to a free
double cover π : rΓ → Γ of metric graphs is a harmonic morphism of polyhedral spaces of degree 2g−1.
In particular, there is a degree map deg : Symg−1(rΓ) → Zě0 such that any element of Prym[g−1](rΓ{Γ)

has exactly 2g−1 representatives of the form rD − ι(rD) counted with multiplicity deg(rD), where rD is an
effective divisor of degree g− 1.

We note that a divisor in Prym[g−1](rΓ{Γ) may have infinitely many representatives of the form
rD−ι(rD) with deg(rD) = 0, but a generic Prym divisor only has representatives of positive degree,
and hence finitely many in total.

The canonical representability result of [ABKS14] also holds in the integral setting: given a
finite graph G of genus g, any class in Picg(G) is represented by a unique break divisor D P

Symg(G) (supported on the vertices of G) which in turn corresponds to a unique spanning tree
of G. No corresponding integral result holds for Prym groups. In fact, the discrete Abel–Prym
map Symg−1(rG) → Prym[g−1](rG{G) associated to a free double cover p : rG → G of finite graphs
is not even surjective in general (see Example 2.9).

We believe that suitable generalizations of Theorems A and B hold for unramified double
covers of metric graphs, which is the more general framework considered in [JL18] and [LU19].
To derive and prove them using the methods of our paper, it would first be necessary to develop a
theory of L-functions of unramified Galois covers of graphs, extending the theory for free covers
developed in [ST96] and [ST00]. Such a theory should be a part of a more general theory of
Ihara zeta functions of graphs of groups. This first step in this direction is the paper [Zak20]
by the second author. It would also be interesting to determine whether the Prym construction
generalizes to other tropical abelian covers (see [LUZ19]).

1.1. The algebraic Abel–Prym map and its tropicalization. Let C be a smooth algebraic curve
of genus g, and let Φd : Symd(C) → Picd(C) be the degree d Abel–Jacobi map. It is a classical
result that Φd has degree 1 when d ď g, and is birational when d = g [ACGH85, Chapter 1.3].
The degree d Abel–Prym map Ψd : Symd(rC) → Prym[d](rC{C) corresponding to an unramified
double cover π : rC → C of smooth algebraic curves is defined by Ψd(rD) = rD − ι(rD). Unlike
the Abel–Jacobi map, the degree of Ψd depends non-trivially on the Brill–Noether type of C. For
example, if d = 1 then the degree is equal to 2 if C is hyperelliptic and 1 otherwise. However, the
degree of the Abel–Prym map when d = g − 1 is always 2g−1. We are very grateful to Sebastian
Casalaina-Martin for a proof of this result (and a number of others) about the Abel–Prym map,
which we have included as an Appendix to this paper.

Given that the algebraic Abel–Prym map Ψg−1 has degree 2g−1, it is tempting to derive Theo-
rem B from the corresponding algebraic statement by a tropicalization argument (the same argu-
ment would also give an alternative proof of one of the principal results of [ABKS14], namely the
existence of a canonical section of the Abel–Jacobi map). It is well known that the tropicalization
of a degree d map of algebraic curves is a harmonic morphism of metric graphs of the same de-
gree d. However, we are unaware of a suitable generalization of this result to higher dimension,
and the derivation of such a result is beyond the scope of this paper.
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Motivated by this similarity, and by the results of the Appendix, we propose the following
conjecture:

Conjecture 1.1. Let f : rC → C be an étale double cover of algebraic curves tropicalizing to a free double
cover π : rΓ → Γ of metric graphs. Then the degrees of the algebraic and tropical Abel–Prym maps Ψd for
d ď g− 2 associated to f and π coincide. In particular, the degree of Ψd is bounded by 2d.

We stress that the tropical and algebraic results presented in this paper are derived via entirely
different techniques, and are independent of each other.

1.2. Degenerations of abelian varieties. Polyhedral decompositions of real tori, such as the ones
described above, suggest an interesting connection with degenerations of abelian varieties and
compactifications of their moduli spaces.

The Jacobian of a nodal curve is a semi-abelian variety that is not proper in general. There are
numerous compactifications constructed by various authors that depend on a choice of degree
and an ample line bundle (e.g. [Est01, Sim94]). In degree g, these constructions coincide [Cap94],
and the strata in the compactification are in bijection with certain orientations on the dual graph
of the curve [Chr18, Theorem 3.2.8]. In fact, the same strata are in an order reversing bijection
with the cells in the ABKS decomposition of the tropical Jacobian [Cap18, Theorem 4.3.4]. More
generally, each Simpson and Esteves compactified Jacobian of C can be constructed from a poly-
hedral decomposition of the tropical Jacobian of the dual graph of C [CPS19, Theorem 1.1]. An
analogous statement in degree g holds uniformly over the moduli space of curves [AAPT19].

The situation is more subtle for Prym varieties. Given an admissible double cover rC → C

of nodal curves, the identity component of the kernel of the norm map is, again, a non-proper
semi-abelian variety. There are various approaches for compactifying the Prym variety (e.g.
[ABH02, CMGHL17]). However, unlike the case of Jacobians, the Prym–Torelli map Rg → Ag−1
from the moduli space of étale double covers to the moduli space of abelian varieties does not to
the boundary for any reasonable toroidal compactification of Ag−1 [Vol02, FS86].

We therefore ask the following.

Question 1.2. Given an admissible double cover rC → C with tropicalization rΓ → Γ , do the
cells of the semi-canonical decomposition of the tropical Prym variety Prym(rΓ{Γ) described in
Theorem B correspond to the boundary strata of an appropriate compactification of the Prym
variety Prym(rC{C)?

A positive answer would suggest a path to a natural compactification of the moduli space of
abelian varieties such that the map Rg → Ag−1 extends to the boundary.

Acknowledgments. We would like to thank Matthew Baker, Samuel Grushevsky, Sam Payne,
and Dhruv Ranganathan for useful discussions, and David Jensen and Martin Ulirsch for com-
ments on an older version of the paper. We are very thankful to Victor Reiner for pointing out
the history of the Kirchhoff–Prym formula in the context of critical groups and signed graphs.
We are deeply grateful to Sebastian Casalaina-Martin for a comprehensive Appendix dedicated
to the algebraic Abel–Prym map.

2. Preliminaries

In this section, we review the necessary material about graphs, metric graphs, tropical ppavs,
Jacobians, Prym varieties, and polyhedral spaces. The only new material is found in Section 2.5,
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where we define the Prym group of a free double cover of graphs. Throughout this paper, we
consider both finite and metric graphs, which we distinguish by using Latin and Greek letters,
respectively. Graphs are allowed to have loops and multi-edges but not legs, and we do not
consider the more general setting of graphs with vertex weights. All graphs are assumed to be
connected unless stated otherwise.

2.1. Graphs and free double covers. We denote the vertex and edge sets of a finite graph G
by respectively V(G) and E(G), and its genus by g(G) = |E(G)| − |V(G)| + 1. An orientation of
a graph G is a choice of direction for each edge, allowing us to define source and target maps
s, t : E(G) → V(G). For a vertex v P V(G), the tangent space TvG is the set of edges emanating
from v, and the valency is val(v) = #TvG (where each loop at v counts twice towards the valency).
A metric graph Γ is the compact metric space obtained from a finite graph G by assigning positive
lengths ` : E(G)→ Rą0 to its edges, and identifying each edge e P E(G) with a closed interval of
length `(e). The pair (G, `) is called a model of Γ , and we define g(Γ) = g(G). A metric graph has
infinitely many models, obtained by arbitrarily subdividing edges, but the genus g(Γ) does not
depend on the choice of model.

The only maps of finite graphs that we consider in our paper are free double covers p : rG → G.
Such a map consists of a pair of surjective 2-to-1 maps p : V(rG) → V(G) and p : E(rG) → E(G)

that preserve adjacency, and such that the map is an isomorphism in the neighborhood of every
vertex of rG. Specifically, for any pair of vertices rv and v with p(rv) = v, and for each edge e P E(G)
attached to v, there is a unique edge re P E(G) attached to rv that maps to e. We say that p : rG→ G

is oriented if rG and G are oriented graphs, and if the map p preserves the orientation. There is a
naturally defined involution ι : rG → rG on the source graph that exchanges the two sheets of the
cover. It is easy to see that if G has genus g, then any connected double cover rG of G has genus
2g− 1.

Remark 2.1. If p : rG→ G is a free double cover and e P E(G) is a loop at v, then the preimage of
e is either a pair of loops, one at each of the two vertices in p−1(v), or a pair of edges connecting
the two vertices in p−1(v) (oriented in the opposite directions if e is oriented).

A free double cover of metric graphs π : rΓ → Γ is a free double cover p : rG→ G of appropriate
models (rG, `) and (G, `) of respectively rΓ and Γ that preserves edge length, so that `(p(re)) = `(re)
for all re P E(rΓ). A free double cover is the same as a finite harmonic morphism of global
degree two and local degree one everywhere, and we do not consider the more general case of
unramified harmonic morphisms of degree two studied in [JL18] and [LU19]. From a topological
viewpoint, free double covers are the same as normal covering spaces with Galois group Z{2Z.

We consistently use the following construction, due to [Wal76], to describe a double cover
p : rG→ G of a graph G of genus g.

Construction A. Let G be a graph of genus g. Fix a spanning tree T Ă G and a subset S Ă
{e0, . . . , eg−1}. Let rT+ and rT− be two copies of T , and for a vertex v P V(T) = V(G) denote rv˘ the
corresponding vertices in rT˘. We define the graph rG as

rG = rT+ Y rT− Y {re˘0 , . . . ,re
˘
g−1}.

The map p : rG→ G sends rT˘ isomorphically to T and re˘i to ei. For ei P S, each of the two edges
re˘i above it has one vertex on rT+ and one on rT−, while for ei R S both vertices of re˘i lie on the
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tree rT˘. It is clear that if G is connected, then rG is connected if and only if S is nonempty. In the
latter case, we may and will assume that e0 P S, and then rT = rT+ Y rT− Y {re+0 } is a spanning tree
for rG. We furthermore always assume that the starting and ending vertices of re+0 lie respectively
on rT+ and rT−, and conversely for re−0 :

s(re˘0 ) =
Ćs(e0)

˘

, t(re˘0 ) =
Ćt(e0)

¯

.

We do not make the same assumptions about the lifts of the remaining edges ei P S.
The set of connected free double covers of G is thus identified with the set of nonempty

subsets of {e0, . . . , eg−1}. Alternatively, this set is identified with the set of nonzero elements of
H1(G,Z{2Z), which is canonically identified with the set of connected free double covers of G, as
seen in covering space theory.

Remark 2.2. Let p : rG→ G be a free double cover corresponding to a tree T Ă G and a subset S Ă
E(G)\E(T), and let G 1 Ă G be a subgraph. Then the preimage p−1(G 1) is connected (equivalently,
the restricted cover p|p−1(G 1) : p−1(G 1)→ G 1 is a nontrivial free double cover) if and only if there
is a cycle on G 1 that contains an odd number of edges from S.

2.2. Chip-firing and linear equivalence. We now briefly recall the basic notions of divisor theory
for finite and metric graphs (see [BN07, Section 1] and [LPP12, Section 2] respectively for details).

Let G be a finite graph. The divisor group Div(G) of G is the free abelian group on V(G), and
the degree of a divisor is the sum of its coefficients:

Div(G) =
{

ÿ

avv : av P Z
}
, deg

ÿ

avv =
ÿ

av.

A divisor D =
ř

avv is called effective if all av ě 0, and we denote the set of divisors of degree d
by Divd(G).

Let n = |V(G)| be the number of vertices, and let Q and A be the n ˆ n valency and adjacency
matrices:

Quv = δuv val(u), Auv = |{edges between u and v}|. (2)

The Laplacian L = Q−A of G is a symmetric degenerate matrix whose rows and columns sum to
zero. Given a vertex v, the divisor obtained via chip-firing from v is

Dv = −
ÿ

uPV(G)

Luvu.

Such a divisor has degree zero, hence the set of principal divisors Prin(G), which are defined as
the image of the chip-firing map

ZV(G) → ZV(G) = Div(G), a Þ→ −La,

lies inside Div0(G). The Picard group and Jacobian of G are defined as

Pic(G) = Div(G){Prin(G), Jac(G) = Div0(G){Prin(G).

Since any principal divisor has degree zero, the degree function descends to Pic(G), and we
denote Pick(G) the set of equivalence classes of degree k divisors, so that Jac(G) = Pic0(G). The
group Pic(G) is infinite, but Jac(G) is a finite group whose order is equal to the absolute value of
any cofactor of the Laplacian L. Kirchhoff’s matrix tree theorem states that | Jac(G)| is equal to the
number of spanning trees of G (see [BS13, Theorem 6.2]).
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The Picard variety of a metric graph Γ of genus g is defined as follows (see [BF11]). A divisor
on a metric graph Γ is a finite linear combination of the form

D = a1p1 + a2p2 + ¨ ¨ ¨+ akpk,

where ai P Z and pi can be any point of Γ , and degD = a1 + ¨ ¨ ¨ + ak. We denote by Div(Γ)
the divisor group and by Divk(Γ) the set of divisors of degree k. A rational function M on
Γ is a piecewise-linear real-valued function with integer slopes. The principal divisor div(M)

associated to M is the degree zero divisor whose value at each point p P Γ is the sum of the
incoming slopes of M at p. It is clear that div(M + N) = div(M) + div(N) and div(−M) =

−div(M), so the principal divisors Prin(Γ) form a subgroup of Div0(Γ), and the degree function
descends to the quotient:

Pic(Γ) = Div(Γ){Prin(Γ), Pick(Γ) = {[D] P Pic(Γ) : degD = k}.

The Picard variety Pic0(Γ) is a real torus of dimension g and is isomorphic to the Jacobian variety
of Γ , which we review in the next section, while each Pick(Γ) is a torsor over Pic0(Γ).

2.3. Tropical abelian varieties. The Jacobian variety of a metric graph Γ is a tropical principally
polarized abelian variety (tropical ppav for short). We review the theory of tropical ppavs, follow-
ing are [FRSS18] and [LU19], though we have found it convenient to slightly modify the main
definitions (see Remark 2.3). In brief, a tropical ppav is a real torus Σ whose universal cover
is equipped with a distinguished lattice (used to define integral local coordinates on Σ, and in
general distinct from the lattice defining the torus itself), and an inner product.

Let Λ and Λ 1 be finitely generated free abelian groups of the same rank, and let [¨, ¨] : Λ 1ˆΛ→
R be a nondegenerate pairing. The triple (Λ,Λ 1, [¨, ¨]) defines a real torus with integral structure
Σ = Hom(Λ,R){Λ 1, where the "integral structure" refers to the lattice Hom(Λ,Z) Ă Hom(Λ,R),
and where Λ 1 is embedded in Hom(Λ,R) via the assignment λ 1 Þ→ [λ 1, ¨]. The transposed data
(Λ 1, Λ, [¨, ¨]t) define the dual torus Σ 1 = Hom(Λ 1,R){Λ.

Let Σ1 = (Λ1, Λ
1
1, [¨, ¨]1) and Σ2 = (Λ2, Λ

1
2, [¨, ¨]2) be two real tori with integral structure, and let

f˚ : Λ
1
1 → Λ 12 and f˚ : Λ2 → Λ1 be a pair of maps satisfying

[λ 11, f
˚(λ2)]1 = [f˚(λ

1
1), λ2]2 (3)

for all λ 11 P Λ
1
1 and λ 12 P Λ

1
2. The map f˚ defines a dual map f : Hom(Λ1,R) → Hom(Λ2,R),

and condition (3) implies that f(Λ 11) Ă Λ 12 (in fact, f|Λ 11 = f˚). Hence the pair (f˚, f
˚) defines a

homomorphism f : Σ1 → Σ2 of real tori with integral structures. The transposed pair (f˚, f˚) defines
the dual homomorphism f 1 : Σ 12 → Σ 11.

Let f = (f˚, f
˚) : Σ1 → Σ2 be a homomorphism of real tori with integral structures Σi =

(Λi, Λ
1
i, [¨, ¨]i). We can naturally associate two real tori to f: the connected component of the

identity of the kernel of f, denoted (Ker f)0, and the cokernel Coker f. It is easy to see that
(Ker f)0 and Coker f also have integral structures, and the natural maps i : (Ker f)0 → Σ1 and
p : Σ2 → Coker f are homomorphisms of real tori with integral structure.

Indeed, let K = (Coker f˚)tf be the quotient of Coker f˚ by its torsion subgroup (equivalently,
the quotient of Λ1 by the saturation of Im f˚), and let K 1 = Ker f˚. Then Hom(K,R) is naturally
identified with the kernel of the map Hom(Λ1,R) → Hom(Λ2,R) dual to f˚, and therefore
(Ker f)0 = (K,K 1, [¨, ¨]K), where [¨, ¨]K : K 1 ˆ K → R is the pairing induced by [¨, ¨]1. We note that
this pairing is well-defined: given λ 11 P K

1 and λ2 P Λ2, Equation (3) implies that

[λ 11, f
˚(λ2)]1 = [f˚(λ

1
1), λ2]2 = [0, λ2]2 = 0.
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Therefore, for λ 1 P K 1 and λ P K, the pairing [λ 1, λ]K = [λ 1, λ]1 does not depend on a choice of
representative for λ P K. The natural maps i˚ : Λ1 → K and i˚ : K 1 → Λ1 define (Ker f)0 as an
integral subtorus of Σ1. Similarly, Coker f = (C,C 1, [¨, ¨]C), where C = Ker f˚, C 1 = (Coker f˚)tf,
the pairing [¨, ¨]C is induced by [¨, ¨]2, and p is given by the natural maps p˚ : Λ 12 → C 1 and
p˚ : C → Λ2. We note that a morphism f of real tori with integral structure has finite kernel if
and only if K and K 1 are trivial, in other words if f˚ is injective (equivalently, if Im f˚ has finite
index in Λ1).

Let Σ = (Λ,Λ 1, [¨, ¨]) be a real torus with integral structure. A polarization on Σ is a map
ξ : Λ 1 → Λ (necessarily injective) with the property that the induced bilinear form

(¨, ¨) : Λ 1 ˆΛ 1 → R, (λ 1, µ 1) = [λ 1, ξ(µ 1)]

is symmetric and positive definite. Given a polarization ξ on Σ, the pair (ξ, ξ) defines a homo-
morphism η : Σ → Σ 1 to the dual, whose finite kernel is identified with Λ{ Im ξ. The pair (Σ, ξ)

is called a tropical polarized abelian variety. The map η is an isomorphism if and only if ξ is an
isomorphism, in which case we say that the polarization ξ is principal.

Let Σ = (Λ,Λ 1, [¨, ¨]) be a g-dimensional tropical polarized abelian variety. The associated
bilinear form (¨, ¨) on Λ 1 extends to an inner product on the universal cover V = Hom(Λ,R),
which we also denote (¨, ¨), and hence to a translation-invariant Riemannian metric on Σ. Let
C Ă Σ be a parallelotope framed by vectors v1, . . . , vg P V , then the volume of C is equal to the
square root

a

det(vi, vj) of the Gramian determinant of the vi. In particular, if λ 11, . . . , λ
1
g is a basis

of Λ 1, then

Vol2(Σ) = det(λ 1i, λ
1
j).

Finally, let f : Σ1 → Σ2 be a homomorphism of real tori with integral structures given by
f˚ : Λ2 → Λ1 and f˚ : Λ 11 → Λ 12, and assume that f has finite kernel (equivalently, f˚ is injective).
Given a polarization ξ2 : Λ 12 → Λ2 on Σ2 with associated bilinear form (¨, ¨)2, we define the induced
polarization ξ1 : Λ 11 → Λ1 by ξ1 = f˚ ˝ ξ2 ˝ f˚. This is indeed a polarization, because by (3) the
associated bilinear form (¨, ¨)1 on Λ 11 is given by

(λ 11, µ
1
1)1 = [λ 11, ξ1(µ

1
1)]1 = [λ 11, f

˚(ξ2(f˚(µ
1
1)))]2 = [f˚(λ

1
1), ξ2(f˚(µ

1
1))]2 = (f˚(λ

1
1), f˚(µ

1
1))2,

so it is symmetric and positive definite because f˚ is injective. Hence, in particular, an integral
subtorus i : Π → Σ of a tropical polarized abelian variety (Σ, ξ) has an induced polarization,
which we denote i˚ξ. We note that the polarization induced by a principal polarization is not
necessarily itself principal.

Remark 2.3. In [LU19], a real torus with integral structure is defined as a torus Σ = NR{Λ with
a distinguished lattice N Ă NR in the universal cover, and a morphism f : Σ1 → Σ2 as a map
f : N1,R → N2,R satisfying f(Λ1) Ă Λ2 and induced by a Z-linear map N1 → N2. It is easy to see
that this definition is equivalent to ours.

2.4. The Jacobian of a metric graph. We now construct the Jacobian variety Jac(Γ) of a metric
graph Γ of genus g as a tropical ppav, following [BF11] and [LU19]. We first pick an oriented
model G of Γ and consider the corresponding simplicial homology groups. Let A be either Z
or R, and let C0(G,A) = AV(G) and C1(G,A) = AE(G) be respectively the simplicial 0-chain and
1-chain groups of G with coefficients in A. The source and target maps s, t : E(G)→ V(G) induce

9



a boundary map

dA : C1(G,A)→ C0(G,A),
ÿ

ePE(G)

aee Þ→ ÿ

ePE(G)

ae[t(e) − s(e)],

and the first simplicial homology group of G with coefficients in A is H1(G,A) = KerdA. We also
consider the group of A-valued harmonic 1-forms Ω(G,A) on G, which is a subgroup of the free
A-module with basis {de : e P E(G)}:

Ω(G,A) =

 ÿ

ePE(G)

ωede :
ÿ

e:t(e)=v

ωe =
ÿ

e:s(e)=v

ωe for all v P V(G)

 .
We note that mathematically H1(G,A) and Ω(G,A) are the same object, but it is convenient to
distinguish them, both for historical purposes and for clarity of exposition.

We now define an integration pairing

[¨, ¨] : C1(G,A)ˆΩ(G,A)→ R

by

[γ,ω] =

∫
γ

ω =
ÿ

ePE(G)

γeωe`(e), γ =
ÿ

ePE(G)

γee, ω =
ÿ

ePE(G)

ωede.

By Lemma 2.1 in [BF11], the integration pairing restricts to a perfect pairing on H1(G,A) ˆ

Ω(G,A).
Let G 1 be the model of Γ obtained by subdividing the edge e P E(G) into two edges e1 and

e2, oriented in the same way as e, with `(e1) + `(e2) = `(e). The natural embedding C1(G,A) →
C1(G

1, A) sending e to e1 + e2 restricts to an isomorphism H1(G,A) → H1(G
1, A). Similarly, the

groups Ω(G,A) and Ω(G 1, A) are naturally isomorphic, and these isomorphisms preserve the
integration pairing. Hence we can define Ω(Γ,A) = Ω(G,A) and H1(Γ,A) = H1(G,A) for any
model G, and by a 1-chain, or path, on Γ we mean a 1-chain on any model of Γ .

We now let Λ = Ω(Γ,Z) and Λ 1 = H1(Γ,Z), let [¨, ¨] : Λ 1 ˆ Λ → R be the integration pairing,
and let ξ : H1(Γ,Z) → Ω(Γ,Z) be the natural isomorphism sending the 1-cycle

ř

aee to the 1-
form

ř

aede. We denote Ω˚(Γ) = Hom(Ω(Γ,Z),R), and by the universal coefficient theorem
the group Hom(H1(Γ,Z),R) is canonically isomorphic to H1(Γ,R). The Jacobian variety and the
Albanese variety of Γ are the dual tropical ppavs

Jac(Γ) = Ω(Γ)˚{H1(Γ,Z), Alb(Γ) = H1(Γ,R){Ω(Γ,Z).

The group H1(Γ,Z) carries an intersection form

(¨, ¨) = [¨, ξ(¨)] : H1(Γ,Z)ˆH1(Γ,Z)→ R,

 ÿ

ePE(G)

γee,
ÿ

ePE(G)

δee

 =
ÿ

ePE(G)

γeδe`(e) (4)

that induces an inner product on Ω˚(Γ).
Fix a point q P Γ , and for any p P Γ choose a path γ(q, p) P C1(Γ,Z) from q to p. Integrating

along γ(q, p) defines an element ofΩ(Γ)˚, and choosing a different path γ 1(q, p) defines the same
element modulo H1(Γ,Z) Ă Ω(Γ)˚. Hence we have a well-defined Abel–Jacobi map Φq : Γ → Jac(Γ)
with base point q:

Φq : Γ → Jac(Γ), p Þ→ (
ω Þ→ ∫

γ(q,p)
ω

)
. (5)
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The map Φq extends by linearity to Div(Γ), and its restriction to Div0(Γ) does not depend on the
choice of base point q. The tropical analogue of the Abel–Jacobi theorem (see [MZ08], Theorem
6.3) states that Ψq descends to a canonical isomorphism Pic0(Γ) » Jac(Γ). Since any Pick(Γ) is a
torsor over Pic0(Γ), we can define Vol(Pick(Γ)) = Vol(Jac(Γ)).

Finally, we recall the principal results [ABKS14], which concern the tropical Jacobi inversion
problem. Consider the degree g Abel–Jacobi map

Φ : Symg(Γ)→ Picg(Γ), π(p1, . . . , pg) = p1 + ¨ ¨ ¨+ pg.

A choice of model G for Γ defines a cellular decomposition

Symg(Γ) =
ď

FPSymg(E(G))

C(F),

where for a multiset F = {e1, . . . , eg} P Symg(E(G)) of g edges of G the cell C(F) consists of
divisors supported on F:

C(F) = {p1 + ¨ ¨ ¨+ pg : pi P ei}.

We say that F is a break set if all ei are distinct and G\F is a tree, and the set of break divisors is the
union of the cells C(F) over all break sets F.

The map Φ is affine linear on each cell C(F), and has maximal rank precisely when F is a break
set. Specifically, the following is true:

(1) If F = {e1, . . . , eg} is a break set, then the restriction of Φ to C(F) is injective, and

Vol(Φ(C(F))) =
w(F)

Vol(Jac(Γ))
, w(F) = Vol(C(F)) = `(e1) ¨ ¨ ¨ `(eg). (6)

(2) If F is not a break set, then the restriction of Φ to C(F) does not have maximal rank, and
Vol(Φ(C(F))) = 0.

Furthermore, the map Φ has a unique continuous section whose image is the set of break
divisors. Hence the images of the break cells C(F) cover Picg(Γ) with no overlaps, and adding
together their volumes gives Vol(Jac(Γ)) = Vol(Picg(Γ)):

Theorem 2.4 (Theorem 1.5 of [ABKS14]). The volume of the Jacobian variety of a metric graph Γ of
genus g is given by

Vol2(Jac(Γ)) =
ÿ

FĂE(Γ)

w(F), (7)

where the sum is taken over g-element subsets F Ă E(Γ) such that Γ\F is a tree.

Remark 2.5. This result can be interpreted as saying that Φ is a harmonic morphism of polyhedral
spaces of degree 1, where we define the local degree ofΦ on a cell C(F) to be 1 if F is a break set and
0 otherwise. Indeed, the harmonicity condition ensures that such a map has a unique continuous
section, since each cell of Picg(Γ) has a unique preimage in Symg(Γ) and these preimages fit
together along codimension one cells. Formula (6) then implies that the map Φ has a common
volume dilation factor 1{Vol(Jac(Γ)) on all non-contracted cells.

Remark 2.6. We also note that, from the point of view of the Riemannian geometry of Jac(Γ),
the edge lengths on Γ are measured in units of [length]2, not [length]. This is already clear from
Formula (4) for the intersection form. Hence, for example, if Γ is a circle of length L (in other
words consists of a single loop of length L attached to a vertex), then Γ is canonically isomorphic
to Pic1(Γ), but the volume of Jac(Γ) is

?
L, rather than L.
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2.5. Prym groups. We now discuss the Prym group of a free double cover of finite graphs. Unlike
the case of metric graphs (which we treat in Section 2.6), finite groups don’t have a distinguished
connected component of the identity. We therefore require a notion of parity on elements of the
kernel of the norm map.

Let p : rG → G be a free double cover of graphs. The induced maps Nm : Div(rG) → Div(G)
and ι : Div(rG)→ Div(rG) given by

Nm
(

ÿ

avv
)
=

ÿ

avp(v), ι
(

ÿ

avv
)
=

ÿ

avι(v)

preserve degree and linear equivalence, and descend to give a surjective map Nm : Jac(rG) →
Jac(G) and an isomorphism ι : Jac(rG)→ Jac(rG).

A divisor in the kernelD P Ker Nm Ă Div(rG) has degree zero and can be uniquely represented
as D = E − ι(E), where E is an effective divisor and the supports of E and ι(E) are disjoint. We
define the parity of D as

ε(D) = degE mod 2.

It turns out that parity respects addition and linear equivalence, and hence gives a surjective
homomorphism from Ker Nm Ă Jac(rG) to Z{2Z:

Proposition 2.7. Let D1, D2 P Ker Nm Ă Div0(rG).

(1) ε(D1 +D2) = ε(D1) + ε(D2).
(2) If D1 » D2 then ε(D1) = ε(D2).

Proof. Suppose that p : rG → G is defined by a spanning tree T Ă G and a nonempty subset
S Ă E(G)\E(T), as in Construction A. Every divisor D P Ker Nm Ă Div(rG) is of the form

D =
ÿ

vPV(G)

(a
rv+rv+ + a

rv−rv−),

where a
rv+ +a

rv− = 0 for each v P V(G). It follows that if D = E− ι(E) then degE =
ř

|a
rv+ |, hence

ε(D) =
ÿ

|a
rv+ | mod 2 =

ÿ

a
rv+ mod 2,

which is clearly preserved by addition.
To complete the proof, we need to show that any principal divisor in Ker Nm Ă Div(rG) is

even. Consider an arbitrary principal divisor

D =
ÿ

vPV(G)

(c
rv+Drv+ + c

rv−Drv−)

on rG. Its norm is Nm(D) =
ř

(c
rv+ + c

rv−)Dv P Div(G), which is the trivial divisor if and only if
c

rv+ + c
rv− = c for a fixed c P Z and for all v P V(G). Therefore, if Nm(D) = 0 in Div(G), then

setting av = c
rv+ − c = −c

rv− we see that

D = cD+ +
ÿ

vPV(G)

av(D
rv+ −D

rv−),

where D+ the principal divisor obtained by firing each vertex rv+ of the top sheet once, and
av P Z. We now show that each summand above is even, so D is even as well by the first part of
the proof.
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v1 v2 v3 v4

e1

e3 e4 e5

e2

rv−1 rv−2 rv−3 rv−4

rv+1 rv+2 rv+3 rv+4

Figure 1. An example of a free double cover

First, we consider divisors of the form D
rv+ −D

rv− for v P V(G). Suppose that the double cover
p is described by Construction A. For any vertex u P V(G), denote au and bu the number of
edges between u and v in E(G)\S and S respectively. Then

(D
rv+ −D

rv−)(ru
˘) = ˘(au − bu),

and
(D

rv+ −D
rv−)(rv

˘) = −
ÿ

u‰v

¯(au + bu).

It follows that the contribution from each vertex u to the positive part of D
rv+ −D

rv− is |au−bu|+

au + bu = max(2au, 2bu), which is even.
As for D+, a direct calculation shows that

D+ =
ÿ

vPV(G)

D
rv+ =

ÿ

ePS

(
Ąs(e)

−
+ Ąt(e)

−
− Ąs(e)

+
− Ąt(e)

+)
,

hence D+ is even, and the proof is complete.
�

Definition 2.8. The Prym group Prym(rG{G) Ă Jac(rG) of a free double cover p : rG → G is the
subgroup of even divisors in Ker Nm.

It is clear that the order of the Prym group is equal to

|Prym(rG{G)| =
1

2
|Ker Nm | =

| Jac(rG)|

2| Jac(G)|
,

and one of the principal results of our paper is a combinatorial formula (14) for |Prym(rG{G)|.
For now, we illustrate with an example.

Example 2.9. Consider the free double cover p : rG → G shown in Fig. 1. In terms of Construc-
tion A, we can describe it by choosing T Ă G to be the tree containing e3, e4, and e5, and setting
S = {e1, e2}. Using Kirchhoff’s theorem, we find that | Jac(G 1)| = 64 and | Jac(G)| = 4, therefore
Ker Nm and Prym(rG{G) have orders 16 and 8, respectively. The group Ker Nm is spanned by the
divisors Di = rv+i − rv−i , where i = 1, 2, 3, 4, and an exhaustive calculation using Dhar’s burning
algorithm gives a complete set of relations on the Di:

2D1 = 0, 8D2 = 0, D4 = D1 + 4D2, D3 = 3D2.
13



It follows that Ker Nm » Z{2Z‘Z{8Z with generators D1 and D2, and hence Prym(rG{G) » Z{8Z
with generator D1 +D2.

We note that the Abel–Prym map rG = Sym1(rG) → Prym1(rG{G) sending rv˘i to ˘Di is not
surjective: both sets have eight elements, but the images of rv˘1 are equal, as well as those of rv˘4 .

2.6. Prym varieties. Finally, we recall the definition of the Prym variety of a free double cover
π : rΓ → Γ of metric graphs (see [JL18] and [LU19]). As in the finite case, the cover π induces a
surjective norm map

Nm : Pic0(rΓ)→ Pic0(Γ), Nm
(

ÿ

airpi

)
=

ÿ

aiπ(rpi),

and a corresponding involution ι : Pic0(rΓ)→ Pic0(rΓ).
The kernel Ker Nm consists of divisors having a representative of the form E − ι(E) for some

effective divisor E on rΓ . Indeed, suppose that rD is a divisor on rΓ such that Nm(rD) » 0. Then
Nm(rD) + div f = 0 for some piecewise linear function f. Defining f̃(x) = f(π(x)), we see that
rD is equivalent to a divisor whose pushforward is the zero divisor on the nose. Furthermore,
the parity of E is well-defined, and Ker Nm has two connected components corresponding to
the parity of E [JL18, Proposition 6.1] (note that, in the more general case when π is a dilated
unramified double cover, Ker Nm has only one connected component).

Definition 2.10. The Prym variety Prym(rΓ{Γ) Ă Pic0(rΓ) of the free double cover π : rΓ → Γ of
metric graphs is the connected component of the identity of Ker Nm.

The Prym variety Prym(rΓ{Γ) has the structure of a tropical ppav, which we now describe.
Denote rΛ = Ω(rΓ ,Z), rΛ 1 = H1(rΓ ,Z), Λ = Ω(Γ,Z) and Λ 1 = H1(Γ,Z). Choose an oriented model
p : rG → G for π, and consider the pushforward and pullback maps π˚ : H1(rΓ ,Z) → H1(Γ,Z) and
π˚ : Ω(Γ,Z)→ Ω(rΓ ,Z) defined by

π˚

 ÿ

rePE(rG)

a
rere

 =
ÿ

rePE(rG)

a
reπ(re), π˚

 ÿ

ePE(G)

aede

 =
ÿ

ePE(G)

ae(dre+ + dre−).

It is easy to verify that the maps π˚ and π˚ satisfy Equation (3) with respect to the integra-
tion pairings on rΓ and Γ , and hence define a homomorphism π˚ : Jac(rΓ) → Jac(Γ) of real tori
with integral structure. By Proposition 2.2.3 in [LU19], the homomorphism π˚ is identified with
the norm homomorphism Nm : Pic0(rΓ) → Pic0(Γ) under the Abel–Jacobi isomorphism. There-
fore, Prym(rΓ{Γ) is in fact the real torus with integral structure (Kerπ˚)0 = (K,K 1, [¨, ¨]K), where
K = (Cokerπ˚)tf, K = Kerπ˚, and [¨, ¨]K is the pairing induced by the integration pairing on rΓ .
Alternatively, we can describe Prym(rΓ{Γ) as the quotient

Prym(rΓ{Γ) =
Kerπ : Ω˚(rΓ)→ Ω˚(Γ)

Kerπ˚ : H1(rΓ ,Z)→ H1(Γ,Z)
,

where π is the map dual to π˚.
The polarization rξ : H1(rΓ ,Z) → Ω(rΓ ,Z) on Jac(rΓ) induces a polarization i˚rξ : K 1 → K on

Prym(rΓ{Γ), and Theorem 2.2.7 in [LU19] states that there exists a principal polarization ψ : K 1 → K

on Prym(rΓ{Γ) such that i˚rξ = 2ψ. Hence Prym(rΓ{Γ) is a tropical ppav. We note that the inner
product (¨, ¨)P on Prym(rΓ{Γ) induced by the principal polarization ψ is half of the restriction of
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the inner product (¨, ¨)
rΓ

from Jac(rΓ). In other words for γ, δ P Kerπ˚ we have

(γ, δ)P = [γ,ψ(δ)] =
1

2
[γ,rξ(δ)] =

1

2
(γ, δ)

rΓ
=
1

2

ÿ

rePE(Γ)

γ
reδre`(re), γ =

ÿ

rePE(Γ)

γ
rere, δ =

ÿ

rePE(Γ)

δ
rere, (8)

and similarly for the induced product on Kerπ. When discussing the metric properties of
Prym(rΓ{Γ), such as its volume, we always employ the inner product (¨, ¨)P induced by the princi-
pal polarization.

We use a set of explicit coordinates on the torus Prym(rΓ{Γ), or more accurately on its universal
cover Kerπ. Choose a basis

rγj =
ÿ

rePE(rG)

rγj,rere, j = 1, . . . , g− 1

for Kerπ˚ : H1(rΓ ,Z) → H1(Γ,Z). The principal polarization ψ = 1
2
rξ gives a corresponding basis

of the second lattice (Cokerπ˚)tf:

ωj = ψ(rγj) =
1

2

ÿ

rePE(rG)

rγj,redre, j = 1, . . . , g− 1.

Let ω˚j denote the basis of Kerπ : Ω˚(rΓ) → Ω(Γ) dual to the ωj, so that ω˚j (ωk) = δjk, then
elements of Prym(rΓ{Γ) can be given (locally uniquely) as linear combinations of the ω˚j .

We compute for future reference the volume of the unit cube C(ω˚1 , . . . ,ω
˚
g−1) in the coordinate

system defined by the ω˚j . We know that Vol(Prym(rΓ{Γ)) =
?

detG, where Gij = (rγi, rγj)P is the
Gramian matrix of the basis rγj. The rγj, viewed as elements of Kerπ, are themselves a basis, so
we can write ω˚i =

ř

jAijrγj for some matrix Aij. Pairing with ωj and using that [rγi,ωj] = Gij,
we see that A is in fact the inverse matrix of G. Hence we see that

Vol(C(ω˚1 , . . . ,ω
˚
g−1)) = det(ω˚i ,ω

˚
j ) = detG−1 det(rγi, rγj)detG−1 =

1

detG
=

1

Vol(Prym(rΓ{Γ)
.

(9)
In particular, this volume does not depend on the choice of basis rγj.

Remark 2.11. The definition of the Prym group for a free double cover of finite graphs is con-
sistent with the definition for metric graphs in the following sense. Let p : rG → G be a free
double cover of finite graphs, and let π : rΓ → Γ be the corresponding double cover of metric
graphs, where rΓ and Γ are obtained from respectively rG and G by setting all edge lengths to 1.
Then Jac(rG) is naturally a subgroup of Jac(rΓ), consisting of divisors supported at the vertices,
and Prym(rG{G) = Jac(rG)X Prym(rΓ{Γ).

2.7. Polyhedral spaces and harmonic morphisms. The spaces Symd(Γ), Jac(Γ), and Prym(rΓ{Γ)

are examples of rational polyhedral spaces, which are topological spaces locally modeled on rational
polyhedral sets in Rn. A rational polyhedral space comes equipped with a structure sheaf, pulled
back from the sheaf of affine Z-linear functions on the embedded polyhedra. We shall not require
the general theory of rational polyhedral spaces, in particular we shall use only the polyhedral
decomposition and not the sheaf of affine functions. See [MZ14], [GS19] for details.

A rational polyhedral space P is a finite union of polyhedra, which we call cells. We only
consider compact polyhedral spaces. The intersection of any two cells is either empty or a face
of each. A polyhedral space P is equidimensional of dimension n if each maximal cell of P (with
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respect to inclusion) has dimension n, and is connected through codimension one if the complement
in P of all cells of codimension two is connected. A map f : P → Q of polyhedral spaces is locally
given by affine Z-linear transformations, and is required to map each cell of P surjectively onto a
cell of Q. We say that f contracts a cell C of P if dim(f(C)) ă dim(C).

We use an ad hoc definition of harmonic morphisms of polyhedral spaces, modelled on the
corresponding definition for metric graphs.

Definition 2.12. [cf. Definition 2.5 in [LR18]] Let f : P → Q be a map of equidimensional polyhe-
dral spaces of the same dimension, and let deg be a non-negative integer-valued function defined
on the top-dimensional cells of P. Let C be a codimension 1 cell of P mapping surjectively onto a
codimension one cell D of Q. We say that f is harmonic at C (with respect to the degree function
deg) if the following condition holds: for any codimension zero cell N of Q adjacent to D, the
sum

deg(C) =
ÿ

MĂf−1(N),MĄC

deg(M) (10)

of the degrees degM over all codimension zero cells M of P adjacent to C and mapping to N is
the same, in other words does not depend on the choice of N. We say that f is harmonic if f is
harmonic at every codimension one cell of P, and in addition if f(C) = 0 on a codimension zero
cell C if and only if f contracts C.

Given a harmonic morphism f : P → Q, Equation (10) extends the degree function deg to
codimension one cells of P. If Q is connected through codimension one, we can similarly define
the degree on cells of any codimension, and hence on all of P (note, however, that for a cell C
of positive codimension, deg(C) = 0 does not imply that C is contracted). The function deg is
locally constant in fibers: given p P P and an open neighborhood V Q f(p), there exists an open
neighborhood U Q p such that f(U) Ă V , and such that for any q P V the sum of the degrees over
all points of f−1(q) X U is the same (in particular, this sum is finite). It follows that a harmonic
morphism to a target connected through codimension one is surjective, and has a well-defined
global degree, which is the sum of the degrees over all points of any fiber.

3. Kirchhoff’s theorem for the Prym group and the Prym variety

In this section, we give combinatorial formulas for the order (14) of the Prym group of a free
double cover p : rG→ G of finite graphs, and the volume (17) of the Prym variety of a free double
cover π : rΓ → Γ of metric graphs.

Formula (14) had already been obtained by Zaslavsky (see Theorem 8A.4 in [Zas82]). Specif-
ically, a free double cover p : rG → G induces the structure of a signed graph on G: defining the
cover p in terms of Construction A with respect to a spanning tree T Ă G, we attach a negative
sign − to each edge e P S Ă E(G)\E(T) and a positive sign + to all other edges. Zaslavsky
then defines the signed Laplacian matrix of G and shows that its determinant is given by (14)
(note that the signed Laplacian is non-singular, unlike the ordinary Laplacian). Reiner and Tseng
specifically interpret the determinant of the signed Laplacian as the order of the Prym group
Prym(rG{G) (see Proposition 9.9 in [RT14]).

We give an alternative proof of (14) using the Ihara zeta function. Given a free double cover
p : rG → G, the orders of Jac(rG) and Jac(G) can be computed from the corresponding zeta
functions ζ(rG, s) and ζ(G, s) using Northshield’s class number formula [Nor98]. Hence the ratio
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|Prym(rG{G)| = | Jac(rG)|{2| Jac(G)| is given by the ratio of the zeta functions. This is equal to
the Artin–Ihara L-function of the cover and can be explicitly computed from the corresponding
determinantal formula, derived by Stark and Terras (see [ST96] and [ST00]).

The volume formula (17) is new, to the best of our knowledge, and is derived from (14) by a
scaling argument.

3.1. The Ihara zeta function and the Artin–Ihara L-function. The Ihara zeta function ζ(s,G) of
a finite graph G is the graph-theoretic analogue of the Dedekind zeta function of a number field
and is defined as an Euler product over certain equivalence classes of closed paths on G. We
recall its definition and properties (see [Ter10] for an elementary treatment).

Let G be a graph with n = #(V(G)) vertices and m = #(E(G)) edges. A path P of length k = `(P)

is a sequence P = e1 ¨ ¨ ¨ ek of oriented edges of G such that t(ei) = s(ei+1) for i = 1, . . . , k− 1. We
say that a path P is closed if t(ek) = s(e1) and reduced if ei+1 ‰ ei for i = 1, . . . , k − 1 and e1 ‰ ek.
We can define positive integer powers of closed paths by concatenation, and a closed reduced
path P is called primitive if there does not exist a closed path Q such that P = Qk for some k ě 2.
We consider two reduced paths to be equivalent if they differ by a choice of starting point, i.e.
we set e1 ¨ ¨ ¨ ek ∼ ej ¨ ¨ ¨ ek ¨ e1 ¨ ¨ ¨ ej−1 for all j = 1, . . . k. A prime p of G is an equivalence class of
primitive paths, and has a well-defined length `(p). We note that a primitive path and the same
path traversed in the opposite direction represent distinct primes.

The Ihara zeta function ζ(s,G) of a graph G is the product

ζ(s,G) =
ź

p

(1− s`(p))−1

over all primes p of G, where s is a complex variable. This product is usually infinite, converges
for sufficiently small s, and extends to rational function.

The three-term determinant formula, due to Bass [Bas92] (see also [Ter10]), expresses the recipro-
cal ζ(s,G)−1 as an explicit polynomial

ζ(s,G)−1 = (1− s2)g−1 det(In −As+ (Q− In)s
2),

where Q and A are the valency and adjacency matrices (see (2)), and g = m− n+ 1 is the genus
of G. It is clear from this formula that ζ(s,G)−1 vanishes at s = 1 to order at least g, because
for s = 1 the matrix inside the determinant is equal to the Laplacian L of G and detL = 0. In
fact, the order of vanishing is equal to g, and Northshield [Nor98] shows that the leading Taylor
coefficient computes the complexity, i.e. the order of the Jacobian of G:

ζ(s,G)−1 = (−1)g−12g(g− 1)| Jac(G)|(s− 1)g +O((s− 1)g+1). (11)

This result may be viewed as a graph-theoretic analogue of the class number formula.
The analogy with number theory was further reinforced by Stark and Terras, who developed

(see [ST96] and [ST00]) a theory of L-functions of Galois covers of graphs, as follows. Let p : rG→
G be a free Galois cover of graphs with Galois group K (we do not define these, since we only
consider free double covers, which are Galois covers with K = Z{2Z), and fix a representation ρ
of K. Given a prime p of G, choose a representative P with starting vertex v P V(G), and choose a
vertex rv P V(rG) lying over v. The path P lifts to a unique path rP in rG starting at rv and mapping to
P, and the terminal vertex of rP also maps to v. The Frobenius element F(P, rG{G) P K is the unique
element of the Galois group mapping rv to the terminal vertex of rP. The Artin–Ihara L-function is
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now defined as the product

L(s, ρ, rG{G) =
ź

p

det(1− ρ(F(P, rG{G))s`(p))−1

taken over the primes p of G, where for each prime p we pick an arbitrary representative P (Frobe-
nius elements corresponding to different representatives of p are conjugate, so the determinant
is well-defined).

Similarly to the zeta function, the product defining the L-function converges to a rational
function and is given by a determinant formula. Pick a spanning tree T Ă G and index its
preimages in rG, called the sheets of the cover, by the elements of K. Given an edge e P E(G),
the Frobenius element F(e) P K is equal to h−1g, where h and g are respectively the indices of the
sheets of the source and the target of e. Let d be the degree of ρ, and define the ndˆnd Artinized
valency and Artinized adjacency matrices as

Qρ = Qb Id, (Aρ)uv =
ÿ

ρ(F(e)),

where in the right hand side we sum over all edges e between u and v. The three-term determi-
nant formula for the L-function states that

L(s, ρ, rG{G)−1 = (1− s2)(g−1)d det(Ind −Aρs+ (Qρ − Ind)s
2). (12)

Finally, we relate the zeta and L-functions associated to a free Galois cover p : rG → G with
Galois group K. First of all, the zeta functions of rG and G are equal to the L-function evaluated
at respectively the right regular and trivial representations ρK and 1K:

ζ(s, rG) = L(s, ρK, rG{G), ζ(s,G) = L(s, 1K, rG{G).

Furthermore, for a reducible representation ρ = ρ1 ‘ ρ2 the L-function factors as

L(s, ρ, rG{G) = L(s, ρ1, rG{G)L(s, ρ2, rG{G).

It follows that the zeta function of rG has a factorization

ζ(s, rG) = ζ(s,G)
ź

ρ

L(s, ρ, rG{G)d(ρ), (13)

where the product is taken over the distinct nontrivial irreducible representations of K.

3.2. The order of the Prym group. We now specialize to the case where K = Z{2Z in order to
compute the order of the Prym group of a free double cover p : rG→ G of finite graphs. By (11),
the leading Taylor coefficients of the zeta functions ζ(s, rG)−1 and ζ(s,G)−1 at s = 1 compute
respectively the orders | Jac(rG)| and | Jac(G)|. Since ζ−1(s, rG) is the product of ζ−1(s,G) with the
inverse of the L-function evaluated at the nontrivial representation of Z{2Z, the leading Taylor
coefficient of the latter computes the order of the Prym.

By the results of [ABKS14], the Jacobian group of a graph G of genus g (and, by extension,
the Jacobian variety of a metric graph) admits a combinatorial description in terms of certain
g-element subsets of E(G), specifically the complements of spanning trees. We now give an
analogous definition for (g − 1)-element subsets of E(G), which, as we shall see, enumerate the
elements of Prym(rG{G), and control the geometry of the Prym varieties of double covers of
metric graphs.
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Definition 3.1. Let G be a graph of genus g, and let p : rG→ G be a connected free double cover.
A subset F Ă E(G) of g − 1 edges of G is called a genus one decomposition of rank r if the graph
G\F = G0 Y ¨ ¨ ¨ YGr−1 has r connected components, each of which has genus one. We say that a
genus one decomposition F is odd if the preimage of each Gk in rG is connected.

We note that when removing edges from a graph we never remove vertices, even isolated
ones. A simple counting argument shows that if F Ă E(G) is a subset such that each connected
component of G\F has genus one, then F consists of g− 1 edges, and a genus one decomposition
cannot have rank greater than g.

A genus one graph has two free double covers: the disconnected trivial cover and a unique
nontrivial connected cover. Hence we can equivalently require that the restriction of the cover p
to each Gk is a nontrivial free double cover. If the cover p is described by Construction A with
respect to a choice of spanning tree T Ă G and a nonempty subset S Ă E(G)\E(T), then a genus
one decomposition F Ă E(G) is odd if and only if each Gk has an odd number of edges from S

on its unique cycle (see Remark 2.2).

Theorem 3.2. Let G be a graph of genus g, and let p : rG → G be the connected free double cover
determined by T Ă G and S Ă E(G)\E(T). The order of the Prym group Prym(rG{G) is equal to

|Prym(rG{G)| =
1

2
|Ker Nm | =

g
ÿ

r=1

4r−1Cr, (14)

where Cr is the number of odd genus one decompositions of G of rank r.

Proof. Denote n = |V(G)| and m = |E(G)| = n + g − 1. According to (13), the zeta function of
rG is the product of the zeta function of G and the L-function of the cover rG{G evaluated at the
nontrivial representation ρ of the Galois group Z{2Z:

ζ(s, rG)−1 = ζ(s,G)−1L(s, rG{G, ρ)−1.

The class number formula (11) gives the leading Taylor coefficients at s = 1:

ζ(s, rG)−1 = 22g−1(2g− 2)| Jac(rG)|(s− 1)2g−1 +O
(
(s− 1)2g

)
,

ζ(s,G)−1 = (−1)g−12g(g− 1)| Jac(G)|(s− 1)g +O
(
(s− 1)g+1

)
.

The leading coefficient of the L-function is found directly from (12) (note that, unlike in for-
mula (11), the determinant does not vanish at s = 1):

L(s, ρ, rG{G)−1 = (−1)g−12g−1 det(Qρ −Aρ)(s− 1)g−1 +O ((s− 1)g) .

Therefore, comparing the expansions of L(s, ρ, rG{G)−1 with ζ(s, rG)−1{ζ(s,G)−1, we see that

|Prym(rG{G)| =
| Jac(rG)|

2| Jac(G)|
=
1

4
det(Qρ −Aρ).

We now calculate this n ˆ n determinant. First of all, Qρ = Q since ρ is one-dimensional.
The Frobenius element F(e) of an edge e P E(G) is the nontrivial element of Z{2Z, and hence
ρ(F(e)) = −1, if and only if e P S. Putting this together, we see that the matrix Qρ − Aρ has the
following form:

(Qρ −Aρ)uv =

{
|{edges from u to v in S}|− |{edges from u to v not in S}|, u ‰ v,

4|{loops at u in S}|+ |{non-loops at u}|, u = v.
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The matrix Qρ − Aρ turns out to be equal to the signed Laplacian matrix of the graph G (see
Proposition 9.5 in [RT14]), and its determinant is computed using a standard argument involving
an appropriate factorization and the Cauchy–Binet formula. We only give a sketch of these
calculations, since they are not new (see Proposition 9.9 in loc. cit.).

Pick an orientation on G. We factorize the signed Laplacian as Qρ −Aρ = BS(G)tBS(G), where

(BS(G))ve =


1, t(e) = v and s(e) ‰ v, or s(e) = v, t(e) ‰ v, and e P S,
−1, s(e) = v, t(e) ‰ v, and e R S,
2, s(e) = t(e) = v and e P S,
0, otherwise.

is the nˆm S-twisted adjacency matrix BS(G) of the graph G, whose rows and columns are indexed
by respectively V(G) and E(G). By the Cauchy–Binet formula, we have

|Prym(rG{G)| =
1

4
det(Qρ −Aρ) =

1

4

ÿ

FĂE(G), |F|=g−1

detBS(G\F)2. (15)

Here the sum is taken over all subsets F of E(G) consisting of m − n = g − 1 elements, and
BS(G\F) is the matrix obtained from BS(G) by deleting the columns corresponding to the edges
that are in F, or, equivalently, the S-twisted adjacency matrix of the graph G\F.

Let F Ă E(G) be such a subset, and let G\F = G0 Y ¨ ¨ ¨ Y Gr−1 be the decomposition of G into
connected components. The matrix BS(G\F) is block-diagonal, with blocks BS(Gk) correspond-
ing to the Gk. A block-diagonal matrix has nonzero determinant only if all blocks are square,
meaning that g(Gk) = 1 for all k, in which case

detBS(G\F)2 =
r−1
ź

k=0

detBS(Gk)2. (16)

The quantity detBS(Gk)2 for a genus one graph Gk is computed by induction on the extremal
edges (if any), and turns out to be equal to 4 if the unique cycle of Gk has an odd number of
edges from S, and 0 if the number is even. Hence, only odd genus one decompositions contribute
to the sum (15), and the contribution of a decomposition of rank r is equal to 4r. This completes
the proof.

�

Example 3.3. Consider the free double cover p : rG → G shown in Figure 1. Here g − 1 = 1, and
it is easy to see that any edge of G is an odd genus one decomposition. The edges e1, e2, e4, and
e5 are decompositions of rank one, while e3 is a decomposition of rank two. Hence by (14)

|Prym(rG{G)| = 4+ 1 ¨ 4 = 8,

which agrees with the calculations in Example 2.9.

3.3. The volume of the tropical Prym variety. In this section, we prove a weighted version of
Theorem 3.2 that gives the volume of the Prym variety of a free double cover of metric graphs.
Let π : rΓ → Γ be such a cover, where rΓ and Γ have genera 2g − 1 and g − 1, respectively. Choose
a model G for Γ . Similarly to the discrete case, an odd genus one decomposition F of Γ of rank r(F)
(with respect to the choice of model G) is a subset F Ă E(G) of (necessarily) g − 1 edges of G
such that E(G)\F consists of r(F) connected components of genus one, each having a connected
preimage in rΓ . For such an F, we denote by w(F) the product of the lengths of the edges in F.
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Theorem 3.4. The volume of the Prym variety of a free double cover π : rΓ → Γ of metric graphs is given
by

Vol2(Prym(rΓ{Γ)) =
ÿ

FĂE(Γ)

4r(F)−1w(F), (17)

where the sum is taken over all odd genus one decompositions F of Γ .

Remark 3.5. The right hand side of formula (17) is defined with respect to a choice of model
G for Γ . Let G 1 be the model obtained from G by subdividing an edge e P E(G) into edges e 11
and e 12, so that `(e) = `(e 11) + `(e

1
2). If e P F for some odd genus one decomposition F of G, then

(F\{e}) Y {e 11} and (F\{e}) Y {e 12} are odd genus one decompositions of G 1 of the same rank as F,
and vice versa. It follows that the right hand side is invariant under edge subdivision, and hence
does not depend on the choice of model for Γ . We also note that Vol2(Prym(rΓ{Γ)) is computed
with respect to the intrinsic principal polarization on Prym(rΓ{Γ), which is half of the restriction
of the principal polarization on Jac(rΓ).

We first establish the relationship between the volumes of the three tropical ppavs Jac(rΓ),
Jac(Γ), and Prym(rΓ{Γ). To compute the last of the three volumes, we define (building on Con-
struction A) an explicit basis for the kernel of the pushforward map π˚ : H1(rΓ , {Z) → H1(Γ,Z),
which we also use later.

Let G be a graph. Introduce the Z-valued bilinear pairing

x¨, ¨y : C1(G,Z)ˆ C1(G,Z)→ Z,

C

ÿ

ePE(G)

aee,
ÿ

ePE(G)

bee

G

=
ÿ

ePE(G)

aebe. (18)

We note that this pairing does not take edge lengths into account, and is not to be confused with
the integration pairing (¨, ¨) on a metric graph.

Construction B. Let π : rΓ → Γ be a connected free double cover of metric graphs. Choose an
oriented model p : rG→ G, and suppose that the cover p is given by Construction A with respect
to a spanning tree T Ă G and a nonempty subset S Ă E(G)\E(T) = {e0, . . . , eg−1} containing
e0. In this Construction, we define an explicit basis of the kernel of the pushforward map p˚ :

H1(rG,Z)→ H1(G,Z), as well as bases for H1(rG,Z) and H1(G,Z). We use these bases to compute
Gramian determinants, hence we view them to be unordered sets.

We first construct a basis for H1(G,Z). Let γi P H1(G,Z) for i = 0, . . . , g− 1 denote the unique
cycle of T Y {ei} such that xγi, eiy = 1. It is a standard fact that

B = {γ0, . . . , γg−1}

is a basis of H1(G,Z), and furthermore any γ P H1(G,Z) can be explicitly decomposed in terms
of B as follows:

γ = xγ, e1yγ1 + ¨ ¨ ¨+ xγ, egyγg.

Similarly, let rγ0 P H1(rG,Z) and rγ˘i P H1(rG,Z) for i = 1, . . . , g − 1 denote the unique cycle
of respectively rT Y {re−0 } and rT Y {re˘i } such that respectively xrγ0,re−0 y = 1 and xrγ˘i ,re

˘
i y = 1 for

i = 1, . . . , g− 1. Then
rB = {rγ0, rγ

˘
1 , . . . , rγ

˘
g−1}

is a basis of H1(rG,Z), and we similarly have

rγ = xrγ,re−0 yrγ0 + xrγ,re
+
1 yrγ

+
1 + ¨ ¨ ¨+ xrγ,re+g−1yrγ

+
g−1 + xrγ,re

−
1 yrγ

−
1 + ¨ ¨ ¨+ xrγ,re−g−1yrγ

−
g−1
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for any rγ P H1(rG,Z).
We now compute the action of the pushforward map p˚ : H1(rG,Z)→ H1(G,Z) and the involu-

tion map ι˚ : H1(rG,Z)→ H1(rG,Z) on the basis rB. The cycle rγ0 starts at the vertex s(re−0 ) = s(e0)
−

on the lower sheet rT−, then proceeds via +re−0 to the vertex t(re−0 ) = t(e0)
+ on the upper sheet rT+,

then to s(e0)+ via a unique path in rT+, then back to t(re+0 ) = t(e0)
− on T− via +re+0 , and then back

to s(e0)− via a unique path in rT−. In other words,

rγ0 = re+0 + re−0 + edges of rT˘, ι˚(rγ0) = re+0 + re−0 + edges of rT˘, p˚(rγ0) = 2e0 + edges of T,

therefore computing the intersection numbers with rB and B we see that

ι˚(rγ0) = rγ0, p˚(rγ0) = 2γ0.

Now consider the cycle rγ+i for ei P S\{e0}. We introduce the index

σi =

{
+1, s(re+i ) = s(ei)

+,

−1, s(re+i ) = s(ei)
−.

If σi = 1, then the cycle rγ+i starts at s(re+i ) = s(ei)
+ on rT+, then moves to t(re+i ) = t(ei)

− on rT−

via re+i , and then back to s(ei)+ on rT+ via a unique path in rT . This path crosses from rT− to rT+,
and hence must contain the edge −re+0 . If σi = −1, then rγ+i crosses from rT+ to rT−, and hence
contains re+0 . Similarly, we calculate that the cycle rγ−i contains the edge σire+0 . In other words, for
ei P S\{e0} we have

rγ˘i = re˘i ¯σire
+
0 +edges of rT˘, ι˚(rγ

˘
i ) = re¯i ¯σire

−
0 +edges of rT˘, p˚(rγ

˘
i ) = ei¯σie0+edges of T,

and hence computing the intersection numbers we see that

ι˚(rγ
˘
i ) = rγ¯i ¯ σirγ0, p˚(rγ

˘
i ) = γi ¯ σiγ0, ei P S\{e0}.

Finally, for ei R S the cycle γ˘i is contained in rT˘ Y {re˘i } and hence does not contain the edge re+0 .
It follows that

ι˚(rγ
˘
i ) = re¯i + edges of rT˘, p˚(rγ

˘
i ) = ei + edges of T, ei R S,

and therefore
ι˚(rγ

˘
i ) = rγ¯i , p˚(rγ

˘
i ) = γi, ei R S.

It is now clear that

rB 12 = {rγ+i − ι˚(rγ
+
i )}

g−1
i=1 = {rγ+i − rγ−i + σirγ0}eiPS\{e0} Y {rγ+i − rγ−i }eiRS (19)

is a basis for Kerp˚.

We now establish the relationship between the volumes of our three tropical ppavs.

Proposition 3.6. Let π : rΓ → Γ be a free double cover of metric graphs. Then the volumes of Jac(rΓ),
Jac(Γ), and Prym(rΓ{Γ) are related as

Vol2(Prym(rΓ{Γ)) =
Vol2(Jac(rΓ))
2Vol2(Jac(Γ))

,

where the volume of each tropical ppav is calculated using its intrinsic principal polarization.
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Proof. We first introduce the following alternative basis B 1 for H1(G,Z):

B 1 = {γ0}Y {γi − σiγ0}eiPS\{e0} Y {γi}eiRS. (20)

We now compute the pullback of B 1 to H1(rG,Z) via the map

p˚ : H1(G,Z)→ H1(rG,Z),
ÿ

ePE(G)

aee Þ→ ÿ

ePE(G)

ae(re
+ + re−).

Since γi consists of +ei and edges of T , we have

p˚(γi) = re+i + re−i + edges of T˘,

for i = 0, . . . , g− 1. Computing intersection numbers as before, we see that

p˚(γ0) = rγ0, p˚(γi) = rγ+i + rγ−i , i = 1, . . . , g− 1.

Hence
rB 11 = p˚(B 1) = {rγ0}Y {rγ+i + rγ−i − σirγ0}eiPS\{e0} Y {rγ+i + rγ−i }eiRS.

Let (¨, ¨)
rG

and (¨, ¨)G denote the intersection pairings (4) on H1(rG,Z) and H1(G,Z), respectively,
and let (¨, ¨)P = 1

2(¨, ¨)rG
denote the intersection pairing on Kerp˚ corresponding to the principal

polarization on Prym(rΓ{Γ). We add the corresponding subscripts to each Gramian determinant,
in order to keep track of the inner product that is used to compute it. Thus the volumes of Jac(G)
and Prym(rΓ{Γ) are given by

Vol2(Jac(Γ)) = GramG(B 1), Vol2(Prym(rΓ{Γ)) = GramP( rB 12).

We now consider the set rB 1 = rB 11 Y rB 12. This is a basis for the vector space H1(rΓ ,Q), and the
change-of-basis matrix from rB to rB 1 has determinant ˘2g−1. It follows that

Vol2(Jac(rΓ)) = Gram
rG
( rB) = 22−2g Gram

rG
( rB 1)

We now compute Gram( rB 1) using its block structure. First, we note that ι˚(rγ 11) = rγ 11 for all
rγ 11 P

rB 11 and ι˚(rγ 12) = −rγ 12 for all rγ 12 P
rB 12. Since ι˚ preserves the pairing (¨, ¨)

rG
, it follows that

(rγ 11, rγ
1
2)rG

= 0 for all rγ 11 P
rB 11 and all rγ 12 P

rB 12, therefore

Gram
rG
( rB 1) = Gram

rG
( rB 11)Gram

rG
( rB 12).

Since (¨, ¨)P = 1
2(¨, ¨)rG

, it is clear that

Gram
rG
( rB 12) = 2g−1 GramP( rB 12).

Finally, for any γ1, γ2 P H1(G,Z) we have (p˚(γ1), p
˚(γ2))

rG
= 2(γ1, γ2)G, and therefore

Gram
rG
( rB 11) = 2g GramG(B 1),

because rB 11 is the pullback of B 1. Putting all this together, we have

Vol2(Jac(rΓ))
2Vol2(Jac(Γ))

=
22−2g Gram

rG
( rB 1)

2GramG(B 1)
=
21−2g Gram

rG
( rB 11)Gram

rG
( rB 12)

GramG(B 1)
= GramP( rB 12),

which is equal to Vol2(Prym(rΓ{Γ), as required.
�

The proof of Theorem 3.4 now follows from Theorem 3.2 and Equation (7) by an elementary
scaling argument.
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Proof of Theorem 3.4. The right hand side of (17) is a homogeneous degree g − 1 polynomial in
the edge lengths of Γ , and so is the left hand side, being the determinant of a (g − 1) ˆ (g − 1)

Gramian matrix. Hence, it is sufficient to prove Equation (17) in the case when Γ , and hence rΓ ,
have integer edge lengths. Choose a model p : rG→ G for π such that each edge of rG and G has
length one. In this case Vol(F) = 1 for any set of edges, hence by Kirchhoff’s theorem and (7) we
have

Vol2(Jac(rΓ)) = | Jac(rG)|, Vol2(Jac(Γ)) = | Jac(G)|.

It follows by Proposition 3.6 that

Vol2(Prym(rΓ{Γ)) =
Vol2(Jac(rΓ))
2Vol2(Jac(Γ))

=
| Jac(rG)|

2| Jac(G)|
= |Prym(rG{G)|.

But |Prym(rG{G)| can be computed using (14), which agrees with the right hand side of (17) when
all edge lengths are equal to one. This completes the proof.

�

Example 3.7. Let Γ be the genus two dumbbell graph, with loops e1 and e2 of lengths x1 and x2,
connected by a bridge e3 of length x3. The unique spanning tree of Γ consists of the edge e3. The
graph Γ has two topologically distinct connected free double covers π1 : rΓ1 → Γ and π2 : rΓ2 → Γ ,
corresponding to flipping the edges S1 = {e1, e2} and S2 = {e1} (see Figure 2).

Γ e1
e3 e2

rΓ1 re+1 re−1

re−3

re+3

re+2 re−2

Γ e1
e3 e2

rΓ2 re+1 re−1

re−3

re+3

re−2

re+2

Figure 2. Two free double covers of the dumbbell graph. Flipped edges are blue.

For the cover π1, the odd genus one decompositions are {e1} and {e2} of rank one, and {e3} of
rank two. For π2, the only odd genus one decomposition is {e2} of rank one. Hence Theorem 3.4
states that

Vol2(Prym(rΓ1{Γ)) = x1 + x2 + 4x3, Vol2(Prym(rΓ2{Γ)) = x2.

Note that in each case the Prym variety is a circle, and the square of its volume is its circumference
(see Remark 2.6).

4. The local structure of the Abel–Prym map

In the remaining two chapters, we provide a geometrization of the volume formula (17) for
the Prym variety of a free double cover of graphs, in the spirit of the analogous formula (7) for
the volume of the Jacobian variety of a metric graph derived in [ABKS14].

Let π : rΓ → Γ be a free double cover of metric graphs and let ι : rΓ → rΓ be the associated
involution. For any integer d, we denote Prym[d](rΓ{Γ) the connected component of the kernel of
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the pushforward map Nm : Jac(rΓ) → Jac(Γ) having the same parity as d, so that Prym[d](rΓ{Γ) =

Prym(rΓ{Γ) if d is even, and Prym[d](rΓ{Γ) is the odd connected component if d is odd. In this
section, we study the Abel–Prym map

Ψd : Symd(rΓ)→ Prym[d](rΓ{Γ), Ψd(rD) = rD− ι(rD), (21)

for d ď g − 1. The space Symd(rΓ) has a natural cellular structure, with cells enumerated by the
edges and vertices of rΓ supporting the divisor. The restriction of Ψd to each cell is an affine linear
map, and we determine the cells on which Ψd has maximal rank.

Choose an oriented model p : rG → G for π such that rG and G have no loops. Let 0 ď k ď d,
let rF = {rf1, . . . , rfk} be a multiset of k edges of rG, and let rE be an effective divisor of degree d − k

supported on V(rG). Denote by Ck(rF, rE) the k-dimensional set of effective divisors on rΓ of the
form rD = rP1 + ¨ ¨ ¨ + rPk + rE, where each rPi lies on rfi. Any effective degree d divisor on rΓ can be
split up in such a way (uniquely if each point lies in the interior of an edge), hence we have a
cellular decomposition

Symd(rΓ) =
d

ď

k=0

Ck(rF, rE), (22)

where the union is taken over all rF P Symk(E(rG)) and rE P Symd−k(V(rG)).
The principal result of this section describes the cells Ck(rF, rE) that are not contracted by the

Abel–Prym map Ψd. It is clear that the divisor rE plays no role in this question, hence we assume
that k = d, rE = 0, and only consider the top-dimensional cells, which we denote

C(rF) = Cd(rF, 0) = {rP1 + ¨ ¨ ¨+ rPd : rPi P rfi} Ă Symd(rΓ), rF = {rf1, . . . , rfd} P Symd(E(rG)).

Theorem 4.1. Let π : rΓ → Γ be a free double cover of metric graphs with oriented loopless model
p : rG→ G, and let Ψd : Symd(rΓ)→ Prym[d](rΓ{Γ) be the degree d Abel–Prym map, where 1 ď d ď g−1.
Let rF = {rf1, . . . , rfd} Ă E(rG) be a multiset of edges of rE, let C(rF) Ă Symd(rΓ) be the corresponding top-
dimensional cell, and denote F = {f1, . . . , fd}, where fi = p(rfi).

(1) If the edges in F are not distinct (in particular, if the edges in rF are not distinct), then Ψd contracts
C(rF).

(2) If the edges in F are distinct, then Ψd has does not contract C(rF) if and only if the preimage under
p of each connected component of G\F is connected.

The proof of the first part of the theorem is quite elementary: for any rD P C(rF) we construct
a nearby divisor rD 1 such that Ψd(rD) = rD − ι(rD) is linearly equivalent to Ψd(rD 1) = rD 1 − ι(rD 1)

via an explicit rational function. To prove the second part, we calculate the matrix of Ψd with
respect to a convenient basis, and compute its rank. This part, and the necessary constructions,
will occupy the greater part of this section.

Proof of Theorem 4.1, part (1). Let rF = {rf1, . . . , rfd} be a multiset such that not all fi = p(rfi) are
distinct. Without loss of generality we assume that f1 = f2, which means that either rf1 = rf2 or
rf1 = ι(rf2). Let rD = rP1 + ¨ ¨ ¨+ rPd be a point of C(rF), where each rPi lies in the interior of rfi.

If rf1 = rf2, we can assume that either rP1 = rP2, or that the direction from rP1 to rP2 is positive with
respect to the orientation. Denote rD 1 = rP 11 +

rP 12 +
rP3 + ¨ ¨ ¨+ rPd, where rP 11 and rP 12 are obtained by

moving rP1 and rP2 a small distance of ε ą 0 in respectively the negative and the positive directions
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along rf1 = rf2. Then the divisor

Ψd(rD) − Ψd(rD 1) = rD− ι(rD) − rD 1 + ι(rD 1) = rP1 + rP2 − rP 11 −
rP 12 − ι(

rP1) − ι(rP2) + ι(rP
1
1) + ι(

rP 12)

is the principal divisor of a piecewise linear function on rΓ . Indeed, consider the function M : rΓ →
R having the following slopes on the edges of rΓ :

‚ On rf1 = rf2, M has slope zero to the left of rP 11, slope +1 on [rP 11,
rP1], slope zero on [rP1, rP2],

slope −1 on [rP2, rP
1
2], and slope zero to the right of rP 12.

‚ On ι(rf1) = ι(rf2), M has slope zero to the left of ι(rP1), slope −1 on [ι(rP 11), ι(
rP1)], slope zero

on [ι(rP1), ι(rP2)], slope +1 on [ι(rP2), ι(rP
1
2)], and slope zero to the right of ι(rP 12).

‚ The function M has zero slope on all other edges of rΓ .

The net changes of M along rf1 = rf2 and ι(rf1) = ι(rf2) cancel out, hence the function M is
continuous, and it is clear that Ψd(rD) − Ψd(rD 1) is the divisor of M. Therefore, Ψd is not locally
injective at rD.

The case rf1 = ι(rf2) is similar. We consider rD 1 = rP 11 +
rP 12 +

rP3 + ¨ ¨ ¨ + rPd, where rP 11 and rP 12 are
obtained by moving rP1 and rP2 a small distance of ε ą 0 in the same direction along respectively
rf1 and rf2 = ι(rf1). It is easy to check that Ψd(rD) − Ψd(rD 1) is a principal divisor, hence Ψd is not
locally injective at rD.

�

To prove part (2) of Theorem 4.1, we give an explicit description of the Abel–Prym map Ψd on
a cell C(rF). We first consider the case d = 1. Fix a base point q P rΓ , and for each point p P rΓ fix a
path γ(q, p) from q to p. The Abel–Prym map Ψ1 is a difference of Abel–Jacobi maps (5):

Ψ1 : rΓ → Prym[1](rΓ{Γ) Ă Jac(rΓ), Ψ1(p)(ω) =

∫
γ(q,p)

ω−

∫
γ(q,ι(p))

ω.

It is more convenient to work with the even component Prym(rΓ{Γ). The odd component Prym[1](rΓ{Γ)

is a torsor over Prym(rΓ{Γ), and we can pass to the even component by translating by any element
of the odd component, for example the element Ψ1(ι(q)) =

∫
γ(q,ι(q)). We can further assume that

the path γ(q, ι(p)) in the formula above consists of γ(q, ι(q)) followed by the path ι˚(γ(q, p)).
Putting this together, we obtain the translated Abel–Prym map, which we also denote Ψ1 by
abuse of notation:

Ψ1 : rΓ → Prym(rΓ{Γ), Ψ1(p)(ω) =

∫
γ(q,p)

ω−

∫
ι˚(γ(q,p))

ω. (23)

Choose a basis rγ1, . . . , rγg−1 for Kerπ˚ : H1(rΓ ,Z) → H1(Γ,Z). As explained in Subsection 2.6, the
functionals ω˚j P Ω

˚(rΓ) dual to ωj = ψ(rγj) define a coordinate system on Prym(rΓ{Γ), so we can
write

Ψ1(p) =

∫
γ(q,p)

−

∫
ι˚(γ(q,p))

=

g−1
ÿ

j=1

aj(p)ω
˚
j ,

where we find the coefficients aj(p) by pairing with ωj:

aj(p) =

∫
γ(q,p)

ωj −

∫
ι˚(γ(q,p))

ωj.
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We now assume that p lies on the interior of an edge rf P E(rΓ), which we identify using the
orientation with the segment (0, `(rf)). Pick x1, x2 P (0, `(rf)) such that x1 ă x2, then we see that

aj(x2)−aj(x1) =

∫
γ(q,x2)

ωj−

∫
ι˚(γ(q,x2))

ωj−

∫
γ(q,x1)

ωj+

∫
ι˚(γ(q,x1))

ωj =

∫
γ(x1,x2)

ωj−

∫
ι˚(γ(x1,x2))

ωj.

We can assume that γ(x1, x2) is the segment [x1, x2] Ă (0, `(rf)). The integral of ωj over γ(x1, x2)
is equal to the length x2 − x1 multiplied by the coefficient with which rf occurs in ωj, which is
1
2xrγj,

rfy (the 1
2 coefficient comes from using the principal polarization of the Prym). Similarly, the

integral of ωj over ι˚(γ(x1, x2)) is equal to 1
2(x2 − x1)xrγj, ι(

rf)y, and therefore

aj(x2) − aj(x1) =
1

2
(x2 − x1)xrγj, rf− ι(rf)y,

where x¨, ¨y is the edge pairing (18). It follows that, with respect to the coordinate vectors ω˚j
defined by the basis rγj, the restriction of the Abel–Prym map (23) to an edge rf = [0, `(rf)] is an
affine Z-linear map of the form

Ψ1(x) =
1

2

g−1
ÿ

j=1

xrγj, rf− ι(rf)yω
˚
j x+ C,

where C is a constant vector.
This formula readily generalizes to any degree. Let rF = {rf1, . . . , rfd} be a set of distinct edges

of rG. We identify the cell C(rF) with the parallelotope [0, `(rf1)] ˆ ¨ ¨ ¨ ˆ [0, `(rfd)], where the point
(x1, . . . , xd) corresponds to the divisor rD = rP1+¨ ¨ ¨+rPd, where rPi lies on rfi at a distance of xi from
the starting vertex. Translating by any odd Prym divisor and moving to the even component if d
is odd, we see that the restriction of the Abel–Prym map (21) to the cell C(rF) is affine Z-linear:

Ψd(x1, . . . , xd) =
d

ÿ

i=1

g−1
ÿ

j=1

(Ψd)jiω
˚
j xi + C P Prym(rΓ{Γ),

where (Ψd)ji is the (g− 1)ˆ d matrix

(Ψd)ji =
1

2

A

rγj, rfi − ι(rfi)
E

, (24)

and C is some constant vector.
To prove part (2) of Theorem 4.1, we compute the rank of (Ψd)ji with respect to a carefully

chosen basis rγj of Kerπ˚. Specifically, the "if" and "only if" statements will require slightly
different choices of basis.

Proof of Theorem 4.1, part (2). We consider the decomposition of G\F into connected components,
which we enumerate as follows:

G\F = G0 Y ¨ ¨ ¨ YGr−1.

Before proceeding, we derive a relationship between the genera gk = |E(Gk)|− |V(Gk)|+ 1 of the
components Gk:

g0 + ¨ ¨ ¨+ gr−1 =
r−1
ÿ

k=0

|E(Gk)|−
r−1
ÿ

k=0

|V(Gk)|+ n = |E(G)|− d− |V(G)|+ n = g+ r− d− 1. (25)

We now consider the two possibilities.
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The preimage of one of the connected components is disconnected. Equivalently, we assume
that the restriction of the cover p to one of the connected components is isomorphic to the trivial
free double cover. Let Gk be a connected component of genus gk. If p−1(Gk) is connected,
then Construction B, applied to the cover p|p−1(Gk) : p−1(Gk) → Gk, produces gk − 1 linearly
independent cycles γkl P H1(rG,Z) that are supported on p−1(Gk) and that lie in Kerp˚. However,
if the restriction of p to, say, Gk is trivial, then we can find gk such cycles, by applying (Id−ι)˚ to
the lifts of a linearly independent collection of cycles on Gk. In this case, it follows from (25) that
there are at least

(g0 − 1) + (g1 − 1) + . . .+ gk + . . .+ (gr−1 − 1) = g− d

linearly independent cycles γkl P H1(rG,Z), lying in the kernel of p˚ and supported on

p−1(G0)Y . . .Y p
−1(Gr−1) = rG\(rFY ι(rF)).

Any such cycle γkl pairs trivially with each rfi and ι(rfi). Therefore, by completing these cycles to
a basis of Kerp˚ (passing to Q-coefficients if necessary), we see that the matrix (24) of Ψd with
respect to this basis has at least g − d rows of zeroes, hence has rank less than d and contracts
C(rF).

The preimage of each connected component is connected. Equivalently, the restriction of p to
each connected component is a nontrivial free double cover. This implies that gk ě 1 for each k,
since any free double cover of a tree is trivial.

We show that the matrix (24) has rank d with respect to an explicit choice of basis rγi of Kerπ˚.
The construction of this basis is somewhat involved, and will be used again in the proof of
Theorem 5.1, so we typeset it separately.

Construction C. Let π : rΓ → Γ be a connected free double cover of metric graphs of genera 2g−1
and g, respectively, and let p : rG → G be an oriented model. Let rF = {rf1, . . . , rfd} Ă E(rG) be a set
of d edges so that the edges fi = p(rfi) are distinct, and denote F = p(rF). Let

G\F = G0 Y ¨ ¨ ¨ YGr−1

be the decomposition of G\F into connected components, and further assume that p−1(Gk) is
connected for each k. In this Construction, we elaborate on Constructions A and B by carefully
choosing a spanning tree T Ă G and a corresponding basis rγ1, . . . , rγg−1 for Kerπ˚ : H1(rG,Z) →
H1(G,Z), with respect to which the matrix of the Abel–Prym map on the cell C(rF) has a conve-
nient triangular structure.

Choose a spanning tree Tk for each connected component Gk. Denote by Gc the graph obtained
from G by contracting each subtree Tk to a separate vertex vk. The vertices of Gc are V(Gc) =

{v0, . . . , vr−1}, and the edges of Gc correspond to the edges of G not in any Tk. We denote the
contraction map by (¨)c : G → Gc. The contracted graph Gc has the same genus g as G, hence it
has g+ r− 1 edges, namely the edges F = {f1, . . . , fd} and g+ r−d− 1 loops corresponding to the
uncontracted edges of the Gk. Choose a spanning tree T c for the contracted graph Gc; the r − 1
edges of T c are a subset of the edges {f1, . . . , fd}.

Before proceeding, we relabel the edges rfi and fi = p(rfi) so that E(T c) = {f1, . . . , fr−1}. We then
choose v0 as the root vertex of Tc, and further relabel and reorient the edges f1, . . . , fr−1 away
from v0. Specifically, we require that, along the unique path in T c starting at v0 and ending at any
other vertex, the edges are oriented in the direction of the path and appear in increasing order.
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Finally, we relabel the vertices v1, . . . , vr−1 so that t(fj) = vj for j = 1, . . . , r − 1; this implies that
s(fj) = vα(j) for some index α(j) ă j.

We now form a spanning tree T for G by joining the subtrees Tk with the edges of T c (viewed
as edges of G):

T = T0 Y ¨ ¨ ¨ Y Tr−1 Y {f1, . . . , fr−1}.

The complementary edges of T in G are

E(G)\E(T) = E(G0)\E(T0)Y ¨ ¨ ¨ Y E(Gr−1)\E(Tr−1)Y {fr, . . . , fd}.

We now describe the cover p using the spanning tree T and Construction A. The tree T has two
disjoint lifts rT˘ to rG, and we denote rT˘k = rT˘Xp−1(Tk) the corresponding lifts of the Tk. For each
i = 1, . . . , d, each of the trees rT˘ contains exactly one of the two edges rfi and ι(rfi). The cover
p : f−1(G0)→ G0 is not trivial, so we can pick an edge e0 P E(G0)\E(T0) having a lift re0 = re+0 that
connects rT+0 and rT−0 . Then

rT = rT+ Y rT− Y {re+0 }

is a spanning tree for rG. We note that, by our labeling convention, for k = 1, . . . , r − 1 the target
vertex t(rfk) lies on either rT+k or rT−k , while t(ι(rfk)) lies on the other subtree.

As we did with G, we contract the portions of rG that are irrelevant to our intersection cal-
culations. The tree rT+0 Y

rT−0 Y {re+0 } is a spanning tree for the preimage p−1(G0), while for each
k = 1, . . . , r − 1 the two disjoint trees rT+k and rT−k form a spanning forest for p−1(Gk). Let rGc

denote the graph obtained from rG by contracting rT+0 Y
rT−0 Y {re+0 } to a vertex rv0, and contracting

each rT˘k to a separate vertex rv˘k . We denote the contraction map by (¨)c : rG → rGc, and for a
non-contracted edge re P E(rG) (i.e. for any edge not in rT+0 Y

rT−0 Y {re+0 } or rT˘k ) we denote (re)c = re

by abuse of notation. The double cover p : rG → G descends to a map p : rGc → Gc (almost a
double cover, except that v0 and e0 each have a single preimage), and the projections commute
with the contractions. The image rT c of rT is a spanning tree for rGc, having vertex and edge sets

V(rT c) = V(rGc) = {rv0,rv
˘
1 , . . . ,rv

˘
r−1}, E(rT c) = {rf1, . . . , rfr−1, ι(rf1), . . . , ι(rfr−1)}.

The tree rT c can be viewed as two copies of T c joined at the common vertex rv0.
Before proceeding, we perform one final relabeling. We denote, as in Construction A, the

complementary edges by {e0, e1, . . . , eg−1} = G\T . Since the restriction of the double cover p :
rG → G to each of the Gk is nontrivial, for each k = 1, . . . , r − 1 we can choose an edge in
E(Gk)\E(Tk) whose preimages cross rT˘k , and we label this edge ek. Furthermore, we pick the
preimage rek = re+k P E(rG)\E(rT) in such a way that the source vertex s(rek) lies on the same
subtree rT+k or rT−k as the target vertex t(rfk). Furthermore, for k = r, . . . , d, we denote ek = fk and
rek = re+k = rfk. The remaining edges ek for k = d+ 1, . . . , g− 1 and their preimages re˘k are labeled
arbitrarily. We note that in this case, ek P S for k = 0, . . . , r− 1.

We now employ Construction B to produce a basis rγ1, . . . , rγg−1 of Kerp˚ : H1(Γ,Z)→ H1(G,Z),
with respect to the chosen spanning tree T Ă G. Let rγ0 and rγ˘j for j = 1, . . . , g− 1 be the unique

cycle of respectively rTY{re−0 } and rTY{re˘j } such that xrγ0,re−0 y = 1 and xrγ˘j ,re
˘
j y = 1 for j = 1, . . . , g−1.

Then the cycles

rγj = rγ+j − ι˚(rγ
+
j ) =

{
rγ+j − rγ−j + σjrγ0, ej P S,

rγ+j − rγ−j , ej R S,
, j = 1, . . . , g− 1 (26)
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form a basis for Kerπ˚.

We now return to the proof. We need to compute the rank of the matrix (24) with respect to
the basis (26):

(Ψd)ji =
1

2

A

rγj, rfi − ι(rfi)
E

=
1

2

A

rγ+j − ι˚(rγ
+
j ),

rfi − ι(rfi)
E

=
A

rγ+j ,
rfi − ι(rfi)

E

.

To compute the intersection numbers xrγ+j , rfiy and xrγj, ι(rfi)y, we pass to the contracted graph rGc.

First of all, we note that for any cycle rγ on rG, its intersection with rfi or ι(rfi) can be computed on
the contracted graph rGc:

xrγ, rfiy = xrγ
c, rfiy, xrγ, ι(rfi)y = xrγ

c, ι(rfi)y, i = 1, . . . , d.

Furthermore, we observe that, since rγ+j is the unique cycle on rT Y {rfj} such that xrγ+j , rfjy = 1, the

contracted cycle (rγj)
c is the unique cycle on rT c Y {rfj} such that x(rγ+j )

c, rfjy = 1.
We first look at the cycles (rγ+j )

c for j = 1, . . . , r − 1. The edge fj P E(Gc) is a loop at vj. Its lift
rfj P E(rGc) starts at t(rfj), which is one of the two vertices rv˘j (say rv+j ), and ends at the other vertex
rv−j (by our labeling convention, rv−j = t(ι(rfj))). The contracted cycle (rγ+j )

c is the unique cycle of

the graph rT c Y {rfj} containing +rfj: it starts at rv+j , proceeds to rv−j via rfj, then to rv0 via the unique

path on rT c from rv+j (the first edge of this path is −ι(rfj)), and then from rv0 to rv−j via a unique path

(the last edge of this path is +rfj). By the ordering convention that we chose for T c and hence
rT c, the only edges that can occur on these two paths are rfi and ι(rfi) with i ď j. Furthermore,
rfj and ι(rfj) occur, as we have seen, with coefficients +1 and −1, respectively. It follows that for
j = 1, . . . , r− 1 we have

(Ψd)ji =
A

rγ+j ,
rfi − ι(rfi)

E

= x(rγ+j )
c, rfi − ι(rfi)y =


0 or ˘ 2, i ă j,

2, i = j,

0, i ą j.

We now calculate the intersection numbers xrγ+j , rfi−ι(rfi)y for j = r, . . . , d. We chose rej = rfj, and

the cycle (rγ+j )
c is the unique cycle on rT c Y {rfj} containing +rfj. By our ordering convention, the

edges of the tree rT c are rfi and ι(rfi) for 1 ď i ď r − 1. Hence (rγ+j )
c intersects rfj with multiplicity

+1, and does not intersect any rfi or ι(rfi) with i ě r. Therefore, for j ě r we have

(Ψd)ji =
A

rγ+j ,
rfi − ι(rfi)

E

= x(rγ+j )
c, rfi − ι(rfi)y =


0,˘1, or ˘ 2, i ď r− 1,

1, i = j,

0, i ě r, i ‰ j.

Putting everything together, we see that the d ˆ d minor of (Ψd)ji corresponding to the partial
basis rγ1, . . . , rγd is a lower-triangular matrix, whose first r − 1 diagonal entries are 2, and the
remaining equal to 1. Hence, Ψd has rank d.

�

We now restrict our attention to the Abel–Prym map in degree d = g− 1, which we denote Ψ:

Ψ : Symg−1(rΓ)→ Prym[g−1](rΓ{Γ), Ψ(rD) = rD− ι(rD),

In this case the source has the same dimension as the target, and we can compute the determinant
of the matrix (24) of Ψ on any top-dimensional cell C(rF). This determinant depends on a choice
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of basis rγ1, . . . , rγg−1 for Kerπ˚, but only up to sign, hence the quantity

deg(rF) = |detΨ(rD)|, rD P C(rF), (27)

which we call the degree of Ψ on C(rF), is well-defined.
We now compute the degree of Ψ on the top-dimensional cells of Symg−1(rΓ). We recall from

Sec. 3.2 that, given a connected free double cover p : rG → G of a graph G of genus g, a subset
F Ă E(G) of g − 1 edges of G is called an odd genus one decomposition of rank r if G\F consists of r
connected components of genus one, and each of them has connected preimage in rG.

Corollary 4.2. Let π : rΓ → Γ be a free double cover with model p : rG → G, let Ψ : Symg−1(rΓ) →
Prym[g−1](rΓ{Γ) be the Abel–Prym map, let C(rF) = Cg−1(rF, 0) Ă Symg−1(rΓ) be a top-dimensional cell
corresponding to the multiset rF = {rf1, . . . , rfg−1} Ă E(rG), and let F = p(rF). Then deg(rF) is equal to

deg(rF) =
{
2r−1, edges of F are distinct and form an odd genus one decomposition of rank r,
0 otherwise.

(28)

In particular, the volume of the image of C(rF) in Prym[g−1](rΓ{Γ) is equal to

Vol(Ψ(C(rF))) =
2r(

rF)−1w(F)

Vol(Prym(rΓ{Γ))
, w(F) = w(rF) = `(rf1) ¨ ¨ ¨ `(rfg−1) (29)

if F is an odd genus one decomposition of rank r(rF), and zero otherwise.

Proof. This follows directly from the proof of Theorem 4.1. If the edges of F = p(rF) are not all
distinct, then Ψ contracts the cell C(rF) and hence detΨ = 0 on C(rF). If F consists of distinct edges,
let G\F = G0Y ¨ ¨ ¨YGr−1 be the decomposition into connected components. By (25) we have that
g0 + ¨ ¨ ¨ + gr−1 = r, hence either gk = 0 for some k, or all gk = 1. In the former case Gk is a tree,
so the restriction of the cover p to Gk is trivial and hence detΨ = 0 on rF. In the latter case, Ψ has
rank d = g − 1 if and only if the restriction of p to each Gk is nontrivial, which is true precisely
when F is an odd genus one decomposition. Furthermore, the matrix of Ψ with respect to the
basis (26) is lower triangular, with the first r − 1 diagonal entries equal to 2, and the remaining
equal to 1. Hence detΨ = 2r−1 on C(rF), as required.

To prove (4.2), it is sufficient to note that C(rF) is a parallelotope with volume w(rF), and that
Vol(Prym(rΓ{Γ))−1 is the volume of the unit cube in the coordinate system on Prym(rΓ{Γ) that we
used to compute the matrix of Ψ (see Equation (9)). �

5. Harmonicity of the Abel–Prym map

In this section, we consider the degree g− 1 Abel–Prym map Ψ : Symg−1(rΓ)→ Prym[g−1](rΓ{Γ)

associated to a free double cover π : rΓ → Γ . The cellular decomposition of Symg−1(rΓ) induces a
decomposition of Prym[g−1](rΓ{Γ) (which is locally modelled on Rg−1). Pulling this decomposition
back to Symg−1(rΓ{Γ) and refining cells as needed, the Abel–Prym map Ψ is a map of polyhedral
spaces. We show that Ψ is a harmonic map of polyhedral spaces of global degree 2g−1, with
respect to the degree function (28).

Theorem 5.1. Let π : rΓ → Γ be a free double cover of metric graphs. Then the Abel–Prym map

Ψ : Symg−1(rΓ)→ Prym[g−1](rΓ{Γ), Ψ(rD) = rD− ι(rD)
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is a harmonic map of polyhedral spaces of global degree 2g−1, with respect to the degree function deg
defined on the codimension zero cells of Symg−1(rΓ) by (28).

The proof consists of two parts. First, we show that Ψ is harmonic at each codimension one
cell of Symg−1(rΓ{Γ), and hence has a well-defined global degree d because the polyhedral space
Prym(rΓ{Γ) is connected through codimension one. We then show that d = 2g−1. The proof of the
first part is a somewhat involved calculation. We separate this result into a Proposition, and give
its proof after the proof of the main Theorem 5.1.

Proposition 5.2. The degree g− 1 Abel–Prym map

Ψ : Symg−1(rΓ)→ Prym[g−1](rΓ{Γ), Ψ(rD) = rD− ι(rD)

is harmonic at each codimension one cell of Symg−1(rΓ).

Proof of Theorem 5.1. By Proposition 5.2, the Abel–Prym map has a certain global degree d. It may
be possible to directly show that d = 2g−1, by somehow counting the preimages in a single fiber
of Ψ, but we employ a different method. Namely, we use the harmonicity of the map Ψ to give an
alternative calculation of the volume of the Prym variety, in terms of the unknown global degree
d (similarly to how the volume of Jac(Γ) is computed in [ABKS14]). However, we have already
computed the volume of the Prym variety in Theorem 3.4, using an entirely different method.
Comparing the two formulas, we find that in fact d = 2g−1.

Let Mi for i = 1, . . . ,N be the codimension zero cells of Prym[g−1](rΓ{Γ), and let ĂMij for j =
1, . . . , ki be the codimension zero cells of Symg−1(rΓ) mapping surjectively toMi. The cells ĂMij are
obtained by refining the natural cellular decomposition of Symg−1(rΓ), in other words each ĂMij is
a subset of a cell C(rFij), where rFij Ă E(rΓ) is a subset of edges such that p(rFij) is an odd genus one
decomposition of Γ of some rank rij = r(p(rFij)). Equation (29) gives the volume dilation factor of
Ψ on the cell C(rFij), and hence on ĂMij. Therefore

Vol(Mi) =
2rij−1 Vol(ĂMij)

Vol(Prym(rΓ{Γ))

for all i and j. On the other hand, the harmonicity condition implies that for each i we have

d =
ki
ÿ

j=1

deg(ĂMij) =
ki
ÿ

j=1

2rij−1.

Putting this together, we can write

Vol(Mi) =
1

d

ki
ÿ

j=1

2rij−1 ¨ Vol(Mi) =
1

d ¨ Vol(Prym(rΓ{Γ))

ki
ÿ

j=1

4rij−1 Vol(ĂMij).

The sum of the volumes of the Mi is the volume of the Prym variety:

Vol(Prym(rΓ{Γ)) = Vol(Prym[g−1](rΓ{Γ)) =
N

ÿ

i=1

Vol(Mi) =
1

d ¨ Vol(Prym(rΓ{Γ))

ÿ

i,j

4rij−1 Vol(ĂMij).

On the other hand, corresponding to each odd genus one decomposition F of Γ there are 2g−1

subsets rF Ă E(rΓ) such that p(rF) = F, because each decomposition has exactly g − 1 edges. The
volume Vol(C(rF)) of each of these cells is equal to w(F). Each cell C(rF) corresponding to an odd
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Figure 3. A double cover with a Prym divisor with representatives of distinct degrees.

genus one decomposition F = p(rF) is a disjoint union of some of the Mij, and each Mij lies in
some C(rF). Hence in fact the sum in the right hand side can be written as

ÿ

i,j

4rij−1 Vol(Mij) =
ÿ

rFĂE(rΓ)

4r(p(
rF))−1 Vol(rF) = 2g−1

ÿ

FĂE(Γ)

4r(F)−1w(F),

where the last sum is over all odd genus one decompositions F of Γ . Therefore,

Vol(Prym(rΓ{Γ)) =
2g−1

d ¨ Vol(Prym(rΓ{Γ))

ÿ

FĂE(Γ)

4r(F)−1w(F).

Comparing this formula with (17), we see that d = 2g−1.
�

Remark 5.3. Given a Prym divisor class represented by Ψ(rD) = rD − ι(rD), the degree of Ψ at
rD P Symg−1(rΓ) in general depends on the choice of representative (in other words, the degree of
Ψ is not constant in fibers). We give an example of a free double cover π : rΓ → Γ and effective
divisors rD1 and rD2 on the source, such that rD1 − ι(rD1) » rD2 − ι(rD2), but the degrees of Ψ at rD1
and rD2 are different.

Consider the free double cover π : rΓ → Γ shown on Figure 3. The curves rΓ and Γ have genera
5 and 3, respectively. The edge re3 has length at least 3, while all other edges have length 1. Fix
real numbers 0 ă y ă x ă 1. Let rP1, rQ1, rP2, and rQ2 be the points on the edges re+1 , re+2 , re−1 , and re+3 ,
respectively, located at the following distances from the corresponding end vertices:

d(rv+1 ,
rP1) = x, d(rv+2 ,

rQ1) = y, d(rv−2 ,
rP2) = x− y, d(rv+2 ,

rQ2) = 1+ 2y.

Let rD1 = rP1 + rQ1 and rD2 = rP2 + rQ2. It is straightforward to check that the divisors rD1 −

ιrD1 and rD2 − ιrD2 are linearly equivalent. However, π(rD1) is supported on the odd genus one
decomposition {re1,re2} of rank 2, while π(rD2) is supported on the odd genus one decomposition
{re1,re3} of rank 1, so the degrees of Ψ at rD1 and rD2 are distinct.

By varying x and y, we obtain two polyhedral cells in Sym2(rΓ) having the same image in
Prym(rΓ{Γ): the subset C1 = {(x − y, 1 + 2y) : 0 ă y ă x ă 1} of re−1 ˆ re+3 and the subset
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re−3
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f2Prym(rΓ2{Γ)

Figure 4. Abel–Prym maps corresponding to the covers in Example 3.7

C2 = {(x, y) : 0 ă y ă x ă 1} of re+1 ˆ re+2 . The volumes of C1 and C2 are equal to 1 and 1{2,
respectively, which agrees with the fact that the degree of Ψ, equal to 1 on C1 and 2 on C2, is
the volume dilation factor. We also observe that the global degree of Ψ is equal to 2g−1 = 4.
Therefore, Theorem B implies that there is a third divisor rD3 (effective of degree two) such that
rD1 − ιrD1 » rD3 − ιrD3, and such that Γ \ π(rD3) consists of a single connected component.

Before giving the proof of Proposition 5.2, we describe the structure of the Abel–Prym map for
the covers of a genus two dumbbell graph.

Example 5.4. Consider the two covers π1 : rΓ1 → Γ and π2 : rΓ2 → Γ of the dumbbell graph Γ
described in Example 3.7. In this case g − 1 = 1, and the Abel–Prym maps Ψ1 : rΓ1 → Prym(rΓ1{Γ)

and Ψ2 : rΓ2 → Prym(rΓ2{Γ) are harmonic morphisms of metric graphs of degree two, which we
now describe.

With respect to the cover π1, each edge of Γ is an odd genus one decomposition, hence Ψ1 does
not contract any edges. The edges re˘1 and re˘2 are mapped onto edges f1 and f2, respectively.
The degree of Ψ1 on these edges is equal to one, hence the lengths of f1 and f2 are x1 and x2,
respectively. Each of the two edges re˘3 is mapped onto an edge f˘3 , of length 2x3 because the
degree of Ψ1 is equal to two. Hence Prym(rΓ1{Γ) is a circle of circumference x1 + x2 + 4x3, as we
have already seen in Example 3.7.

The map Ψ2, on the other hand, contracts the edges re˘1 and re˘3 because {e1} and {e3} are not
genus one decompositions, and maps re˘2 to a unique loop edge f2 of Prym(rΓ2{Γ) of length x2.
The morphisms Ψ1 and Ψ2 are given in Figure 4.

Proof of Proposition 5.2. Let rC be a codimension one cell of Symg−1(rΓ) such that its image C =

Ψ(rC) is a codimension one cell in Prym(rΓ{Γ). Since Prym(rΓ{Γ) is a torus, it locally looks like
Rg−1, and we can think of the cell C as lying in a hyperplane H0 Ă Rg−1, with respect to an
appropriate local coordinate system. There are exactly two codimension zero cells M˘ attached
to C, each contained in a corresponding half-space of Rg−1, which we also denote M˘ by abuse
of notation. To show that Ψ is harmonic at rC, we need to show that the sum of |detΨ| over
the codimension zero cells of Symg−1(rΓ{Γ) mapping to M+ is the same as the sum over those
mapping to M−, in which case this sum is the degree of Ψ on rC.
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If Ψ contracts every codimension zero cell of Symg−1(rΓ) attached to rC, then the harmonicity
condition is trivially verified, and we set degΨ(rC) = 0. Hence we assume that Ψ does not contract
some codimension zero cell attached to rC. By Corollary 4.2, this cell is a subset of C(rF), where
F = p(rF) is an odd genus one decomposition of G. If rC lies in the interior of C(rF), then Symg−1(rΓ)

also locally looks like Rn in a neighborhood of rC, the map Ψ is simply an affine linear map near rC,
and therefore harmonic (such cells rC do not occur in the standard polyhedral decomposition (22)
of Symg−1(rΓ{Γ), but may occur in the refined decomposition induced by the map Ψ).

We therefore assume that rC lies on the boundary of a cell C(rF), where rF = {rf1, . . . , rfg−1} is a
set of edges of rG such that F = {f1, . . . , fg−1}, fi = p(rfi) is an odd genus one decomposition of
G of rank r. To simplify notation, we assume that in fact rC is a codimension one cell of C(rF)
with respect to the standard polyhedral decomposition (22) of Symg−1(rΓ{Γ). In other words, we
assume that rC = Cg−2(rF\{rfa},rv) for some a = 1, . . . , g − 1, and where rv = s(rfa) is the starting
vertex of rfa with respect to an appropriate orientation (we shall later specify which edge rfa we
pick, in order to make our notation consistent with Construction C).

The top dimensional cells of Symg−1(rΓ) that are adjacent to rC have the form C(rF 1), where
rF 1 = (rF\{rfa})Y {rf 1} and where rf 1 is any edge rooted at rv. We assume that all edges rf 1 are oriented
in such a way that s(rf 1) = rv. By Corollary 4.2, Ψ does not contract C(rF 1) if and only if p(rF 1) is
an odd genus one decomposition of G. To prove harmonicity, we need to show that the sum of
|detΨ| on those cells C(rF 1) mapping to M+ is equal to the sum of those that map to M−. By
Corollary 4.2, the value of |detΨ| on a non-contracted cell C(rF 1) is a power of two. In fact, as we
shall see, adjacent to any cell rC there are either two, three, or four non-contracted cells C(rF), with
the degrees distributed as shown on Figure 5 (plus an arbitrary number of contracted cells).

2k 2k 2k+1 2k

2k
2k

2k

2k

2k

Two non-contracted cells Three non-contracted cells Four non-contracted cells

Figure 5. The Abel–Prym map near a non-contracted codimension one cell.

We calculate the matrix of Ψ (or, rather, some of its entries) on each cell C(rF 1) with respect to
an appropriate coordinate system, in the same way that we proved part (2) of Theorem 4.1. First,
we choose local coordinates on Symg−1(rΓ{Γ). As before, we identify C(rF) with the parallelotope
[0, `(rf1)]ˆ ¨ ¨ ¨ ˆ [0, `(rfg−1)] lying in the half-space H+ = {x : xa ě 0} Ă Rg−1. Under this identifica-
tion, the cell rC lies in the hyperplane H0 = {x : xa = 0}, and the corresponding cells of Prym(rΓ{Γ)

are C = Ψ(rC) Ă Ψ(H0) and M˘ = Ψ(H˘), where H− = {x : xa ď 0} Ă Rg−1. Similarly, we think of
each of the other C(rF 1) as lying in its own H+.
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To construct coordinates on Prym(rΓ{Γ), we apply Construction C to the set rF. The output
is a basis rγ1, . . . , rγg−1 of Kerπ˚ : H1(rΓ ,Z) → H1(Γ,Z) given by Equation (26). As explained in
Subsection 2.6, the basis rγ1, . . . , rγg−1 defines a coordinate system on Prym(rΓ{Γ), with respect to
which the map Ψ on the cell C(rF) is affine linear, and the (g − 1) ˆ (g − 1) matrix of the linear
part is given by Equation (24):

Ψ(rF)ji =
1

2
xrγj, rfi − ι(rfi)y =

1

2
xrγ+j − ι˚(rγ

+
j ),

rfi − ι(rfi)y = xrγ
+
j ,

rfi − ι(rfi)y

We recall that we showed in Theorem 4.1 and Corollary 4.2 that Ψ(rF)ij is a lower triangular matrix
with determinant 2r−1, where r is the rank of rF.

Now let C(rF 1) be another codimension zero cell of Symg−1(rΓ{Γ) adjacent to rC, so rF 1 = (rF\{rfa})Y

{rf 1}, where rf 1 is an edge rooted at rv other than fa. We calculate the matrix of Ψ on C(rF 1) using
the same basis rγ1, . . . , rγg−1 (in other words, we do not recalculate the basis by replacing rF with
rF 1 in Construction C). The resulting matrix differs from Ψ(rF)ji by a single column only:

Ψ(rF 1)ji =

{
Ψ(rF)ji, i ‰ a,

xrγ+j ,
rf 1 − ι(rf 1)y, i = a.

(30)

To check the harmonicity of Ψ around rC, it suffices to compute the determinants detΨ(rF 1) for
all rF 1. Indeed, the Abel–Prym map Ψ contracts the cell C(rF 1) if and only if detΨ(rF 1) = 0. Further-
more, C(rF 1) maps to M+ if detΨ(rF 1) ą 0 and to M− if detΨ(rF 1) ă 0, and to prove harmonicity
we need to check that the positive determinants exactly cancel the negative determinants.

The set F is an odd genus one decomposition of G of some rank r, and we denote

G\F = G0 Y ¨ ¨ ¨ YGr−1

the decomposition into connected components. Each Gk has genus one, and each p−1(Gk) is
connected. We denote

ru = t(rfa), v = p(rv) = s(fa), u = p(ru) = t(fa).

There are two separate cases that we need to consider: either both endpoints u and v of the
edge fa = p(rfa) that we are removing lie on one connected component, or the edge fa connects
two different components.

Both endpoints of the edge fa lie on a single connected component of G\F. Without loss of
generality, we assume that fa is rooted on the component G0. The edge fa is a loop on the
contracted graph Gc rooted at the vertex v0. Since a loop cannot be part of a spanning tree, we
can further assume without loss of generality that rfa = rfg−1. We observe that, on the contracted
graph rGc, the edge rfg−1 is a loop rooted at rv0. The contraction of the cycle rγ+g−1 is the unique

cycle containing +rfg−1, but since this is already a loop we see that (rγ+g−1)
c = rfg−1.

It follows that the intersection of rγ+g−1 with all other edges rfi and ι(rfi) for i = 1, . . . , g − 2 is
zero. Hence the matrix Ψji is block upper triangular, having a (g − 2) ˆ (g − 2) lower triangular
block with determinant 2r−1 in the upper left corner, and a 1 in the lower right corner. Therefore,
the images of the subspaces H˘ and the hyperplane H0 are

M+ = Ψ(H+) = {y : yg−1 ě 0}, M− = Ψ(H−) = {y : yg−1 ď 0}, Ψ(H0) = {y : yg−1 = 0}.
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Now let rf 1 be an edge at rv, so that rF 1 = {rf1, . . . , rfg−2, rf
1} defines a cell C(rF 1) adjacent to C(rF) via

C 1. The matrix Ψ(rF 1)ji is given by (30), and is obtained from the matrix Ψ(rF) by replacing the last
column. Hence it is also block upper triangular, and to compute detΨ(rF 1) it suffices to find the
new entry

Ψ(rF 1)g−1,g−1 = xrγ
+
g−1,

rf 1 − ι(rf 1)y (31)

in the lower right corner. Furthermore, the sign of this entry determines the sign of detΨ(rF 1)
and hence the image cell Ψ(C(rF 1)) of Prym(rΓ{Γ): if the entry is positive, then Ψ maps C(rF 1) to
the same half-space M+ as C(rF), while if it is negative then Ψ(C(rF 1)) ĂM−, and if it is zero then
C(rF 1) is contracted.

There are several possibilities to consider, depending on the relative positions of v = s(fg−1)

and u = t(fg−1) on the component G0. Let γ(G0) denote the unique cycle on G0 (oriented in
any direction), then any vertex of G0 has a unique (possibly trivial) shortest path to γ(G0). For
two distinct vertices v1, v2 P V(G0), we write v1 ă v2 if the unique path from v2 to γ(G0) passes
through v1; this defines a partial order on V(G0).

(1) The vertex v does not lie on γ(G0), and v ć u. In other words, v lies on a tree attached to
γ(G0), and u does not lie higher up on the same tree.

Let g1 be the unique edge rooted at v that points in the direction of the cycle γ(G0).
Since the unique path from u to γ(G0) avoids v, the graph G 10 = G0 Y {fg−1}\{g1} is con-
nected, has genus one, and has connected preimage, since the unique cycle of G 10 is γ(G0).
Therefore, F1 = {f1, . . . , fg−2, g1} is an odd genus one decomposition of G, of the same
length r as F. For any other edge e 1 rooted at v, removing it disconnects the correspond-
ing branch of the tree from G0, and attaching fg−1 does not reconnect this branch. Hence
G\{f1, . . . , fg−2, e

1} has a connected component of genus zero, and {f1, . . . , fg−2, e
1} is not a

genus one decomposition. The graph G0 and its preimage π−1(G0) are shown on Figure 6.
We see that the only cell C(rF 1) adjacent to C(rF) through C 1 on which |detΨ| is nonzero

corresponds to rF 1 = rF1 = rFY{rg1}\{rfg−1}, where rg1 is the unique edge rooted at rv that maps
to g1. Furthermore, F and F1 = p(rF1) have the same rank r, hence the value of |detΨ| on
the two cells C(rF) and C(rF1) is equal to 2r−1, so to prove harmonicity we only need to
show that Ψ maps C(rF1) to the half-space M−. As explained above, it suffices to compute
the last diagonal entry (31) of Ψ(rF1), where rf 1 = rg1.

The cycle rγ+g−1 is the unique cycle of the graph rT Y {rfg−1} containing +rfg−1. It starts at

the vertex rv = s(rfg−1), proceeds to ru = t(rfg−1) via +rfg−1, and then from ru back to rv via
the unique path in the tree rT . This path actually lies in the spanning tree rT+0 Y

rT−0 Y {re+0 }

of p−1(G0). The last edge of the path is rg1, oriented in the opposite direction since we’ve
assumed that s(rg1) = rv, hence xrγ+g−1, rg1y = −1. In addition, the path does not contain
ι(rg1). It follows that

Ψ(rF1)g−1,g−1 = xrγ
+
g−1, rg1 − ι(rg1)y = −1.

Therefore Ψ maps the cell C(rF1) to the half-space M−, hence Ψ is harmonic.
(2) The vertex v does not lie on γ(G0), and v ă u. As before, let g1 denote the unique edge

at v pointing towards γ(G0), and let g2 be the unique edge rooted at v which lies on the
path from v to u (this path, when reversed, is part of the unique path from u to γ(G0)).
Attaching fg−1 to G0 produces a graph of genus two. Any edge e 1 rooted at v other than
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Figure 6. The cycle rγ+g−1 in Case (1)

fg−1, g1, or g2 is the starting edge of a separate branch of G0 Y {fg−1}, so removing e 1

creates a genus zero connected component. Hence the only genus one decompositions
of the form (F\{f 1}) Y {fg−1} are F1 = {f1, . . . , fg−2, g1}, F2 = {f1, . . . , fg−2, g2}, and F itself.
The decompositions F and F2 have length r, while F1 has length r + 1, because the edge
g1 is a bridge edge of G0 Y {fg−1}, and removing it produces two genus one connected
components.

We now consider the edges rg1, rg2, and rfg−1 on rG, lying above g1, g2, and fg−1 and
rooted at rv = s(rfg−1). Denote rF1 = {rf1, . . . , rfg−2, rg1} and rF2 = {rf1, . . . , rfg−2, rg2}. The edges
g1 and g2 lie on the same tree attached to the cycle γ(G0) as the vertex v, and the lift of a
tree is a tree. Hence the endpoints of the edges rg1 and rg2 both lie on the same subtree rT˘0
of p−1(G0) as rv, and we assume without loss of generality that this component is rT+0 . For
t(rfg−1), however, there are two sub-possibilities, as shown on Figure 7.
(a) The target vertex ru = t(fg−1) lies on rT+0 . In this case, the unique cycle rγ+g−1 of the

graph rT Y {rfg−1} actually lies on rT+0 Y {rfg−1}: it starts at rv, proceeds to ru via +rfg−1,
and then returns to rv via the unique path that ends with the edge −rg2. It follows
that xrγ+g−1, g2y = −1 and xrγ+g−1, ι(g2)y = 0. Furthermore, the cycle rγ+g−1 does not
intersect the edges rg1 and ι(rg1). Hence we can compute the last diagonal entries of
the upper-triangular matrices Ψ(rF1) and Ψ(rF2):

Ψ(rF1)g−1,g−1 = xrγ
+
g−1, rg1 − ι(rg1)y = 0, Ψ(rF2)g−1,g−1 = xrγ

+
g−1, rg2 − ι(rg2)y = −1.
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Figure 7. The cycle rγ+g−1 in the two sub-cases of Case (2)

It follows that |detΨ(rF1)| = 0, hence the cell C(rF1) is contracted. Also, Ψ maps the cell
C(rF2) to the opposite half-space M− as C(rF), but with the same determinant, since rF

and rF2 have the same rank r. Hence Ψ is harmonic.
(b) The target vertex ru = t(fg−1) lies on rT−0 . In this case, the cycle rγ+g−1 starts at rv,

proceeds to ru via rfg−1, and proceeds to ι(rv) via a unique path that ends with the
edge −ι(rg2). From there the path returns from ι(rv) to rv via the unique path that
passes through the edge re+0 that links the two trees rT˘0 ; this path starts with the edge
ι(rg1) and ends with −rg1. Summarizing, we see that

xrγ+g−1, rg1y = −1, xrγ+g−1, ι(rg1)y = 1, xrγ+g−1, rg2y = 0, xrγ+g−1, ι(rg1)y = −1.

Hence we calculate the final diagonal entries of Ψ(rF1) and Ψ(rF2):

Ψ(rF1)g−1,g−1 = xrγ
+
g−1, rg1 − ι(rg1)y = −2, Ψ(rF2)g−1,g−1 = xrγ

+
g−1, rg2 − ι(rg2)y = 1.

It follows that Ψ maps C(rF2) to the same half-space M+ with the same determinant
|detdΨ(rF2)| = |detdΨ(rF)| = 2r−1, while C(rF1) is mapped to the opposite space M−

with determinant |detdΨ(rF1)| = 2r. Since 2r = 2r−1 + 2r−1, the map Ψ is harmonic.
(3) The vertex v lies on γ(G0), and v ć u. Let g1 and g2 be the two edges of G0 rooted at v

that lie on the cycle γ(G0), then F1 = {f1, . . . , fg−2, g1} and F2 = {f1, . . . , fg−2, g2} are genus
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Figure 8. The cycle rγ+g−1 in Case (3)

one decompositions of G0 of the same rank r as F, since removing g1 or g2 from G0Y{fg−1}

gives a connected graph of genus one. Any edge f 1 P TvG0 other than g1 and g2 is the
starting edge of a separate tree which does not contain u = t(fg−1), so G0Y{fg−1}\{f

1} has a
genus zero connected component, and {f1, . . . , fg−2, f

1} is not a genus one decomposition.
Let rg1 and rg2 be the edges of rG at rv lying above g1 and g2, respectively, and denote

rF1 = {rf1, . . . , rfg−2, rg1} and rF2 = {rf1, . . . , rfg−2, rg2}. The preimage of the cycle γ(G0) is the
unique cycle γ(p−1(G0)) of the genus one graph p−1(G0). We orient this cycle so that it
starts with the edge rg1, passes through ι(rv), and ends with −rg2. Let ru 1 be the end vertex
of the unique shortest path from ru to γ(p−1(G0)); this vertex may be ru itself but cannot
be rv or ι(rv), since we have assumed that the shortest path from u to γ(G0) does not pass
through v. We now assume without loss of generality that ru 1 lies on the same path from
rv to ι(rv) as rg1, otherwise exchange rg1 and rg2 (see Figure 8).

All cells adjacent to rC other than C(rF), C(rF1), and C(rF2) are contracted. For the last
two, we need to compute the matrix entry (31). We now calculate the relevant intersection
numbers. The path rγ+g−1 starts at rv, proceeds via +rfg−1 to ru, then to ru 1, and then back to
rv along a path lying in γ(p−1(G0)) that ends with −rg1, and does not contain ι(rg1), rg2, or
ι(rg2). It follows that

Ψ(rF1)g−1,g−1 = xrγ
+
g−1, rg1 − ι(rg1)y = −1, Ψ(rF2)g−1,g−1 = xrγ

+
g−1, rg2 − ι(rg2)y = 0.

Therefore Ψ maps C(rF1) to the opposite side M− as C(rF), but with the same determinant
|detΨ| = 2r−1. On the other hand, C(rF2) is contracted (this can also be seen by noting that
the preimage of the graph G0 Y {fg−1}\{g2} is disconnected). Hence Ψ is harmonic.

(4) Finally, we consider the possibility that v lies on γ(G0) and that v ă u, in other words u
lies on a tree attached to v. In this case, there are three edges at v that give genus one
decompositions: the two edges g1 and g2 lying on the cycle γ(G0), and the edge g3 that
starts the unique path from v to u. All other edges e 1 at v support trees, and their removal
from G0 Y {fg−1} produces a connected component of genus zero.
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Figure 9. The cycle rγ+g−1 in the two sub-cases of Case (4)

For i = 1, 2, 3 denote rgi the lift of gi rooted at rv, and denote rFi = {rf1, . . . , rfg−2, rgi}. As
in Case 2 above, there are two subcases, depending on whether the target vertex ru lies on
the same tree T˘0 as rv (say T+0 ), or on the other tree. The two possibilities are shown on
Figure 9.
(a) The vertex ru lies on T+0 . In this case, any path on the graph p−1(G0 Y {fg−1}) starting

at rv and ending at ι(rv) passes through the preimage p−1(γ(G0)) of the unique cycle
of G0. Removing either {rg1, ι(rg1)} or {rg1, ι(rg1)} from p−1(γ(G0)) disconnects the cycle,
and therefore the entire preimage graph p−1(G0 Y {fg−1}). It follows that F1 and F2
are not odd genus one decompositions. To prove harmonicity, we need to compute
Ψ(rF3)g−1,g−1. The cycle rγ+g−1 starts at rv, proceeds to ru via rfg−1, and then back to rv via
a path in T+0 that ends in −rg3 and does not contain ι(rg3). It follows that

Ψ(rF3)g−1,g−1 = xrγ
+
g−1, rg3 − ι(rg3)y = −1.

Therefore Ψ maps C(rF3) to the opposite side M− as C(rF), but with the same determi-
nant 2r−1. Hence Ψ is harmonic.

(b) The vertex ru lies on T−0 . In this case, all three genus one decompositions F1, F2, and F3
are odd. There are two paths from rv to ι(rv) along the cycle p−1(γ(G0)), starting with
edges rg1 and rg2. We assume without loss of generality that the path that contains
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Figure 10. The cycle rγ+1 in Case (1)

the edge re+0 (and hence lies in the spanning tree rT ) begins with rg1. In this case, the
path rγ+g−1 begins at rv, moves to ru via rfg−1, then to ι(rv) via a path ending in −ι(rg3),
and finally from ι(rv) via the path (passing through re+0 ) that starts with ι(rg2) and ends
with −rg1. Hence rγ+g−1 contains −rg1 + ι(rg2) − ι(rg3) and does not contain the edges
ι(rg1), rg2, or rg3, and therefore the diagonal entries are

Ψ(rF1)g−1,g−1 = xrγ
+
g−1, rg1 − ι(rg1)y = −1, Ψ(rF2)g−1,g−1 = xrγ

+
g−1, rg2 − ι(rg2)y = −1,

Ψ(rF3)g−1,g−1 = xrγ
+
g−1, rg3 − ι(rg3)y = 1.

Therefore, Ψmaps the two cells C(rF) and C(rF3) to the half-spaceM+ and the two cells
C(rF1) and C(rF2) to the half-space M−, all with the same determinant 2r−1. Hence Ψ
is harmonic.

The endpoints of fa lie on different connected components of G\F. We assume without loss
of generality that v = s(fa) lies on G0 and that u = t(fa) lies on G1. Furthermore, we assume
that fa lies in the spanning tree T c, and the ordering convention then implies that fa = f1 and
rfa = rf1. Since the matrix Ψ(rF) is lower triangular, we see that M+ = Ψ(H+) = {y : y1 ě 0} and
M− = Ψ(H−) = {y : y1 ď 0}.

Let rf 1 be an edge at rv, and let rF 1 = {rf 1, rf2, . . . , rfg−1} define a cell C(rF 1) adjacent to C(rF) via C 1.
The matrix Ψ(rF 1) is obtained from the matrix Ψ(rF) by replacing the first column, so we are only
interested in the new entry Ψ(rF 1)11 = xrγ+1 , rf

1 − ι(rf 1)y in the top left: if it is zero then p(rF 1) is not
an odd genus one decomposition, and if it is nonzero then its sign determines whether Ψ maps
C(rF 1) to M+ or M−.

The edge f1 is a bridge edge of the graph G0YG1Y {f1}. We need to consider two possibilities:

(1) The vertex v = s(f1) does not lie on the unique cycle γ(G0) of the graph G0. There is a
unique edge g1 at v pointing in the direction of γ(G0), and the graph G0 Y G1 Y {f1}\{g1}

has two connected components of genus one, namely G0\{g1} and G1. Therefore, F1 =

{g1, f2, . . . , fg−1} is an odd genus one decomposition of the same length r as F. Any other
edge f 1 at v supports a tree rooted at v, hence removing f 1 from G0 Y G1 Y {f} separates
a genus zero connected component, and the corresponding decomposition is not genus
one (see Figure 10).
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Let rg1 denote the lift of g1 at rv, and denote rF1 = {rg1, rf2, . . . , rfg−1}. To show that Ψ is
harmonic, it remains to show that Ψ maps the cell C(rF1) to the opposite side M−, in other
words we need to show that the diagonal entry Ψ(rF1)11 = xrγ+1 , rg1 − ι(rg1)y is negative.

We have chosen an edge e1 lying on the unique cycle γ(G1) of G1, and a lift re+1 lying
on the unique cycle of p−1(G1), with the property that the path from ru = t(rf) to ι(ru) that
passes through re+1 has the same orientation as re+1 . Hence the path rγ+1 is constructed as
follows: it starts at rv, proceeds via rf1 to ru, then via the aforementioned path to ι(ru), then
to ι(rv) via −ι(rf), and then from ι(rv) to rv via the unique path in p−1(G0) containing the
edge re+0 . This path begins with ι(rg1) and ends with −rg1, hence

Ψ(rF1)11 = xrγ
+
1 , rg1 − ι(rg1)y = −2.

Therefore, Ψ maps C(rF) and C(rF1) to different sides of rC with the same determinant, so Ψ
is harmonic.

Figure 11. The configuration in Case (2)

(2) The vertex v = s(f1) lies on the unique cycle γ(G0) of G0. It is easy to see that this case
is in fact a relabeling of Case 2b described above. Indeed, let g 11 and g 12 be the two edges
at v lying on γ(G0). Replacing f1, g 11, and g 12 with respectively g1, fg−1, and g2, we obtain
the same picture as in Case 2b (see Figure 11).

This completes the proof of Proposition 5.2. �

Appendix A. The algebraic Abel–Prym map (by Sebastian Casalaina-Martin)

Let π : rC→ C be a connected étale double cover of a smooth projective curve C of genus g ě 2
over an algebraically closed field k of characteristic not equal to 2, let ι : rC→ rC be the associated
involution, and denote by Nm : J(rC)→ J(C) the norm map for π, where for a smooth projective
curve X over k we denote by J(X) = Pic0X{k the Jacobian of X. For any natural number d the
Abel–Prym map in degree d is defined to be the map

δd : rC(d) −→ ker Nm Ď J(rC),

rD Þ→ O
rC
(rD− ιrD),

where rC(d) is the d-fold symmetric product of the curve. The kernel of the norm map has
two connected components, namely the Prym variety P = P(rC{C) := (ker Nm)˝, the connected
component of the identity, and the remaining component, which we will denote by P 1; P admits
a principal polarization Ξ with the property that if Θ

rC
is the canonical principal polarization on

J(rC), then Θ
rC
|P = 2 ¨ Ξ (e.g., [Mum74, §6]). The image of δd is contained in P if d is even and

contained in P 1 if d is odd (e.g., [Bea77, Lem. 3.3]).
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The Abel–Prym map in degree-1 has been studied quite extensively, and we recall this case in
§A.1. In particular, the map δ1 is a closed embedding if and only if rC is not hyperelliptic, and
has degree 2 otherwise. The purpose of this appendix is to provide a proof of some basic facts
regarding the Abel–Prym map for d ą 1. We expect these to be well known, but are not aware of
a reference in the literature.

Proposition A.1 (Corollary A.8, Corollary A.11, and Proposition A.12). The Abel–Prym map δd is
generically finite if and only if d ď g − 1, and surjects onto P (resp. P 1) if and only if d ě g − 1 and d
is even (resp. d is odd). Moreover, deg δg−1 = 2g−1, and if char(k) = 0, then for d ď g − 2 we have
deg δd = 2n ď 2d for some integer n ď d, with equality holding if rC is hyperellptic.

Remark A.2 (Degree bound in positive characteristic). If char(k) = p ą 0, then for d ď g − 2 we
show that deg δd = pm2n for some integers m and n with n ď d. The reason for the uncontrolled
power of p in the formula is that we compute the degree via a cohomology class computation in
`-adic cohomology, with ` ‰ p. A similar computation in crystalline cohomology allows one to
remove the powers of p.

While δ1 is finite for all covers rC{C, one can see in contrast from the case where rC is hyper-
elliptic (Proposition A.12) that δd need not be finite for d ą 1. On the other hand for general
covers, one has:

Proposition A.3 (Corollary A.15). For a general cover π : rC→ C, and d ă g{2, one has that δd is is a
closed embedding.

We note that the proposition gives the best possible bound since for d ě g{2, the differential of
δd fails to be injective (Proposition A.7). The proof of the proposition uses an extension of some
basic Brill–Noether theory (existence and non-existence) to the moduli space Rg of connected
étale double covers of smooth curves of genus g (Theorem A.13). These results are essentially
due to Welters [Wel85], but since the precise statements we want do not appear there, for com-
pleteness, we include a brief proof, which consists in showing that one can put a smoothable invo-
lution on certain curves of compact type that have been studied in the literature in the context of
Brill–Noether theory. Stating this result precisely may also have some added motivation in light
of the recent related interest in Brill–Noether theory on Hurwitz spaces [LLV20, Lar20, CPJ20];
i.e., moduli spaces of covers of curves of genus 0. We also mention here that it is known that not
all of the results of Brill–Noether theory hold on Rg (Remark A.14).

Sometimes in the presentation it will be convenient to fix a divisor rD0 P rC(d), and then consider
the associated pointed Abel–Prym map

δ
d,rD0

: rC(d) −→ P Ď J(rC)

D Þ→ O
rC
(rD− ιrD)bO

rC
(ιrD0 − rD0)

which simply differs from the canonical Abel–Prym map δd by translation by O
rC
(ιrD0− rD0), and

has image contained in the Prym variety.

A.1. The Abel–Prym map in degree-1. We recall the following well-known result:
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Proposition A.4. For any prime number ` ‰ char(k) and any point p̃0 P rC, the class of the push forward
of rC by the pointed Abel–Prym map is

(δ1,p̃0)˚[
rC] = 2 ¨

[Ξ]ρ−1

(ρ− 1)!
P H2ρ−2(P,Z`(ρ− 1)), (32)

where ρ = dimP = g − 1. In addition, if rC is not hyperelliptic, then the Abel–Prym map δ1 is an
embedding, so that [δ1,p̃0(

rC)] = 2 ¨
[Ξ]ρ−1

(ρ−1)! . If rC is hyperelliptic, then δ1 has degree 2, and the image

Σ := δ1(rC) Ď P 1 is a smooth hyperelliptic curve of genus g − 1 so that setting Σp0 := δ1,p̃0(
rC) Ď P, we

have [Σp̃0 ] =
[Ξ]ρ−1

(ρ−1)! , and (P, Ξ) is isomorphic to the principally polarized Jacobian (J(Σ), ΘΣ).

Proof. Computing the degree of δ1 is a basic computation from the definition; the details can be
found in [BL04, Prop. 12.5.2] where the arguments are made over C, but which hold over any
algebraically closed field of characteristic not equal to 2. As the map δ1 is finite, computing the
class of (δ1)˚[rC] is a standard argument using the fact that H2ρ−2(P,Z`) =

Ź2ρ−2H1(P,Z`), and
facts about first Chern classes of symmetric polarizations on abelian varieties. This is essentially
the same argument that is used to prove Poicaré’s formula in [ACGH85, p.25], and the arguments
there are easily adapted to the Abel–Prym map, and the positive characteristic case. Finally, the
fact that (P, Ξ) is isomorphic to the principally polarized Jacobian (J(Σ), ΘΣ) follows from the
criterion of Matsusaka–Ran [Col84]. �

Remark A.5. If rC is hyperelliptic, then C is hyperelliptic, as well (see e.g., [CMF05, Lem. 3.5]).
Thus the conclusion in Proposition A.4 that if rC is hyperelliptic then (P, Ξ) is a hyperelliptic
Jacobian is a special case of a result of Mumford, which states that for any π : rC → C with C
hyperelliptic, the Prym variety is a product of hyperelliptic Jacobians [Mum74, p.346].

Remark A.6. Although we do not use it, we note for completeness that in the case where rC is
hyperelliptic, we can say more. By Riemann–Hurwitz, δ1 is ramified at two points. From the
definition, we have that δ1(p̃) = δ1(p̃ 1) for distinct points p̃, p̃ 1 P rC if and only if p̃+ ι(p̃ 1) is in the
(unique) g12 on rC. The ramification points r̃, r̃ 1 P rC are distinguished by the fact that the 2-torsion
line bundle η determining the cover π satisfies η = OC(π(r̃) − π(r̃ 1)); note that this forces π(r̃)
and π(r̃ 1) to be branch points for the hyperelliptic involution on C. The details can be found in
[BL04, §12.5], where again the arguments hold in positive characteristic, as well.

A.2. The differential of the Abel–Prym map. We next show that the Abel–Prym map is gener-
ically finite for d ď g − 1 by showing that the differential is generically injective in that range.
Before proving this, we make a few observations about the differential. First, is it clear from the
definition that the projectivized differential of δ1 factors as

rC = PT rC

��

Pδ1 // PTP = P ˆ PT0P

��
C

φKCbη // PH0(C,KC b η)∨ = PT0P

where η is the 2-torsion line bundle on C determining the cover π, the bottom row is the Prym
canonical map, given by the linear system |KC b η|, and the right vertical map is the projection
onto the second factor. One can find this in [BL04, Prop. 12.5.2] or [CM09, §6]; both references
are over C, but the arguments hold in positive characteristic, as well. As a consequence, given
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rD P rC(d), and setting D = Nm rD, we can describe the space (PT
rD
δd)(PT

rD
rC(d)), when defined, as

the span of the scheme φKCbη(D) in PH0(C,KC b η)∨. We can describe this span conveniently in
another way.

Starting with the short exact sequence

0→ η→ η(D)→ η(D)|D → 0, (33)

then after identifying ηD(D)|D with OD(D), we obtain the coboundary map for the long exact
sequence in cohomology associated to (33):

TDC
(d) = H0(C,OD(D))

BD−→ H1(C, η) = H0(C,KC b η)
∨ = T

δd(rD)
P.

Under these identifications, we have that

(T
rD
δd)(T

rD
rC(d)) = BD(H

0(C,OD(D))).

The details can be found in [CM09, §6]; again, the arguments there are made over C, but hold in
positive characteristic, as well.

Therefore, from the long exact sequence in cohomology associated to (33), we see that

dim(T
rD
δd)(T

rD
rC(d)) = h1(C, η) − h1(C, η(D)) = (g− 1) − h0(C,KC(−D)b η). (34)

From this we can prove:

Proposition A.7. For d ď g − 1, the differential of δd is generically injective. For all d the differential
generically has rank equal to min(d, g− 1). The differential of δd is injective if and only if η is not in the
image of the difference map C(d) ˆ C(d) → J(C), where η is the 2-torsion line bundle on C determining
the cover rC{C, and therefore the differential of δd is not injective for d ě g{2.

Proof. Suppose first that d ď g − 1. Since h0(C,KC b η) = g − 1, then for rD P rC(d) and setting
D = Nm(rD), the equation (34) implies that

rk T
rD
δd = d ⇐⇒ h0(C,KC(−D)b η) = (g− 1) − d.

Taking rD, and therefore D, general, the d ď g − 1 points will impose independent conditions
on H0(C,KC b η), giving the desired result. In fact, since h0(C, η) = 0, from (33) we see the
differential fails to be injective at D if and only if h0(C, η(D)) ą 0, which is exactly the condition
that η is in the image of the difference map C(d) ˆ C(d) → J(C); i.e., η(D) – OC(E) for some
effective divisor E of degree d.

For d ě g− 1, the equation (34) implies that

rk T
rD
δd = g− 1 ⇐⇒ h0(C,KC(−D)b η) = 0.

Again, by taking rD, and therefore D, general, the d ě g−1 points will force H0(C,KC(−D)bη) =

0, giving the desired result. �

Corollary A.8. The Abel–Prym map δd is generically finite if and only if d ď g− 1, and surjects onto P
(resp. P 1) if and only if d ě g− 1 and d is even (resp. d is odd). �
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A.3. Push-forward of the fundamental class under the Abel–Prym map. The main result of
this subsection is the following proposition:

Proposition A.9. Let ` be a prime number not equal to char(k). For d ď g − 1, and taking rD0 P rC(d),
the class of the push forward of the symmetric product under the pointed Abel–Prym map δ

d,rD0
is given

by

(δ
d,rD0

)˚[rC
(d)] = 2d

[Ξ]ρ−d

(ρ− d)!
P H2ρ−2d(P,Z`(ρ− d)),

where ρ = g− 1 = dimP.

While Proposition A.9 can be proven exactly as the d = 1 case (i.e., as in the proof of (32)
in Proposition A.4), that computation is somewhat laborious, and we prefer to give an alternate
proof using (32) as the starting point.

For this, we take a brief detour. If X, Y Ď A are subvarieties of an abelian variety, and the map
a : Xˆ Y → X+ Y Ď A given by addition is generically finite, then it essentially follows from the
definition of the Pontryagin product that in the Chow ring or in the cohomology ring:

[X] ? [Y] = a˚[Xˆ Y] = deg(a)[X+ Y].

We will want a slight generalization. If we suppose that fX : X 1 → X Ď A and fY : Y 1 → Y Ď A are
generically finite surjective morphisms, and we set a 1 = a ˝ (fX ˆ fY) to be the composition:

a 1 : X 1 ˆ Y 1
fXˆfY // Xˆ Y

a

+
// X+ Y Ď A,

then, still under the assumption that a is generically finite, we have

fX,˚[X
1] ? fY,˚[Y

1] = a 1˚[X
1 ˆ Y 1] = deg(a 1)[X+ Y]. (35)

Indeed, we have the following string of equalities:

a 1˚[X
1 ˆ Y 1] = (dega 1)[X+ Y] = (deg(fX ˆ fY))(dega)[X+ Y] = (deg fX)(deg fY)(dega)[X+ Y]

= (deg fX)(deg fY)[X] ? [Y]((deg fX)[X 1]) ? ((deg fY)[Y 1]) = fX,˚[X 1] ? fY,˚[Y 1].

Finally, we will want to use the standard result that for a principally polarized abelian variety
(A,Θ) of dimension g, in the Chow ring we have:

[Θ]g−a

(g− a)!
?

[Θ]g−b

(g− b)!
=

(
a+ b

a

)
[Θ]g−(a+b)

(g− (a+ b))!
, (36)

which we will use in the form (
[Θ]g−1

(g− 1)!

)?d

= d!
[Θ]g−d

(g− d)!
. (37)

A reference for (36) over C is [BL04, Cor. 16.5.8, p.538], which uses as its starting point [Bea86,
Thm., p.647], also proven over C. However, [DM91, Thm. 2.19] shows that Beauville’s result
holds over any algebraically closed field, and consequently, the arguments for [BL04, Cor. 16.5.8,
p.538] go through in positive characteristic, as well. Of course, (36) is elementary to prove in
`-adic cohomology, and this is, in fact, all we need.
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Proof of Proposition A.9. Let p̃0 P rC, and set rD = dp̃0. From Corollary A.8 we know that δd is

generically finite; therefore, if we factor the composition δˆ
d,rD0

: rCd
sym→ rC(d)

δ
d, rD0→ P as

δˆ
d,rD0

: rCd
δd1,p̃0 // Pˆd

+ // P

then from the left hand side of (35), (32), and (37), we have

(δˆ
d,rD0

)˚[rC
d] =

(
(δ1,p̃0)˚[

rC]
)?d

=

(
2

[Ξ]ρ−1

(ρ− 1)!

)?d

= 2dd!
[Ξ]p−d

(p− d)!
.

On the other hand, we have

(δˆ
d,rD0

)˚[rC
d] = (δ

d,rD0
)˚ sym

˚
[rCd] = d!(δ

d,rD0
)˚[rC

(d)],

completing the proof. �

A.4. The degree of the Abel–Prym map. We start with the following consequence of Proposition
A.9:

Corollary A.10. Let ` be a prime number not equal to char(k). For d ď g − 1, and taking rD0 P rC(d),
the class [Im δ

d,rD0
] of the image of the pointed Abel-Prym map δ

d,rD0
(as a set, or rather as an irreducible

scheme, with the reduced induced scheme structure) is

[Im δ
d,rD0

] =
2d

deg δ
d,rD0

[Ξ]ρ−d

(ρ− d)!
P H2ρ−2d(P,Z`(ρ− d)),

where ρ = g− 1 = dimP.

Proof. This follows from Proposition A.9 using the fact that δd is generically finite (Corollary A.8)
so that (δ

d,rD0
)˚[rC

(d)] = deg(δ
d,rD0

)[Im δ
d,rD0

]. �

This gives the following corollary:

Corollary A.11. We have deg δg−1 = 2g−1, and if char(k) = 0, then for d ď g − 2 we have deg δd =

2n ď 2d for some integer n ď d. If char(k) = p ą 0, then for d ď g − 2 we have deg δd = pm2n for
some integers m and n with n ď d.

Proof. In the case where d = g − 1, we know, in addition, the class of the image Im(δ
g−1,rD0

);
indeed, δ

g−1,rD0
surjects on to P, so that Im(δ

g−1,rD0
) = P. The fact that deg δg−1 = 2g−1 then

follows immediately from Corollary A.10, completing the proof.
The case where d ď g − 2 follows from the fact that [Ξ]ρ−d

(ρ−d)! P H
2ρ−2d(P,Z`(ρ − d)) is a minimal

cohomology class (i.e., it is not divisible by `), and [Im δ
d,rD0

] is integral, so that Corollary A.10
(considered for all primes ` ‰ char(k)) implies that deg δd must be a power of the characteristic
exponent of k times a power of 2 that is at most 2d. �

A.5. The Abel–Prym map for hyperelliptic covers. We now discuss the degree of the Abel–
Prym map in the case where rC is hyperelliptic. We begin by recalling a few basic facts about
hyperelliptic curves; for lack of a better reference, we briefly explain how to extend the arguments
of [ACGH85, pp.12–3] to the positive characteristic case, with the goal of establishing (41). We
then use this to prove Proposition A.12, which is the main result of this subsection.

48



To begin, recall that for a smooth projective curve C, the projectivized differential to the Abel
map αd : Cd → PicdC{k, D Þ→ OC(D), for d = 1, factors as

C = PTC

��

Pα1 // PT Pic1C{k = Pic1C{kˆPT0J(C)

��
C

φKC // PH0(C,KC)∨ = PT0J(C)

where the bottom row is the canonical map, and the right vertical map is the projection on to the
second factor. As a consequence, given D P C(d) we can describe (PTDαd)(PTDC(d)) as the span
of the scheme φKC(D) in PH0(C,KC)∨. We will denote this by φKC(D). We can describe this span
conveniently in another way.

Starting with the short exact sequence

0→ OC → OC(D)→ OC(D)|D → 0, (38)

then we obtain the coboundary map for the long exact sequence in cohomology associated to
(38):

TDC
(d) = H0(C,OD(D))

BD−→ H1(C,OC) = H0(C,KC)∨ = Tαd(D) PicdC{k .

Under these identifications, we have that

(TDαd)(TDC
(d)) = BD(H

0(C,OD(D))).

Therefore, from the long exact sequence in cohomology associated to (38), we see that

dim(TDαd)(TDC
(d)) = h1(C,OC) − h1(C,OD(D)) = g− h0(C,KC(−D)). (39)

Using Riemann–Roch, (39) and the identification (PTDαd)(PTDC(d)) = φKC(D) recovers the Geo-
metric Riemann–Roch formula:

h0(C,D) = d− dimφKC(D). (40)

With this, we can prove the following. Assuming that C is hyperelliptic, and 0 ď d ď g, any
complete grd on C is of the form

rg12 + p1 + ¨ ¨ ¨+ pd−2r (41)

where no two of the pi are conjugate under the hyperelliptic involution. This follows immedi-
ately from the Geometric Riemman–Roch formula (40), together with the fact that for any divisor
E on a rational normal curve of degree g−1, with degE ď g, the span of E in Pg−1k has dimension
degE− 1 (for distinct points this fact follows from the non-vanishing of the Vandermonde deter-
minant). Note in particular that points p1, . . . , pd−2r are uniquely determined by the complete grd
in (41): if rg12 + p1 + ¨ ¨ ¨ + pd−2r ∼ rg

1
2 + p

1
1 + ¨ ¨ ¨ + p

1
d−2r, and p1 + ¨ ¨ ¨ + pd−2r ‰ p 11 + ¨ ¨ ¨ + p

1
d−2r,

we would have a gr
1

d for r 1 ą r.

Proposition A.12. Assume that rC is hyperelliptic. Then for d ď g − 1, we have deg δd = 2d, and for
d ą 1, there exist positive dimensional fibers of δd.

Proof. Let rD = p̃1+ ¨ ¨ ¨+ p̃d P rC(d) and rD 1 = p̃ 11+ ¨ ¨ ¨+ p̃
1
d P

rC(d), and suppose that δd(rD) = δd(rD 1):

p̃1 − ιp̃1 + ¨ ¨ ¨+ p̃d − ιp̃d ∼ p̃ 11 − ιp̃
1
1 + ¨ ¨ ¨+ p̃

1
d − ιp̃

1
d.

Consequently, we have that

p̃1 + ιp̃
1
1 + ¨ ¨ ¨+ p̃d + ιp̃

1
d ∼ p̃ 11 + ιp̃1 + ¨ ¨ ¨+ p̃

1
d + ιp̃d, (42)
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determines a complete gr2d for some r ě 1.
Assume now that rD is general. Since, under this hypothesis, no two of the p̃i can be conjugate

under the hyperelliptic involution, then due to (41), and considering the left hand side of (42),
then after possibly reordering the points, we must have that the points p̃ 11, . . . , p̃

1
r have the prop-

erty that p̃i and ιp̃ 1i are conjugate under the hyperelliptic involution for i = 1, . . . , r, while no two
of the points p̃r+1, . . . , p̃d and ιp̃ 1r+1, . . . , ιp̃

1
d are conjugate under the hyperelliptic involution. In

other words we have

p̃1 + ιp̃
1
1 + ¨ ¨ ¨+ p̃d + ιp̃

1
d ∼ rg12 + p̃r+1 + ιp̃

1
r+1 + ¨ ¨ ¨+ p̃d + ιp̃

1
d.

The same reasoning using the right hand side of (42) shows that

p̃ 11 + ιp̃1 + ¨ ¨ ¨+ p̃
1
d + ιp̃d ∼ rg12 + p̃

1
r+1 + ιp̃r+1 + ¨ ¨ ¨+ p̃

1
d + ιp̃d.

Since these complete linear systems are the same, and rD is assumed to be general, the uniqueness
of the points in the description (41) implies that, up to reordering, we must have p̃ 1i = p̃i for
i = r+ 1, . . . , d.

In summary, up to reordering, rD 1 is determined by the 2d choices of taking p̃ 1i either equal to
p̃i, or, denoting by h the hyperelliptic involution, taking p̃ 1i equal to ιh(p̃i). This completes the
computation of the degree.

Now let us use these arguments to show that for d ą 1, there exist positive dimensional fibers
of δd. For convenience, let us do the case d = 2, which is notationally easier, and immediately
implies the case d ą 2. So let us take rD = p̃1 + p̃2 to be special, equal to the g12, and rD 1 = p̃ 11 + p̃

1
2

arbitrary. Then the condition for δ2(rD) = δ2(rD 1) is

p̃1 + ιp̃
1
1 + p̃2 + ιp̃

1
2 ∼ p̃

1
1 + ιp̃1 + p̃

1
2 + ιp̃2.

Since the g12 is unique, we have that ι(p̃1 + p̃2) = ιp̃1 + ιp̃2 is still equal to the g12. Now the
above divisors either determine a g14 or a g24. In the former case, the uniqueness of the points
in the description (41) implies that one has ιp̃ 11 + ιp̃

1
2 = p̃ 11 + p̃

1
2. Thus one is free to choose p̃ 11

arbitrary, and then one takes p̃ 12 = ιp̃ 11. Alternatively, in the case of a g24, one has that p̃ 11 + p̃
1
2

is also equal to the g12; in other words, one is free to choose p̃ 11 arbitrary, and then one takes
p̃ 12 = h(p̃

1
1) where h is the hyperelliptic involution. Thus the fiber is 1-dimensional, parameterized

by (rC{ι = C)Y (rC{h = P1). �

A.6. The Abel–Prym map for general covers. We denote by Rg the moduli space of connected
étale double covers π : rC→ C of smooth projective curves of genus g over an algebraically closed
field k of characteristic not equal to 2. For a smooth projective curve X over k and non-negative
integers r and d, we denote the corresponding subvarieties of the Picard variety by

Wr
d(X) = {L P PicdX{k : h

0(X, L) ě r+ 1}

and we denote by Grd(X) the space parameterizing pairs (V, L) such that L P Wr
d(X) and V Ď

H0(X, L) has dimension r + 1. We start with the following result, which is essentially due to
Welters [Wel85]:

Theorem A.13 (Basic Brill–Noether theory on Rg [Wel85]). Fix g ě 2, and let r, d be integers with
d ě 1 and r ě 0. Let π : rC→ C be a cover in Rg, and denote the associated Brill–Noether number for rC

by
ρ(g̃, r, d) = g̃− (r+ 1)(g̃− d+ r),
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where g̃ = g(rC) = 2g− 1.

(1) If ρ(g̃, r, d) ě 0, thenWr
d(

rC) is non-empty, and every component of Grd(rC) has dimension at least
equal to ρ(g̃, r, d); the same is true of Wr

d(
rC) if r ě d − g̃. Moreover, if ρ(g̃, r, d) ą 0, then

Wr
d(

rC) is connected.
(2) If ρ(g̃, r, d) ă 0, and rC{C is general, then Wr

d(
rC), and therefore Grd(rC), is empty.

Proof. Since the particular assertions of the theorem are not stated in [Wel85], we provide a proof
here for clarity.

(1) This simply follows from the inclusionRg ĎM2g−1, and the results of Kempf and Kleiman–
Laksov [KL72] (existence), and those of Fulton–Lazarsfeld [FL81, Thm. 2.3, Rem. 2.8] (connected-
ness). In fact, one has also that if Wr

d(
rC) is of the expected dimension ρ(g̃, r, d), then

[Wr
d(

rC)] =

(
r

ź

i=0

i!

(g̃− d+ r+ i)!

)
[Θ

rC
]g̃−ρ(g̃,r,d). (43)

Note that this formula holds in `-adic cohomology, and also in the Chow group, where one must
replace Θ

rC
with Wg̃−1(rC), and make appropriate identifications of Picd

rC{k
with Picg̃−1

rC{k
.

(2) This is a consequence of the fact that one can put a smoothable involution on certain curves
of compact type that have been shown in the literature not to admit limit linear series of type
(g̃, r, d) when ρ(g̃, r, d) ă 0 (cf. Remark A.14).

For later reference, and perhaps since the characteristic 0 case is more familiar, let us start
by considering the flag curves of [EH86]. In particular, consider the flag curve rF given in the

‚

‚

...

‚ //̃e
ṽEṽR

<<
ẽ+g−2

ṽ+g−2

AA
ẽ+g−1

ṽ+g−1

""

ẽ−g−2

ṽ−g−2
��

ẽ−g−1

ṽ−g−1

‚

...

‚

‚

Figure 12. Dual graph of an Eisenbud–Harris flag curve rF admitting a smoothable
involution. The vertex ṽ˘i corresponds to the elliptic curve E˘i , and the involution
interchanges the vertices ṽ˘i , as well as the edges ẽ˘i .

diagram [EH86, p.339] (see also Figure 12). For a curve of genus g̃ = 2g− 1, the curve rF consists
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of a rational curve R, with 2g − 1 elliptic curves E+1 , E
−
1 , . . . , E

+
g−1, E

−
g−1, E attached to the rational

curve in nodes. To fix notation, let us label the attaching points p˘i P E
˘
i , r˘i P R, i = 1, . . . , g− 1,

p P E, and r P R; i.e., E˘i is attached to R by identifying p˘i with r˘i , and similarly for E. Now for
our example, we add a few requirements. First we require E+i = E−i , i = 1, . . . , g − 1, and that
p+i = p−i , i = 1, . . . , g−1. Next we let R→ P1 be a 2 : 1 cover, branched at 2 points, with associated
involution ιR, and we make the following requirement on the attaching points. We require that
r be a fixed point of this involution, and that r−i = ιR(r

+
i ) ‰ r+i . Then let ιE : E → E be any

hyperelliptic involution fixing p (i.e., the involution induced by the g12 associated to 2p). From
this we obtain an involution ι

rF
: rF→ rF, which acts as ιR on R, ιE on E, and interchanges E˘i . Since

at the fixed node the branches are not interchanged, this cover is smoothable [Bea77, §6] (note
that while Beauville’s arguments are for families of stable curves with involutions, with the goal
of obtaining the proper Deligne–Mumford stack Rg over Z[ 12 ], his arguments hold for families
of nodal curves with involutions, and lead in this context to an irreducible, non-separated, but
universally closed Artin stack over Z[ 12 ]). Therefore, since by [EH86] any such flag curve does not
admit a limit grd if ρ(g̃, r, d) ă 0 (see also [HM98, p.265] where this particular fact is explained
very concisely), we are done.

In positive characteristic, one can use Welters’ degenerations [Wel85] (see [Oss14]), which
consist of a chains rF of 2g − 1 elliptic curves E+1 , E

−
1 , . . . , E

+
g−1, E

−
g−1, E, attached at points that do

not differ by m-torsion for m ď d (see Figure 13). To fix notation, we will attach the curve E˘i to

‚ //
ẽ+g−1ṽ+g−1

‚ //
ẽ+g−2ṽ+g−2

¨ ¨ ¨ //
ẽ+2

‚ //
ẽ+1ṽ+1 ṽE

‚ ‚oo
ẽ−1 ṽ−1

¨ ¨ ¨oo
ẽ−2

‚oo
ẽ−g−2 ṽ−g−2

‚oo
ẽ−g−1 ṽ−g−1

Figure 13. Dual graph of an Osserman chain of elliptic curves rF admitting a
smoothable involution. The vertex ṽ˘i corresponds to the elliptic curve E˘i , and
the involution interchanges the vertices ṽ˘i , as well as the edges ẽ˘i .

E˘i−1 at a point p˘i P E
˘
i and a point q˘i−1 P E

˘
i−1, where we are denoting E˘0 := E, and we will set

q˘ := q˘0 . Osserman’s condition is that for i = 1, . . . , g − 2, p˘i − q˘i , is not m-torsion on E˘i for
m ď d, and similarly for q+0 −q−0 . Now for our example, we stipulate that E+i = E−i , that p+i = p−i
and q+i = q−i . Now q+ + q− defines a g12 on E, and we let ιE be the associated involution on E
interchanging q˘. From all of this, we obtain an involution ι

rF
on rF, which act as ιE on E, and

interchanges E˘i . Since no nodes are fixed by rF, this cover is smoothable [Bea77, §6]. Therefore,
since by [Wel85] (see [Oss14, Thm. 1.1, and p.814]) any such curve rF does not admit a limit grd if
ρ(g̃, r, d) ă 0, we are done. �

Remark A.14 (Warning). We caution that even though, as explained in the proof above, one can
put smoothable involutions on some curves of compact type that arise in standard arguments for
Brill–Noether theory in characteristic 0, for the remainder of the results of Brill–Noether theory,
the arguments involve more subtle properties of limit linear series, and these arguments can fail
for the curves with involution given in the proof above. In fact, it is not just the arguments that
can fail: some statements in the remainder of the Brill–Noether theory, i.e., beyond the basic existence
and non-existence statements in Theorem A.13, are known to fail for Rg. For instance, we recall here
Welters’ observation [Wel85, Rem. 1.12] that for every π : rC → C in Rg there is a line bundle
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L̃ P Picg̃−1
rC{k

such that the Petri map

µ0 : H
0(rC, L̃)bH0(rC,K

rC
b L̃−1) −→ H0(rC,K

rC
)

fails to be injective. Indeed, since the locus in Rg where there exists such a line bundle is closed,
and since the map Rg →Mg is finite with Rg irreducible, it suffices to show that for each curve
C in Mg, there exists a cover π : rC → C of C in Rg and a line bundle L̃ P Picg̃−1

rC{k
such that

the Petri map fails to be injective. The key observation is that from the Base-Point-Free Pencil
Trick [ACGH85, p.126], the Petri map fails to be injective for any theta characteristic κ̃ on rC with
h0(rC, κ̃) ě 2. Now, for any curve C in Mg, let κ1, κ2 be distinct odd theta characteristics on C,
and set η = κ1 b κ

−1
2 . Then on the cover π : rC→ C associated to η, one has that κ̃ := π˚κ1 = π

˚κ2

is a theta characteristic on rC satisfying h0(rC, κ̃) ě 2 (the pull-back of any two effective divisors
on C defining κ1 and κ2, respectively, pull back to give distinct linearly equivalent divisors on rC

defining κ̃).

We now use Theorem A.13(2) to prove that for a general cover rC{C, the Abel–Prym map is a
closed embedding for d ă g{2. This is the best possible bound since for d ě g{2, the differential
of δd fails to be injective (Proposition A.7).

Corollary A.15 (The Abel–Prym map for general covers). Let rC{C be a general cover. The Abel–Prym
map δd is a closed embedding for d ă g{2.

Proof. It follows from the definition of the Abel–Prym map that if rC does not admit a g12d, then
δd is injective. For a general cover rC{C, computing the Brill–Noether number for r = 1 gives that

for e ă g(rC)+2
2 , the curve rC does not admit a g1e. Putting this together we see that for a general

cover rC{C, if 2d ă g(rC)+2
2 = (2g−1)+2

2 , or more simply, d ă g
2 , then rC does not admit a g12d, and so

δd is injective.
To show that δd is an embedding, it now suffices to show the differential of δd is injective.

We saw that the differential of δd fails to be injective if and only if η is in the image of the d-th
difference map (Proposition A.7); i.e., η = OC(D−E) for some effective divisorsD and E of degree
d. On the other hand, since π˚η – O

rC
(e.g., [Mum74, Lem. p.332]), we would have π˚D ∼ π˚E,

so that in this case rC would have a g12d, which we saw in the previous paragraph could not be
the case for a general cover rC{C when d ă g{2. �
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