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Abstract

Motivated by the realizability problem for principal tropical divisors with a fixed
ramification profile, we explore the tropical geometry of the double ramification locus in
Mg,n.There are two ways to define a tropical analogue of the double ramification locus:
one as a locus of principal divisors, the other as a locus of finite effective ramified covers of
a tree. We show that both loci admit a structure of a generalized cone complex in Mtrop

g,n ,
with the latter contained in the former. We prove that the locus of principal divisors has
cones of codimension zero in Mtrop

g,n , while the locus of ramified covers has the expected
codimension g. This solves the deformation-theoretic part of the realizability problem for
principal divisors, reducing it to the so-called Hurwitz existence problem for covers of a
fixed ramification type.

1 Introduction

1.1 Realizability of tropical principal divisors

Let Γ be a stable tropical curve and D = div(f) =
∑n
i=1 aixi a principal divisor on Γ , where

a = (a1, . . . , an) are non-zero integers summing to zero. We say that the pair (Γ,D) is realizable
if there exists a smooth curve X over a non-Archimedean field K together with a stable
degeneration X , as well as a principal divisor D̃ on X with the same multiplicity profile a as
D, such that

• Γ is the dual tropical curve of X ; and

• the specialization of D̃, i.e. the multidegree of the special fiber of the closure of D̃ in a
suitably chosen semistable model of X , is equal to D.

The realizability problem consists in describing all realizable pairs (Γ,D).
We begin by noting that if we relax the condition that D̃ have the same multiplicity profile

a as D, then the realizability problem is always solvable. Indeed, let Γ be a tropical curve of
genus g that arises as the dual tropical curve of a fixed semistable degeneration X , and let D
be a principal divisor on Γ . Write D = D1 −D2 for effective divisors D1, D2 ∈ Div+

d (Γ) of some
degree d. In [BR15, Theorem 1.1], Baker and Rabinoff show that there exist effective divisors
D̃1, D̃2 ∈ Div+

d+g(X) of degree d+ g such that D̃ = D̃1 − D̃2 is principal and the specialization

of D̃ to Γ is equal to D. In other words, a principal divisor D on Γ can be lifted to a principal
divisor D̃ by adding at most g additional zeroes and poles which cancel under tropicalization.
Thus, loosely speaking, realizability imposes g independent conditions on the pair (Γ,D).

The realizability problem is a precise incarnation of the heuristic that there are "more
rational functions on tropical curves than tropicalizations of rational functions". As such, it
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explains why tropical linear systems are typically much larger than the tropicalizations of
algebraic linear systems. In particular, it functions as a moral reason for Baker’s specialization
lemma in [Bak08] saying that the rank of a linear system on an algebraic curve can only go up,
when passing to its tropicalization.

Our approach to this problem begins with [Cap14] and is motivated by [ABBR15a,
ABBR15b]. In [Cap14] Caporaso studies whether a d-gonal tropical curve is necessarily
the tropicalization of a d-gonal algebraic curve. In [ABBR15a, ABBR15b], the authors study
the more general problem of lifting finite harmonic morphisms of tropical curves to finite mor-
phisms of algebraic curves. Both [Cap14] and [ABBR15a, ABBR15b] show that the obstruction
to this lifting problem is not deformation-theoretic, but combinatorial, as it depends on the
non-vanishing of certain local Hurwitz numbers. Moreover, the authors of [ABBR15b] observe
in [ABBR15b, Proposition 4.2] that, given a finite harmonic morphism from a tropical curve to
a tree, any two fibers are linearly equivalent divisors.

The following Theorem A uses these observations to sum up and refine what is known
about the realizability problem for tropical principal divisors.

Theorem A. Let D = div(f) =
∑n
i=1 aixi be a principal divisor on a tropical curve Γ . Then (Γ,D)

is realizable if and only there is a tropical modification Γ̃ of Γ as well as a finite effective harmonic
morphism f : Γ̃ → ∆ to a metric tree ∆ with two legs 0 and∞, such that the local Hurwitz numbers of
f are all non-zero and the difference of the preimage of 0 and∞ is a divisor that stabilizes to D.

In this article, we argue that a principal divisor is realizable if and only if it lies in a
natural codimension g locus of Mtrop

g,n , called the tropical double ramification locus, and satisfies
combinatorial conditions determined by the non-vanishing of certain Hurwitz numbers.
The tropical double ramification locus contains the tropicalization of the algebraic double
ramification locus. In general it is strictly greater, however, it has the expected codimension g
in Mtrop

g,n , hence exactly encodes the g conditions observed in [BR15].

1.2 A tropical double ramification locus

Let g ≥ 1, n ≥ 2, and let a = (a1, . . . , an) ∈ Zn be non-zero integers such that a1+ · · ·+an = 0.
The double ramification locus DRg,a in Mg,n is the codimension g locus of marked smooth
curves (X, p1, . . . , pn) that fulfill the following two equivalent conditions:

(i) The divisor
∑n
i=1 aipi is principal, in other words

OX
( n∑
i=1

aipi

)
' OX .

(ii) There is a map f : X → P1 with ramification profiles
∑
i:ai>0

aipi and
∑
i:ai<0

(−ai)pi over

0 ∈ P1 and∞ ∈ P1, respectively.

In order to define a tropical double ramification locus, we may use a tropical analogue of
either of these two conditions; each of them leads to a different locus in Mtrop

g,n .

Definition 1.1. Denote by Mtrop
g,n the moduli space of stable tropical curves (Γ, p1, . . . , pn) of

genus g with n marked legs, as defined in [ACP15] and Section 3.2 below.
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(i) The locus of principal divisors PDg,a ⊆Mtrop
g,n is the set of points (Γ, p1, . . . , pn) ∈Mtrop

g,n such
that the divisor

∑n
i=0 aipi is principal (see Definition 4.1 below for details).

(ii) The double ramification locus DRg,a ⊆ Mtrop
g,n is the set of marked curves (Γ, p1, . . . , pn) ∈

M
trop
g,n for which there exists a tropical modification Γ̃ of Γ as well as a finite effective

harmonic morphism f : Γ̃ → ∆ to a tree ∆ with two legs 0 and∞, such that the preimage
of 0 is the divisor

∑
i:ai>0

aipi and the preimage of∞ is the divisor
∑
i:ai<0

(−ai)pi.

The following Theorem B describes the geometric structure of these loci and constitutes
the main result of this paper (see Section 3.1 for definitions):

Theorem B. (i) The locus PDtrop
g,a of tropical principal divisors is a linear subset of Mtrop

g,n that has
maximal cones of every codimension between zero and g.

(ii) The tropical double ramification locus DRtropg,a is a semilinear subset of PDtrop
g,a whose maximal-

dimensional cones have codimension g in Mtrop
g,n .

We prove Part (i) of Theorem B using an argument similar to the one used to prove the
structure theorem for the tropical Hodge bundle [LU17, Theorem 1.2]. Part (ii) is proved using
a refinement of the algorithm developed in [CD18] to describe the d-gonal locus in Mtrop

g .
In the hyperelliptic case, when the zero (or pole) degree of a is equal to 2, we have a

stronger result about the topological and combinatorial properties of the tropical double
ramification cycle.

Theorem C. Let a = (2,−2), (2,−1,−1), or (1, 1,−1,−1). The hyperelliptic double ramification
locus DRtropg,a is a linear subset of respectivelyMtrop

g,2 ,Mtrop
g,3 , andMtrop

g,4 that is connected in codimension
one. Its projection to Mtrop

g is the realizable hyperelliptic locus Hg, and the fibers of the projection have
dimensions 0, 1, and 2, respectively.

Denote by Man
g,n the non-Archimedean analytic stack associated to Mg,n. As intro-

duced in [ACP15], there is a natural continuous, proper and surjective tropicalization map
tropg,n :M

an
g,n → M

trop
g,n that associates to a stable one-parameter degeneration of a marked

smooth curve its dual tropical curve. We show in Prop. 6.13 below that the tropicalization map
tropg,n restricts to a tropicalization map tropg,a : DR

an
g,a → DRtropg,a , which is not surjective in

general. The situation may be summarized in the following diagram:

DRang,a Man
g,n

DRtropg,a PDtrop
g,a M

trop
g,n

tropg,a

⊆

tropg,n

⊆ ⊆

The following Theorem D is a refinement of Theorem A, which in our terminology describes
the realizability locus tropg,a(DR

an
g,a) in DRtropg,a . Our moduli-theoretic proof is based on the

tropicalization of the moduli space of admissible covers developed in [CMR16]. An alternative
proof could have made use of the lifting results in [ABBR15a, ABBR15b].

Theorem D. The realizability locus tropg,a(DR
an
g,a) is the subcomplex of DRtropg,a consisting of cones

of Hurwitz type.
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We may reinterpret Theorem D as saying that the realizability problem for tropical principal
divisors consists of two parts, a continuous and a discrete (actually group-theoretic) obstruction:

• By the Bieri–Groves theorem for subvarieties of toroidal embeddings (see [Uli15a, Theo-
rem 1.1]) the realizability locus tropg,a(DR

an
g,a) has codimension at least g. The principal

divisor locus PDtrop
g,a has codimension zero, so replacing PDtrop

g,a to DRtropg,n precisely cuts
away these superfluous dimensions.

• An element of DRtropg,a lies in tropg,a(DR
an
g,a). In other words it represents a realizable

divisor, if and only if the local Hurwitz numbers of the corresponding unramified cover
are all non-zero.

In general, the problem of deciding whether, given discrete branch data fulfilling the
Riemann–Hurwitz formula, there is a branched cover of Riemann surfaces of that type, goes
by the name of the Hurwitz existence problem. For genus zero targets this problem is by far and
large unsolved (see [PP06] for the state of the art).

1.3 Related work

1.3.1 Hyperelliptic and d-gonal tropical curves

One line of motivation for our work is the definition of gonality for tropical curves. Given a
divisor D on a tropical curve Γ , the Baker–Norine rank of D is the largest integer k such that
D − E has a nonempty linear system for any effective divisor E of degree k. We say that a
tropical curve is divisorially d-gonal if it carries a g1d, i.e. a divisor of degree d and rank at
least one.

This definition is problematic from a moduli-theoretic point of view, for the reason ex-
plained above: tropical linear systems are typically larger than tropicalizations of algebraic
linear systems. As a result, loci in Mtrop

g,n defined using Brill–Noether conditions such as divi-
sorial gonality inevitably have unexpectedly high dimension. For example, the moduli space
of tropical hyperelliptic curves of genus g (i.e. curves admitting a g12) has dimension 3g− 3
(see [LPP12]), instead of the expected 2g−1, which implies that not every hyperelliptic tropical
curve is the tropicalization of a hyperelliptic curve. The behavior is similar for higher gonality.
A related result of [LPP12] is that the function dimWr

d(Γ) is not upper semi-continuous on the
moduli space Mtrop

g , implying that loci in Mtrop
g defined by divisorial Brill–Noether conditions

are not even cone complexes in general.
Hyperelliptic tropical curves have been studied extensively, and the realizability problem

for them is fully understood. In [Cha13], expanding on earlier work of Baker and Norine
for finite graphs [BN09], Chan studies the locus of hyperelliptic curves in Mtrop

g . She proves
that a tropical curve Γ is hyperelliptic if and only if it admits a (necessarily unique) harmonic
morphism Γ → ∆ of degree 2 to a metric tree (equivalently, a unique involution ι : Γ → Γ

such that the quotient Γ/ι is a tree). Theorem 4.13 in [ABBR15b], which generalizes Theorem
4.8 [Cap14] to metric trees, gives a complete answer to the realizability problem for hyperelliptic
curves. Specifically, the theorem states that a hyperelliptic tropical curve Γ is the tropicalization
of an algebraic hyperelliptic curve if and only if for every point p ∈ Γ fixed by the hyperelliptic
involution ι, the number of tangent directions at p fixed by ι is less than or equal to 2g(p) + 2.
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In the language of this paper, this condition is equivalent to requiring that the hyperelliptic
morphism Γ → ∆ be effective.

Hyperelliptic tropical curves can be viewed as ramified Galois covers of metric trees with
Galois group Z/2Z, and a number of papers have generalized this construction. Len [Len17]
studies hyperelliptic metrized complexes, while Bolognese, Brandt, and Chua [BBC17] solve
the problem of finding the abstract tropicalization of an algebraic hyperelliptic curve. Jensen
and Len [JL18] consider unramified Z/2Z-covers of arbitrary tropical curves, while Brandt and
Helminck [BH17] study Galois covers of metric trees with arbitrary cyclic Galois group and
study their locus in Mtrop

g . In [LUZ19], Len and the authors generalize all these constructions
and develop a theory of Galois covers of tropical curves with arbitrary abelian Galois group.
The realizability problem is also central to tropical Hurwitz theory. We refer the reader to
[CJM10, BBM11, CMR16, BBBM17, GM16, MR16] and the references therein for more details
on this extensive topic. More details on the realizability problem in characteristics other than
zero can also be found in [BT17, CTT16].

From a moduli-theoretic perspective, two papers that are especially important for us
are [CMR16] and [CD18]. In [CMR16], Cavalieri, Markwig, and Ranganathan provide us
a new moduli-theoretic perspective on the tropicalization of ramified covers, expanding on
the classical work of Abramovich, Caporaso, and Payne [ACP15] for the moduli space of
algebraic curves. In [CD18], Cools and Draisma study the d-gonal locus in Mtrop

g from a purely
combinatorial perspective. Reformulated in our language, their main result is the following:
the locus of curves in Mtrop

g admitting a finite effective degree d harmonic morphism Γ → ∆

to a metric tree has the expected dimension min(2g + 2g − 5, 3g − 3). It follows from the
results of [ABBR15b] that any such curve admits a g1d, hence is divisorially d-gonal. In other
words, requiring that the g1d is represented by a finite effective map to a tree produces a
locus of the expected dimension, as in the case of hyperelliptic curves. We note here that the
realizability problem for d-gonal curves, unlike hyperelliptic curves, is highly non-trivial (and
not addressed in [CD18]), since Hurwitz numbers of degree d ≥ 4 can generally vanish (see
[Cap14, Section 2.2]). Our results on the tropical double ramification locus can be seen as a
generalization of the results of [CD18]. In [DV19] Draisma and Vargas continue their study of
tropical gonality by showing that every metric graph has gonality at most dg2 e+ 1.

1.3.2 Other instances of the realizability problem

The realizability problem for tropical divisors in its most general form (known to us) can be
stated as follows. Let a = (a1, . . . , an) ∈ Zn be integers such that a1 + · · · + an = d for an
integer d ≥ 0, let r ≥ −1, and let K be a non-Archimedean field. Given a tropical curve Γ and a
divisor D on Γ of multiplicity profile a (and thus of degree d) and of rank r, does there exist a
smooth projective curve over K and a divisor D̃ with multiplicity profile a (and thus of degree
d) and of rank r such that Γ is the dual tropical curve of X and D is the specialization of D̃?
We remark that, according Baker’s specialization lemma [Bak08], the rank of a divisor can
only go up when specializing to a tropical curve.

The case r = 1 and d = 2 is the realizability problem for hyperelliptic curves, which has
been completely solved in [ABBR15a, ABBR15b]. The case d > 2 (while still r = 1) has been
treated in [LM18] in the framework of limit linear series on metrized curve complexes. A
special case of this realizability problem also appears in [BH17], where Brandt and Helminck
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consider superelliptic curves, i.e. cyclic Galois covers of P1.
In the case r ≥ 2, Cartwright [Car15] shows a version of Murphy’s law for the realizability

problem: given a matroid, there is a tropical curve Γ and a divisor D of rank r ≥ 2 on it, such
that deciding realizability for (Γ,D) is equivalent to deciding whether the matroid is realizable
over a field. This suggests that the realizability problem is far beyond reach in its most general
form.

Nevertheless, there are many special cases when solutions can be given. For one, the
realizability problem for divisor classes admits a full solution on tropical curves of a certain
generic shape, known as a chain of loops (see [CJP15]). In [JR17], the authors provide us
with a different perspective on the realizability problem on chains of loops using techniques
from logarithmic Gromov–Witten theory. This solution allows the authors to prove a new
Brill-Noether theorem for curves of a fixed gonality that significantly generalizes the classical
Brill-Noether theorem to special curves.

There are also other situations where the realizability problem is solvable uniformly on
all tropical curves. In [MUW17] Moeller, the first author, and Werner solve the realizability
problem for effective canonical divisors, i.e. the case r = g−1 and d = g−1 (with all ai > 0). In
this case, Cartwright’s restriction does not apply, since effective canonical divisors correspond
to sections of twists of the relative dualizing sheaf.

In this article we are treating the case r = 0 and d = 0, i.e. the case of principal divisors.
As explained above, this has also been the subject of [BR15], albeit without reference to the
specific multiplicity profiles.

1.3.3 The double ramification cycle, the tautological ring, and the Abel–Jacobi section

Our work is also motivated by the significant attention that the algebraic double ramification
locus DRg,a ⊂ Mg,n has attracted in the last decade. A natural direction of inquiry has
been to describe a meaningful compactification of DRg,a in the Deligne-Knudsen-Mumford
compactificationMg,n, and to study its (virtual) class in the tautological ring R∗(Mg,n). This
is also known as Eliashberg’s problem, who in the early 2000’s posed this question in the context
of symplectic field theory. In this subsection, we review a number of recent results concerning
the double ramification cycle; see [Pan18] for an excellent survey.

There are two strategies, quite different in nature, to construct natural compactifications of
the double ramification locus DRg,a.

(i) The double ramification locus DRg,a is the pullback of the zero section of the universal
Jacobian Jg,n along the natural Abel-Jacobi section

Mg,n −→ Jg,n,
(X, p1, . . . , pn) 7−→ (

X, p1, . . . , pn,OX(a1p1 + · · ·+ anpn)
)
,

so we can compactify DRg,a by finding a suitable compactification of Jg,n and pulling
back the zero section along the resolution of the Abel–Jacobi map.

(ii) The locus DRg,a is the set of marked curves admitting a map f : X→ P1 with ramification
profiles at 0 and ∞ prescribed by a, so we define the compactification of DRg,a as the
image inMg,n of a suitably compactified moduli space of maps f : X→ P1.
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The first results on Eliashberg’s problem used the universal Jacobian approach. The moduli
space Mg,n admits a partial compactifaction Mct

g,n parametrizing curves of compact type,
whose Jacobians are abelian varieties. The Abel–Jacobi map naturally extends toMct

g,n −→ Jg,n,
and we can define the class

[
DRctg,a

]
in the tautological ring Rg

(
Mct

g,n

)
as the pullback of the

zero section of Jacg,n. Using this approach, Hain [Hai13] computed the class
[
DRctg,a

]
in

homology using Hodge theory, and Grushevsky and Zakharov [GZ14a] computed the same
class in the Chow ring using test curves. In [GZ14b], the authors extended this result to
compute the double ramification cycle on a slightly larger spaceM1

g,n ⊃Mct
g,n, parametrizing

curves having at most one non-separating node.
There are two natural ways to compactify the moduli space of maps X → P1 with ram-

ification specified by a ∈ Zn over two points 0,∞ ∈ P1. In both cases we allow both the
source curve X and the target P1 to degenerate. The first is the space of admissible covers
Hg,a, defined by Harris and Mumford in [HM82]. We define the admissible double ramification
locus DRadmg,a as the image of Hg,a in Mg,n, it coincides with the closure of DRg,a, and its
class is in the tautological ring Rg(Mg,n) by [FP05]. The second, motivated by Gromov–Witten
theory, is known as the moduli space of rubber relative stable maps to P1. This space is not
equidimensional, but admits a virtual fundamental class, whose pushforward Rg,a ∈ Rg

(
Mg,n

)
is called the relative double ramification cycle (see [GV05] and [FP05]).

It may appear at first that DRadmg,a is the natural object to study. However, almost all results
concerning the double ramification cycle have used the class Rg,a, while DRadmg,a remains
somewhat mysterious. Cavalieri, Marcus, and Wise showed in [CMW11] and [MW13] that
the restriction of Rg,a to the tautological ring Rg

(
Mct

g,n

)
coincides with

[
DRctg,a

]
. In 2014,

based on the known formula for
[
DRctg,a

]
and the results of [GZ14b], Pixton conjectured a

formula for Rg,a on all of Mg,n, which was proved in [JPPZ17]. Together with a formula
for Rg,a ∈ Rg

(
Mg,n

)
, Pixton conjectured a set of relations in Rk

(
Mg,n

)
for k ≥ g + 1. These

relations were proved in [CJ18]. In [CGJZ18], it was shown that these relations imply the
known vanishing results for the tautological ring R∗

(
Mg,n

)
, and can be used to determine

explicit boundary formulas onMg,n for tautological classes that vanish onMg,n.
As we noted above, in order to define a full compactification of DRg,a using the universal

Jacobian Jg,n, it is necessary to find a suitable compactification of Jg,n and extend the Abel–
Jacobi section. In [Hol19], Holmes considered the compactification of Jg,n to the multidegree
zero universal Jacobian J 0g,n overMg,n. In this case, the Abel–Jacobi section only extends to a
rational mapMg,n 99K J 0g,n. The scheme-theoretic pullback of the zero section of J 0 to the
resolution is proper overMg,n, and its pushforward toMg,n turns out to coincide with Rg,a.

Alternatively, Kass and Pagani [KP17] resolved the Abel–Jacobi map by replacing Jg,n
with a space J g,n(φ) depending on a stability parameter φ, and showed in [HKP18] that
the pullback of the zero section along the Abel–Jacobi map is again equal to Rg,a. Finally, a
treatment of this problem using logarithmic geometry was made in [MW17], and yet again
produces the relative double ramification cycle Rg,a.

In [AP19] Abreu and Pacini show that the tropical Abel-Jacobi section, as a map from
M
trop
g,n to the universal tropical Jacobian they construct in [AP18], tells us exactly which toroidal

resolution to apply for the algebraic Abel-Jacobi section to compactify. In [AP19, Section 7.1],
they in particular also consider a tropical analogue of the double ramification locus. In our
language, this is exactly the principal divisor locus PDtrop

g,a .
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1.3.4 Multiplicativity of the double ramification cycle

Over the locusMct
g,n of stable curves of compact type, the double ramification cycle is known

to fulfill the multiplicity relation[
DRctg,a

]
·
[
DRctg,b

]
=
[
DRctg,a

]
·
[
DRctg,a+b

]
(1)

for two vectors a, b ∈ Zn of integers summing to zero. Its extension to all ofMg,n, however,
does not fulfill the multiplicity relation (1).

In [HPS17] the authors find that an analogue of the multiplicity relation (1) remains valid,
when considering an extension of the double ramification cycle in a suitable blow-up of
Mg,n. They, in particular, notice that for (1) to be valid it is enough to consider a toroidal
blow-up along the Deligne-Mumford boundary. It would be highly interesting to investigate
the relationship between these toroidal blow-ups and the (non-proper) toroidal modification
induced by a subdivision of Mtrop

g,n supported on DRtropg,a constructed in this article. This
would very much be in the spirit of Tevelev’s theory of tropical compactifications (see [Tev07]),
extended to subvarieties ofMg,n.

We also refer the reader to [Her19] and [Ran19] for an analogous development in the
context of a product formula in logarithmic Gromov-Witten theory.
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2 Preliminaries

We begin with a plethora of definitions. Most of these are standard and are listed without
numbering. However, several definitions that are either of particular importance or that are, to
the best of the authors’ knowledge, new or unfamiliar, are typeset separately.

2.1 Graphs

A graph with legs G, or simply a graph, consists of the following data:

• A finite set X(G).

• An idempotent root map rG : X(G)→ X(G).

• An involution ιG : X(G)→ X(G) whose fixed set contains the image of rG.

The image of rG, on which it acts trivially, is the set of vertices of G and is denoted V(G), and
the complement H(G) = X(G)\V(G) is the set of half-edges of G. The involution ιG preserves
H(G) and partitions it into orbits of size 2 and 1, called respectively the edges and legs of G.
We denote the sets of edges and legs by E(G) and L(G), respectively. The root map rG assigns
root vertices, two to each edge and one to each leg (every vertex has itself as its endpoint). An
edge whose endpoints are equal is called a loop.

The geometric realization |G| of a graph G is the one-dimensional CW complex (zero-
dimensional if H(G) is empty) defined as follows. As a set, |G| is obtained by taking the union
of a copy Ie of the closed interval [0, 1] for each edge e ∈ H(G), a copy Ip of the half-axis
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[0,∞) for each leg p ∈ L(G), and a point for each vertex v ∈ V(G), which we also denote v.
For each edge e = {h1, h2} ∈ H(G) we identify the 0 and 1 of Ie with the vertices rG(h1) and
rG(h2) in any order. For each p ∈ L(G), we identify the 0 in Ip with hG(p). In this way, V(G)
is naturally a subset of |G|. We say that a graph G is connected if |G| is connected. Unless
otherwise specified, we only consider connected graphs.

Remark 2.1. It may appear that there is no need to strictly distinguish legs, which we can
think of as edges of infinite length, from finite extremal edges. However, from a tropical and
moduli-theoretic viewpoint, these objects play entirely different roles: the former correspond
to marked points (hence our use of p to denote legs), and the latter to unstable rational tails.
For this reason, there is no point at the end of a leg, and we do not employ the compactified
tropical moduli spaces of curves introduced in [ACP15].

Given a vertex v ∈ V(G), the set of tangent directions TvG at v enumerates the edges and
legs attached to v:

TvG = {h ∈ H(G)|rG(h) = v},

with each loop at v counted twice. The valency val(v) of a vertex v is equal to #TvG.
A vertex weighting of a graph G is a map g : V(G)→ Z≥0, where g(v) is called the genus of

v and represents g(v) infinitesimal loops attached at v. We refer to the pair (G, g) as a weighted
graph and usually omit g. The genus g(G) of a connected weighted graph is given by

g(G) = b1(|G|) +
∑
v∈V(G)

g(v)

where
b1(|G|) = #E(G) − #V(G) + 1

is the first Betti number of the graph G. A weighted graph of genus zero is called a tree (in
other words, a tree cannot have nontrivial vertex weights).

Definition 2.2. Let G be a weighted graph. We define the Euler characteristic χ(v) of a vertex
v ∈ V(G) by

χ(v) = 2− 2g(v) − val(v).

Similarly, we define the Euler characteristic χ(G) of a connected weighted graph G by

χ(G) = 2− 2g(G) − #L(G).

It is easy to check that ∑
v∈V(G)

χ(v) = χ(G).

Remark 2.3. The Euler characteristic χ(G) is not to be confused with the topological Euler
characteristic of the CW-complex |G|.

We say that a vertex v ∈ V(G) is stable if χ(v) < 0, semistable if χ(v) ≤ 0, and unstable if
χ(v) > 0. An unstable vertex has genus 0 and is either isolated or has valency one (note that
there is no unstable vertex at the end of a leg). A semistable vertex that is not stable is either
an isolated vertex of genus 1 or a vertex of genus 0 and valency 2, in which case we call it
simple. We say that a weighted graph G is semistable if all of its vertices are semistable and
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stable if all of its vertices are stable. We observe that if G is semistable then χ(G) ≤ 0 and if G
is stable then χ(G) < 0.

Let G be a connected weighted graph with χ(G) < 0. We form the stabilization Gst of G as
follows (see [ACP15]). First, if G has an unstable vertex u with χ(u) = 1, remove u and the
edge rooted at it. Proceeding in this way, we remove all unstable trees of edges and obtain the
semistabilization Gsst of G. Now let v ∈ V(Gsst) be a simple vertex v. If v is the root vertex of
two edges e1 and e2, replace them with a single edge e rooted at the remaining root vertices of
e1 and e2. If v is the root vertex of an edge e and a leg p, remove e and root p at the remaining
root vertex of e. Proceeding in this way, we remove all semistable vertices and obtain a stable
graph Gst with χ(Gst) = χ(Gsst) = χ(G).

Let G ′ and G be graphs, and let ϕ : X(G ′)→ X(G) be a map of sets commuting with the
involution and root maps. Parsing this, we see the following:

• A vertex v ′ ∈ V(G ′) maps to a vertex ϕ(v ′) ∈ V(G).

• A leg p ′ ∈ L(G ′) with endpoint v ′ either maps to a leg ϕ(p ′) ∈ L(G) with endpoint ϕ(v ′),
or to a vertex v = ϕ(p ′) ∈ V(G), in which case ϕ(v ′) = v and we say that ϕ contracts p ′.

• For an edge e ′ = {h ′1, h
′
2} ∈ E(G ′) with endpoints v ′1 and v ′2, there are three possibilities.

First, ϕ(e ′) = {ϕ(h ′1), ϕ(h
′
2)} ∈ E(G) may be an edge with endpoints ϕ(v ′1) and ϕ(v ′2).

Second, v = ϕ(h ′1) = ϕ(h ′2) ∈ V(G) may be a vertex, in which case ϕ(v ′1) = ϕ(v ′2) = v

and we say that ϕ contracts e ′. Finally, it is possible that ϕ(h ′1) = ϕ(h
′
2) ∈ L(G) is a leg

with endpoint ϕ(v ′1) = ϕ(v
′
2).

We say that ϕ : G ′ → G is a morphism of graphs if it maps edges to either edges or vertices. We
say that ϕ is finite if it does not contract any edges or legs.

A subgraph F of a graph G is a subset of X(G) that is preserved by the maps rG and ιG. If G
is weighted, we weight F by restriction. Given a subset S ⊂ E(G) ∪ L(G) of edges and legs of
G, we denote [S] the subgraph generated by S, which consists of S together with all root vertices
of elements of S.

Definition 2.4. Let F be a subgraph of a graph G. We define a graph O(F), called the
neighborhood of F in G, by attaching to F, as a leg, each half-edge of G that is rooted at a vertex
of F but is itself not in F (so an edge between vertices of F that is not itself in F produces two
legs in O(F)). Specifically, as a set X(O(F)) = r−1G (X(F)), and we define rO(F) as the restriction of
rG, while ιO(F) is defined to be the restriction of ιG on X(F) ⊂ r−1G (X(F)) and the identity map on
the complement r−1G (X(F))\X(F). We define the neighborhood O(S) of a subset S ⊂ E(G) ∪ L(G)
to be the neighborhood of [S] in G.

We observe that for any v ∈ V(F) there is a natural identification TvO(F) = TvG, while in
general it is only true that TvF ⊂ TvG. In particular, we can identify {v} ∪ TvG with the graph
O({v}), and, if G is weighted, then for a vertex v ∈ F its Euler characteristics as a vertex in G
and as a vertex in O(F) are equal, and are both equal to the Euler characteristic of the graph
O({v}):

χG(v) = χO(F)(v) = χ
(
O({v})

)
.
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2.2 Metric graphs and tropical curves

Let G be a graph. A metric on G is a function ` : E(G)→ R>0. A metric graph (G, `) is a graph
G with a choice of metric `. We call the underlying graph G the combinatorial type of the metric
graph. A weighted metric graph (G, g, `) is a metric graph (G, `) together with a weighting g
on G.

Let (G, `) be a metric graph, and let |G| be the geometric realization of its combinatorial
type. We equip |G| with the structure of a metric space, called the metric realization of (G, `), as
follows. For each edge e ∈ E(G), we identify the corresponding interval Ie ⊂ |G| with a finite
interval of length l(e). For each leg p ∈ |G|, we identify the interval Ip ⊂ |G| with a copy of
[0,∞). We then give |G| the path metric.

Let (G ′, ` ′) and (G, `) be metric graphs. A morphismϕ : (G ′, ` ′)→ (G, `) of metric graphs is a
pair consisting of a morphism of graphs ϕ : G ′ → G and a weighting dϕ : E(G ′)∪L(G ′)→ Z≥0,
called the degree of ϕ, such that the following properties are satisfied. For an edge e ′ ∈ E(G ′)
or a leg p ′ ∈ L(G ′), ϕ contracts e ′ or p ′ if and only if dϕ(e ′) = 0 or dϕ(p ′) = 0, respectively. If
dϕ(e

′) > 0, then we require that

`
(
ϕ(e ′)

)
= dϕ(e

′)` ′(e ′). (2)

A morphism ϕ : (G ′, ` ′)→ (G, `) of metric graphs induces a continuous map |ϕ| : |G ′|→ |G| of
their metric realizations, where, for a pair of edges e = ϕ(e ′), the map is given by dilation by
a factor of dϕ(e ′), and similarly for a pair of legs p = ϕ(p ′). This map is piecewise-linear with
integer slope with respect to the metric structure.

A basic inconvenience when dealing with metric graphs is that different graphs may have
the same metric realizations. This motivates the following definition.

Definition 2.5. A tropical curve is a pair consisting of a connected metric space Γ and a weight
function gΓ : Γ → Z≥0 such that there exists a weighted metric graph (G, g, `) and an isometry
m : |G|→ Γ of its metric realization with Γ , with respect to which the weight functions agree:

gΓ (x) =

{
g(v) if x = m(v), v ∈ V(G),
0 otherwise.

We call a quadruple (G, g, `,m) satisfying these properties a model for Γ .

The genus of a tropical curve Γ is given by

g(Γ) = b1(Γ) +
∑
x∈Γ

gΓ (x)

and is equal to the genus of any model of Γ . A tree is a tropical curve of genus zero.
For a point x ∈ Γ on a tropical curve Γ with model (G, g, `,m), we define its valence val(x)

to be val(v) if x = m(v) for some v ∈ V(G) and 2 otherwise. We similarly define the Euler
characteristic as χ(x) = 2 − 2gΓ (x) − val(x), these numbers do not depend on the choice of
model. We define the Euler characteristic of a tropical curve as χ(Γ) = χ(G) for any model G
of Γ . We have

χ(Γ) =
∑
x∈Γ

χ(x),

where on the right hand side χ(x) = 0 for all but finitely many x ∈ Γ .
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Remark 2.6. Our definition of tropical curve differs from Def. 2.14 in [ABBR15b], where a
tropical curve is defined as an equivalence class of metric graphs up to tropical modifications
(see below).

Let Γ be a tropical curve with model G. We can form another model G ′ by replacing an
edge e ∈ E(G) by two new edges joined at a new simple vertex, and arbitrarily splitting the
length of e. Similarly, we can split a leg p ∈ L(G) into a leg and an edge of arbitrary length.
Conversely, any tropical curve Γ has a unique minimal model Gmin having no simple vertices
(unless Γ is the real line or a circle). We say that Γ is stable if its minimal model is a stable
graph.

We observe that every connected tropical curve Γ except for the real line (−∞,∞) has a
well-defined set of legs, corresponding to the legs of its minimal model. We define the legs of
(−∞,∞) to be (−∞, 0] and [0,∞). We denote by Γ◦ the tropical curve obtained by removing
the legs of Γ (but retaining the attachment points), and by c : Γ → Γ◦ the natural retraction
map.

Definition 2.7. A morphism τ : Γ ′ → Γ of tropical curves is a continuous, piecewise-linear map
with integer slopes that is eventually linear on every leg. Specifically, let p ′ ⊂ Γ ′ be a leg,
identified with [0,∞). Then there exists a constant c > 0 such that either τ(x) is constant on p ′

for all x > c, or there is a leg p ⊂ Γ and numbers a ∈ Z>0 and b ∈ R such that, identifying p
with [0,∞), we have τ(x) = ax+ b ∈ p for all x > c. In the latter case, we say that τ maps p ′ to
p with degree a and write τ(p ′) = p and dτ(p ′) = a (note that a finite section of p ′ may map to
Γ\p).

Let τ : Γ ′ → Γ be a morphism of tropical curves. A model for τ is a pair of models
(G ′, g ′, ` ′,m ′) and (G, g, `,m) for Γ ′ and Γ , respectively, and a morphism ϕ : G ′ → G of metric
graphs such that m ◦ |ϕ| = τ ◦m ′.

Given a morphism τ : Γ ′ → Γ of tropical curves, we construct a model for it as follows.
Let (G ′, g ′, ` ′,m ′) and (G, g, `,m) be models for Γ ′ and Γ , respectively. Subdivide G ′ so that
m ′(V(G ′)) contains every point of Γ ′ at which τ changes slope; by definition there are finitely
many such points. Then, further subdivide G ′ and G so that τ(m ′(V(G ′))) = m(V(G)) and
τ−1(m(V(G))) = m ′(V(G ′)), in other words so that vertices map to vertices. We then have a
well-defined morphism of graphs ϕ : G ′ → G. Furthermore, on the geometric realizations of
the resulting models the map τ is linear with integer slope on each edge and each leg, and we
set the degree of ϕ to be equal to this slope.

Given a model ϕ : G ′ → G of a morphism τ : Γ ′ → Γ of tropical curves, we can produce
another model by adding a simple vertex to G to split an edge or a leg, and correspondingly
splitting all the preimages. Conversely, any morphism τ : Γ ′ → Γ to a tropical curve Γ with
χ(Γ) < 0 has a unique minimal model ϕmin : G ′min,τ → Gmin,τ with the property that every
simple vertex v ∈ V(Gmin,τ) has at least one preimage that is not simple.

Definition 2.8. Let Γ be a tropical curve. An elementary tropical modification Γ is a tropical curve
obtained by attaching an edge of arbitrary length to a point of Γ , and setting g(x) = 0 for all
points of the new edge. A tropical modification Γ ′ of Γ is a tropical curve obtained by a finite
sequence of elementary tropical modifications of Γ , in other words by attaching finitely many
trees of finite size.
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Given a tropical curve Γ with χ(Γ) < 0, there is a unique stable tropical curve Γst, called
the stabilization of Γ , such that Γ is a tropical modification of Γst. In terms of the underlying
graphs, a model for Γst can be obtained by taking the stabilization of any model of Γ . We note
that Γst is naturally a subset of Γ (the inclusion map is a morphism of tropical curves, but not a
harmonic morphism), and the legs of Γ are in natural bijection with the legs of Γst.

Remark 2.9. Our definition of tropical modification agrees in spirit, though not in fact, with
Def. 2.12 in [ABBR15b], where an elementary tropical modification consists in adding an
infinite edge, i.e. a leg, to a metric graph. We distinguish between legs and extremal edges
because we interpret the former as marked points on the curve. This distinction will prove to
be important when we talk about ramification. Specifically, the absence of a vertex at the end
of a leg means that tropical curve with legs has more unramified covers (see below) than a
combinatorially identical curve with extremal edges instead of legs.

2.3 Harmonic morphisms and ramification

Definition 2.10. Let G ′ and G be graphs. A harmonic morphism ϕ : G ′ → G is a morphism
of graphs together with a weighting dϕ : X(G ′) → Z≥0, called the degree of ϕ, such that the
following properties are satisfied:

• If e ′ = {h ′1, h
′
2} is an edge then dϕ(h ′1) = dϕ(h

′
2). We call this number the degree of ϕ

along e ′ and denote it dϕ(e ′).

• If h ′ ∈ H(G ′), then dϕ(h ′) = 0 if and only if ϕ(h ′) is a vertex.

• For every vertex v ′ ∈ V(G ′) and for every tangent direction h ∈ Tϕ(v ′)G we have

dϕ(v
′) =

∑
h ′∈Tv ′G ′,
ϕ(h ′)=h

dϕ(h
′). (3)

In particular, this sum does not depend on the choice of h.

A harmonic morphism of weighted graphs is a harmonic morphism of the underlying
graphs, and a harmonic morphism of metric graphs is a harmonic morphism of the underlying
graphs satisfying condition (2) at every edge of the source. Given a morphism τ : Γ ′ → Γ of
tropical curves, the slope of τ locally defines the degree, and we say that τ is harmonic if it has
a harmonic model.

Remark 2.11. Unless ϕ(v ′) is an isolated vertex, the degree of a harmonic morphism ϕ : G ′ →
G at a vertex v ′ ∈ V(G ′) can be recovered from the degrees along the edges and legs.

Given a harmonic morphism ϕ : G ′ → G of graphs and a vertex v ∈ V(G), the sum

dϕ(v) =
∑

v ′∈V(G ′),
ϕ(v ′)=v

dϕ(v
′)

is called the degree of ϕ at v. It is easy to check that dϕ(v) is constant along any connected
component of G. In particular, if G is connected, we call this number the degree of ϕ and
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denote it deg(ϕ), note that for any v ∈ V(G), e ∈ E(G) or p ∈ L(G) we have

deg(ϕ) =
∑

v ′∈V(G ′),
ϕ(v ′)=v

dϕ(v
′) =

∑
e ′∈E(G ′),
ϕ(e ′)=e

dϕ(e
′) =

∑
p ′∈L(G ′),
ϕ(p ′)=p

dϕ(p
′).

We also observe that if G is connected, then any harmonic morphism ϕ : G ′ → G of positive
degree is necessarily surjective, and in particular val(v ′) ≥ val(ϕ(v ′)) for any v ′ ∈ V(G ′).

We say that a harmonic morphism ϕ : G ′ → G is finite if dϕ(h ′) > 0 for each h ′ ∈ H(G ′),
in this case ϕ does not contract any edges or legs and is surjective if G is connected. A finite
harmonic morphism ϕ : G ′ → G induces maps on the tangent spaces dϕv ′ : Tv ′G ′ → Tϕ(v ′)G

for all v ′ ∈ V(G ′).

Remark 2.12. Let ϕ : G ′ → G be a finite harmonic morphism of graphs. Given a length
function ` on G, there is a unique length function ` ′ on G ′ such that ϕ is a harmonic morphism
of the corresponding metric graphs. Indeed, given an edge e ′ ∈ E(G ′), we set ` ′(e ′) =

` (ϕ(e ′)) /dϕ(e
′).

Definition 2.13. Let ϕ : G ′ → G be a finite harmonic morphism of weighted graphs. The
ramification degree Ramϕ(v

′) of ϕ at a vertex v ′ ∈ V(G ′) is equal to

Ramϕ(v
′) = dϕ(v

′)χ(ϕ(v ′)) − χ(v ′). (4)

We say that ϕ is effective if Ramϕ(v
′) ≥ 0 for all v ′ ∈ V(G ′) and unramified if Ramϕ(v

′) = 0 for
all v ′ ∈ V(G ′), and we remark again that there is no vertex at the end of a leg. The condition
Ramϕ(v

′) = 0 is called the Riemann–Hurwitz condition at v ′. The ramification degree Ramϕ is
the sum of the ramification degrees at the vertices of G ′:

Ram(ϕ) =
∑

v ′∈V(G ′)

Ramϕ(v
′). (5)

A finite harmonic morphism of tropical curves is called effective or unramified if it has an
effective or unramified model, respectively.

If ϕ : G ′ → G is a finite harmonic morphism of connected graphs, adding the local
ramification degrees we obtain the global Riemann–Hurwitz formula

χ(G ′) = deg(ϕ)χ(G) − Ram(ϕ). (6)

For an unramified morphism ϕ, the global Riemann–Hurwitz formula is

χ(G ′) = deg(ϕ)χ(G). (7)

Remark 2.14. A simple calculation shows that our definition agrees with the standard one in
the literature (see, for example, Section 2.2 in [ABBR15b]):

Ramϕ(v
′) = dϕ(v

′)
(
2− 2g(ϕ(v ′))

)
−
(
2− 2g(v ′)

)
−
∑

h ′∈Tv ′G ′

(
dϕ(h

′) − 1
)
. (8)

We also note that unramified harmonic morphisms are called tropical admissible covers in [CMR16].
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Remark 2.15. Let G ′ be a graph, let G be a weighted graph, and let ϕ : G ′ → G be a finite
harmonic morphism. Then there exists at most one weighting of G ′ that makes ϕ an unramified
harmonic morphism. Indeed, for a vertex v ′ ∈ V(G ′), solving Ramϕ(v

′) = 0 for g(v ′) gives us

g(v ′) = 1− dϕ(v
′) + dϕ(v

′)g(ϕ(v ′)) +
dϕ(v

′)val(ϕ(v ′)) − val(v ′)
2

. (9)

If this number is a non-negative integer for all v ′ ∈ V(G ′), then it defines a weighting of G ′

with respect to which ϕ is unramified, otherwise there is no such weighting.

Remark 2.16. From a moduli-theoretic perspective, we are primarily interested in unramified
morphisms of metric graphs. However, Remark 2.12 shows that the metric structure does not
play an interesting role in the combinatorics of unramified morphisms. For this reason, to
simplify the exposition we formulate our results on unramified morphisms for graphs without
a metric, and reintroduce metric graphs only when will consider moduli spaces of tropical
curves.

If ϕ : G ′ → G is a harmonic morphism and F ′ is a subgraph of G ′, then the restriction
ϕ|F ′ : F

′ → ϕ(F ′) is not necessarily harmonic. It is, however, harmonic if F ′ = ϕ−1(F) for some
subgraph F of G. We can extend this morphism to a harmonic morphism ϕ|O(F ′) : O(F

′)→ O(F)

of the corresponding neighborhoods (see Def. 2.4). Note that degϕ|O(F ′) = degϕ|F ′ = degϕ.
Furthermore, if F ′0 is a connected component of F ′ that maps surjectively onto F, then we can
further restrict ϕ to harmonic morphisms ϕ|F ′0 : F

′
0 → F and ϕ|O(F ′0) : O(F

′
0)→ O(F).

Remark 2.17. We observe that restricting a harmonic morphism increases the ramification
degree at the remaining vertices, and hence the restriction of an effective morphism is effective.
Indeed, let ϕ : G ′ → G be a harmonic morphism, let v ∈ V(G), let h ∈ Tv(G), and let G0
be the subgraph of G obtained by removing h, if it is a leg, or the edge containing h. Let
G ′0 = ϕ−1(G0), let ϕ|G ′0 : G

′
0 → G0 be the restriction, let v ′ ∈ ϕ−1(v), and let d = dϕ(v

′). If h
is not one half of a loop at v, then χG0(v) = χG(v) + 1, while χG ′0(v

′) ≤ χG ′(v ′) + d, because h
has at most d preimages at v ′. Similarly, if h is half of a loop at v, then χG0(v) = χG(v) + 2 and
χG ′0(v

′) ≤ χG ′(v ′) + 2d, and in either case we have Ramϕ|G ′
0

(v ′) ≥ Ramϕ(v
′).

If ϕ : G ′ → G is unramified, F a connected subgraph of G, and F ′0 be a connected
component of ϕ−1(F), then the finite effective harmonic morphism ϕ|F ′0 : F ′0 → F ′ is not
necessarily unramified. However, the restriction to the neighborhoods ϕ|O(F ′0) : O(F

′
0)→ O(F)

is unramified, since the morphisms ϕ and ϕ|O(F ′0) are identical in the neighborhood of any
vertex v ′ ∈ V(F ′0).

Remark 2.18. We also observe that a finite effective harmonic morphism ϕ : G ′ → G can be
promoted to an unramified morphism by adding legs to G ′ and G. Indeed, let v ′ ∈ V(G ′) be a
vertex with Ramϕ(v

′) ≥ 1, let v = ϕ(v ′), and let ϕ−1(v) = {v ′1, . . . , v
′
m} with v1 = v ′. We modify

ϕ : G ′ → G as follows: attach a leg p to v, attach dϕ(v ′) − 1 legs to v ′, and attach dϕ(v ′i) legs to
v ′i for i = 2, . . . ,m. Map all these new legs of G ′ to p. Set the degree of ϕ to be 2 at one of the
legs attached to v ′, and 1 at all other legs. The resulting graph morphism is a finite effective
harmonic morphism having ramification index one less at v ′, and the same at all other vertices.
Performing this procedure Ram(ϕ) times, we obtain an unramified morphism.
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We now show that an unramified harmonic morphism of graphs induces an unramified
morphism of their stabilizations. Indeed, let ϕ : G ′ → G be unramified. For any v ′ ∈ V(G ′), the
condition Ramϕ(v

′) = 0 implies that χ(v ′) and χ(ϕ(v ′)) have the same sign, so G ′ is semistable
or stable if and only if G is. Furthermore, by (6) χ(G ′) < 0 if and only if χ(G) < 0.

If G is unstable, pick a vertex v ∈ V(G) with χ(v) = 1, and let e ∈ E(G) be the unique edge
rooted at v. Then χ(v ′) = 1 and dϕ(v ′) = 1 for all v ′ ∈ ϕ−1(v). Hence v has deg(ϕ) preimages
v ′i , each of which is a root vertex of a unique edge e ′i mapping to e, and dϕ(e ′i) = 1 for all i.
Let u ∈ V(G) be the other root vertex of e. For any u ′ ∈ ϕ−1(u), dϕ(u ′) of the e ′i are rooted at
u ′. Therefore, removing v, e, v ′i , and e ′i increases χ(u) by 1 and increases χ(u ′) by dϕ(u ′) for
each u ′ ∈ ϕ−1(u). This does not change the ramification degree at u ′. Proceeding in this way,
we simultaneously remove the unstable trees of G ′ and G and obtain an unramified morphism
ϕsst : G

′
sst → Gsst.

Similarly, it is clear that the image and preimage of a simple vertex is simple. Let v ∈ V(G)
be a simple vertex with tangent directions h1 and h2, and let v ′ ∈ ϕ−1(v), then v ′ is a
simple vertex with tangent directions h ′1 and h ′2 mapping with the same degree to h1 and h2,
respectively. We now remove v and join h1 to h2, and at the same time remove v ′ and join
h ′1 and h ′2 for each v ′ ∈ ϕ−1(v). We extend ϕ to the edges or legs obtained by this joining in
the obvious manner. Proceeding in this way, we remove the simple vertices of G ′ and G and
obtain an unramified morphism ϕst : G

′
st → Gst.

Definition 2.19. Let ϕ : G ′ → G be an unramified harmonic morphism of connected weighted
graphs, and suppose that χ(G ′) < 0 (equivalently, suppose that χ(G ′) < 0). The unramified
harmonic morphism ϕst : G

′
st → Gst constructed above is called the stabilization of ϕ.

We give a corresponding definition for unramified harmonic morphisms of tropical curves.
The stabilization of a tropical curve is naturally a subset, so we obtain the stabilization of an
unramified harmonic morphism by restriction.

Definition 2.20. Let τ : Γ ′ → Γ be an unramified harmonic morphism of tropical curves, and
suppose that χ(Γ ′) < 0 (equivalenly, suppose that χ(Γ ′) < 0). The stabilization τst : Γ ′st → Γst is
the unramified harmonic morphism obtained by restricting τ to Γ ′st.

The following simple observation will prove to be important.

Proposition 2.21. Let G be a connected weighted graph. There are finitely many unramified harmonic
morphisms ϕ : G ′ → G of a given degree d.

Proof. We give an explicit algorithm enumerating all such covers.

1. Pick a partition dv of d for each vertex v ∈ V(G), and similarly partitions of d for each
e ∈ E(G) and p ∈ L(G).

2. For each v ∈ V(G) we let ϕ−1(v) be a set indexed by the partition dv, and for v ′ ∈ ϕ−1(v)

define dϕ(v ′) to be the corresponding element of the partition. We similarly define the
edges and legs of G ′ and the degree of ϕ on them.

3. For each edge e ∈ E(G) rooted at a vertex v ∈ V(G), there are finitely many ways to
attach the elements of ϕ−1(e) to the elements of ϕ−1(v). We similarly attach the legs
L(G ′) to the vertices V(G ′).
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4. We have constructed a graph G ′ and a morphism ϕ : G ′ → G. We check whether G ′ is
connected.

5. If the harmonicity condition (3) holds at each v ′ ∈ V(G ′), then we have defined a
harmonic morphism ϕ : G ′ → G of degree d.

6. By Rem. 2.15, there is at most one way to assign genera g(v ′) for all v ′ ∈ V(G ′) so that ϕ
is unramified.

This algorithm is of course computationally intractable for large d. However, in Sec. 5.4 we
will give an explicit implementation of this algorithm in the hyperelliptic case d = 2.

2.4 Edge contraction

In this section, we recall the operation of edge contraction introduced (see Sec. 3.2.5 of [CMR16]
or Def. 2.22 in [Cap13]). For the convenience of the reader, we spell out the operation in detail.

Definition 2.22. Let (G, gG) be a weighted graph, and let S ⊂ E(G) be a set of edges of G. The
contraction of G along S is a weighted graph (G/S, gG/S) together with a non-finite morphism
cS : G→ G/S defined as follows.

Let F = [S] be the subgraph of G generated by S, and let F1, . . . , Fk be the connected
components of F. The graph G/S is obtained from G by contracting each Fi to a vertex vi of
genus g(Fi), and cS is the natural surjective map. Specifically:

• The set of vertices of G/S is V(G/S) = V(G)\V(F)∪{v1, . . . , vm}. We define the contraction
map cS on V(S) and the weighting gG/S by

cs(v) =

{
vi if v ∈ V(Fi),
v if v ∈ V(G\F),

and

gG/S(v) =

{
g(Fi) if v = vi,

gG(v) if v ∈ V(G)\V(F).

• The set of half-edges of G/S is H(G/S) = H(G)\H(F). We define the contraction map cS
on H(G) by

c(h) =

{
vi if h ∈ H(Fi),
h if h ∈ H(G)\S.

• We define the root map on G/S as rG/S = cS ◦ rG, and the involution ιG/S by restricting
ιG to H(G/S).

The contraction cS establishes a bijection between the half-edges of G/S and the half-edges of
G that are not in S. Hence there are bijections between E(G)\S and E(G/S), and between L(G)
and L(G/S).
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If S = S1 t S2 is a subset of edges of E(G), then S2 is naturally a subset of edges of E(G/S1),
and the contraction map G → G/S factors as G → G/S1 → (G/S1)/S2 = G/S. Hence any
contraction is a composition of edge contractions, which we describe explicitly. Let e ∈ E(G) be
an edge. The contraction G/e of G along e is obtained from G as follows:

• If e is a loop at v ∈ V(G), then delete e and increase the genus of v by 1.

• If e has distinct endpoints u and v, then delete e and identify u and v to a new vertex of
genus g(u) + g(v).

We can also define edge contractions in an invariant way as follows.

Definition 2.23. Let (G ′, g ′) and (G, g) be weighted graphs. A contraction c : (G ′, g ′)→ (G, g)

is a graph morphism satisfying the following properties:

• For each half-edge h ∈ H(G), the preimage c−1(h) ∈ H(G ′) consists of one element.

• For each p ′ ∈ L(G ′) we have c(p ′) ∈ L(G), in other words c does not contract any legs.

• For each vertex v ∈ V(G), the weighted graph c−1(v) is connected with genus g(v).

It is an exercise to check that a contraction according to Def. 2.23 is a composition of a
contraction along a subset of edges (using Def. 2.22) and an isomorphism of weighted graphs.

We can also simultaneously contract the target and source of an unramified harmonic
morphism along a subset of edges of the target and its preimage in the source. This definition
is implicitly used in Proposition 19 in [CMR16], and the lemma that follows is a restatement
of this result. We provide a proof for the sake of completeness, to illustrate the convenience of
using the Euler characteristic, and because we will later require a converse result (see Lem. 5.4).

Definition 2.24. Let ϕ : G ′ → G be an unramified harmonic morphism of weighted graphs,
and let S ⊂ E(G) be a subset of edges of G. Let S ′ = ϕ−1(S). We define a harmonic morphism,
called the contraction ϕS : G ′/S ′ → G/S of ϕ along S, as follows.

Let F ′ = [S ′] and F = [S] be the subgraphs of G ′ and G generated by S ′ and S, respectively.
To simplify notation we assume that F is connected, and denote the connected components of
F ′ by F ′1, . . . , F

′
m.

• The set of half-edges of G ′/S ′ is H(G ′/S ′) = H(G ′)\H(F ′), and for h ′ ∈ H(G ′/S ′) we
define ϕS(h ′) = cS(ϕ(h ′)) with degree dϕS(h

′) = dϕ(h
′).

• The set of vertices of G ′/S ′ is V(G ′/S ′) = V(G ′)\V(F ′) ∪ {v ′1, . . . , v
′
m}, where each v ′i

corresponds to a connected component F ′i of F ′. For v ′ ∈ V(G ′)\V(F ′) we define
ϕS(v

′) = cS(ϕ(v
′)) with degree dϕS(v

′) = dϕ(v
′). Since F is connected, ϕ maps F ′i

onto F, and moreover the restriction ϕ|F ′i : F
′
i → F is a harmonic morphism (not necessar-

ily unramified). We define ϕS(v ′i) = v, where v is the vertex of G/S corresponding to F,
with degree dϕS(v

′
i) = degϕ|F ′i .

For arbitrary S we define the contraction of ϕ by composing the contractions along the
connected components of [S]. As with contractions of graphs, contractions of covers can be
factored as compositions of contractions along disjoint subsets of edges.
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The following is an example of an edge contraction of an unramified harmonic morphism
ϕ : G ′ → G along a single edge e ∈ E(G). The morphism ϕ : G ′ → G is the right column
(only the neighborhoods of the contracted subgraphs are shown), the contracted edge and its
preimages in G ′ are bold, and the contracted morphism is the left column. The edges and
half-edges of the sources are marked by degree.

e

2
3
2
3

4
1
3
2

2

1

1

3

2

2

3

3
1

4
1
3
2

Lemma 2.25. Let ϕ : G ′ → G be an unramified harmonic morphism of weighted graphs, and let
S ⊂ E(G). Then the contraction ϕS : G ′/S ′ → G/S of ϕ along S is an unramified harmonic morphism.

Proof. We again assume that S is connected, and use the notation of Def. 2.24. The map ϕS
does not contract any half-edges, so it is sufficient to check that it satisfies the harmonicity
condition (3) and RamϕS(v

′) = 0 at every vertex v ′ of G ′/S ′. In the neighborhood of a vertex
v ′ ∈ V(G ′)\V(F ′), the map ϕS is identical to ϕ, hence it is harmonic and unramified, so it
remains to check the vertices v ′i .

We consider the neighborhoods O(F) and O(F ′i) and the restriction ϕi : O(F ′i) → O(F) of
ϕ to O(F ′i). We observe that χ(v) = χ(O(F)) and χ(v ′i) = χ(O(F

′
i)). Now let h ∈ H(G/S) be a

half-edge rooted at v, it corresponds to a leg h ∈ L(O(F)) rooted at some vertex u ∈ V(O(F)).
Similarly, a half-edge h ′ ∈ H(G ′/S ′) rooted at v ′i and mapping to h corresponds to a leg
h ′ ∈ H(O(F ′i)) rooted at some vertex u ′ ∈ V(O(F ′i)) and mapping to u. Therefore,∑

h ′∈Tv ′
i
(G ′/S ′),

ϕS(h
′)=h

dϕS(h
′) =

∑
u ′∈V(O(F ′i)),
ϕ(u ′)=u

∑
h ′∈Tu ′ F̃ ′i ,
ϕ(h ′)=h

dϕ(h
′)

=
∑

u ′∈V(O(F ′i)),
ϕ(u ′)=u

dϕ(u
′) = degϕi = dϕS(v

′
i).

Hence ϕS is harmonic at v ′i . Similarly

χ(v ′i) = χ(O(F
′
i))

=
∑

u ′∈V(O(F ′i))

χ(u ′)

=
∑

u ′∈V(O(F ′i))

dϕ(u
′)χ(ϕ(u ′))

=
∑
u∈V(F)

χ(u)
∑

u ′∈V(O(F ′i)),
ϕ(u ′)=u

dϕ(u
′)

=
∑

u∈V(O(F))

χ(u)degϕi

= χ(F̃)degϕ|F ′i = dϕS(v
′
i)χ(v

′
i),
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therefore ϕS is unramified.

We will later see in Lem. 5.4 that edge contractions of unramified harmonic morphisms
can be (non-uniquely) reversed: given G and S as above, and given an unramified harmonic
morphism ϕ with target G/S, there exists an unramified harmonic morphism to G whose
contraction is ϕ.

2.5 Divisors and rational functions

Let Γ be a tropical curve. A divisor D on Γ is a finite formal sum D =
∑n
i=1 aixi over points

xi of Γ , with integer coefficients. We write Div(Γ) for the group of divisors on Γ . The degree
function deg : Div(Γ) → Z given by deg(D) =

∑n
i=1 ai defines a natural grading on Div(Γ),

and we denote the set of degree d divisors by Divd(Γ).

Definition 2.26. Let τ : Γ ′ → Γ be a finite harmonic morphism of tropical curves. The
ramification divisor of τ is the divisor ∑

x ′∈Γ ′
Ramτ(x

′)x ′.

It is clear that a finite harmonic morphism τ : Γ ′ → Γ of tropical curves is effective if and
only if the ramification divisor is effective, and unramified if and only if the ramification
divisor is zero.

Let Γ be a tropical curve. A rational function f on Γ is a continuous, piecewise-linear function
f : Γ → R with integer slopes. Given a point x ∈ Γ and a tangent direction h ∈ TxΓ , there is a
well-defined outgoing slope slopef(h) ∈ Z. We require rational functions to be eventually linear
on every leg. In other words, if p ⊂ Γ is a leg, identified with [0,∞), then there exist a ∈ Z,
b ∈ R, and c ∈ R≥0 such that for x ∈ p we have f(x) = ax + b for x ≥ c; the number a is
called the slope of f along p and is denoted slopef(p). We write Rat(Γ) for the abelian group of
rational functions on Γ . The divisor div(f) associated to a rational function f is given by

div(f) =
∑
x∈Γ

ordf(x)x ,

where
ordf(x) =

∑
h∈TxΓ

slopef(h)

is the sum of the outgoing slopes of f at x. We note that this sum is finite, because f is
eventually linear on each leg and because a graph with no legs is compact. The association
f 7→ div(f) defines a natural homomorphism div : Rat(Γ) → Div(Γ) whose image is easily
checked to lie in Div0(Γ).

Definition 2.27. We say that a rational function F ∈ Rat(Γ) is harmonic if div(F) = 0.

Remark 2.28. It is easy to see that a rational function f on a tropical curve Γ is the same thing
as a morphism from Γ to R, where we view the latter as a tropical curve. This morphism is
harmonic if and only if the function is harmonic, and finite if and only if the function has
nonzero slope everywhere.
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Recall that for a tropical curve Γ we denote Γ◦ the tropical curve obtained from Γ by
removing the legs, and c : Γ → Γ◦ the natural retraction map.

Proposition 2.29. Let (Γ, p1, . . . , pn) be a tropical curve with n marked legs p1, . . . , pn, and let
a1, . . . , an ∈ Z be nonzero integers such that a1 + · · ·+ an = 0. There is a one-to-one correspondence
between harmonic functions f : Γ → R having outgoing slope −ai on the leg pi for i = 1, . . . , n, and
rational functions f◦ on Γ◦ such that div(f◦) =

∑n
i=1 aic(pi).

Proof. Let f ∈ Rat(Γ) be a harmonic function whose slope at the leg pi is −ai for all i = 1, . . . n,
and let f◦ be the restriction of f to Γ◦. It is clear that div(f◦) =

∑n
i=1 aic(pi), since, by the

harmonicity of f, at any point x ∈ Γ 0 the sum of the outgoing slopes of f along the finite
edges of Γ is equal to

∑
c(pi)=x

ai. Conversely, given a rational function f◦ ∈ Rat(Γ◦) with
div(f◦) =

∑n
i=1 aic(pi), we uniquely extend f◦ to a harmonic function f on Γ with outgoing

slope −ai along the leg pi.

Proposition 2.30. Let τ : Γ ′ → Γ be a harmonic morphism of tropical curves, and let f : Γ → R a
harmonic function. Then the pullback τ∗f : Γ ′ → R, given by τ∗f(x ′) = f(τ(x ′)) for x ′ ∈ Γ ′, is also
harmonic. Moreover, for a leg p ′i of Γ ′ mapping to the leg pi of Γ we have

slopeτ∗f(p
′
i) = dτ(p

′
i) · slopef(pi).

Proof. Let f ∈ Rat(Γ). For a half-edge h ′ of Γ ′ rooted at a vertex v ′, the outgoing slope of τ∗f is
given by the chain rule:

slopeτ∗f(h
′) = dτ(h

′) · slopef(h),

where h = τ(h ′). Therefore, at every point x ′ of Γ ′ we have∑
h ′∈Tx ′Γ ′,
τ(h ′)=h

slopeτ∗f(h
′) =

∑
h ′∈Tx ′Γ ′,
τ(h ′)=h

dτ(h
′) · slopef(h) = dτ(x

′) · slopef(h).

Adding this over all tangent directions h ∈ TxΓ , where x = τ(x ′), we have

ordτ∗f(x ′) = dτ(x ′) · ordf(x).

If f is harmonic, then ordf(x) = 0, hence ordτ∗f(x ′) = 0 and therefore τ∗f is also harmonic.

Given a tropical curve Γ with a leg p, it is easy to see that any point x ∈ p is linearly
equivalent to the root point c(p), via the function with slope 1 on the segment connecting c(p)
and x and slope zero everywhere else. Hence we can talk about divisors containing legs of Γ ,
and linear equivalence between them.

Corollary 2.31 ([ABBR15b] Prop. 4.2). Let Γ be a tropical curve, and let τ : Γ → ∆ be a harmonic
morphism to a metric tree. Then the preimages of two legs are linearly equivalent.

Proof. Pick two legs 0 and ∞ on ∆. It is clear that there exists a harmonic function f on
∆ (unique up to an additive constant) having slopes +1 and −1 on 0 and ∞, respectively,
and slope 0 along all other legs. By Prop. 2.30, the pullback τ∗f is harmonic on Γ , having
slope dτ(p) along any leg p ⊂ Γ mapping to 0, slope −dτ along any leg mapping to ∞, and
slope zero along all other legs. Hence, by Prop. 2.29, the restriction of −τ∗F to Γ◦ defines an
equivalence between the divisors

∑
p:τ(p)=0 dτ(p)c(p) and

∑
p:τ(p)=∞ dτ(p)c(p).
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3 Tropical moduli spaces

In this section we recall and refine the definition of generalized cone complexes, which provide us
with a natural language to study tropical moduli spaces. We review two well-known examples:
the moduli space of tropical curves Mtrop

g,n and the moduli space of tropical admissible covers
H

trop
g→h,d(µ). We also introduce a moduli space Divtropg,d+,d−

parametrizing triples consisting of a
stable tropical curve Γ of genus g and a pair of effective divisors D+ and D− on Γ of degrees
d+ and d−, respectively.

3.1 Generalized cone complexes

In [KKMSD73, Definition II.1.5] the authors introduce the notion of a (rational polyhedral)
cone complex in order to describe the combinatorial structure of toroidal embeddings without
self-intersecting strata. In [ACP15] (see Section 2.6) this notion is generalized to generalized
(rational polyhedral) cone complexes that can also deal with self-intersecting toroidal strata. In
this section, we recall this definition, informed by the stack-theoretic framework developed in
[CCUW17].

A rational polyhedral cone with integral structure (σ,M), or simply a cone, is a topological space
σ together with a finitely generated group M of continuous real-valued functions on σ, such
that the induced map σ→ Hom(M,R) is a homeomorphism onto a strictly convex polyhedral
cone in NR := Hom(M,R) which is rational with respect to the lattice N := Hom(M,Z). A
morphism f : (M ′, σ ′)→ (M,σ) of cones is a continuous map f : σ ′ → σ such that the pullback
of any function in M is in M ′.

Given a cone (σ,M), the dual monoid Sσ consists of those functions in M that are non-
negative on σ. We recover σ from Sσ as the space of monoid homomorphisms

σ = Hom(Sσ,R≥0).

A morphism f : (σ ′,M ′)→ (σ,M) of cones induces a homomorphism f# : M→M ′ that sends
Sσ to Sσ ′ . A face of σ is a subset τ along which some function u ∈ Sσ vanishes. The dual
monoid Sτ is naturally given by the localization

(Sσ)u =
{
s− ku ∈M

∣∣s ∈ Sσ, k ∈ Z
}

of Sσ along the submonoid generated by u.
We say that a cone is sharp if the monoid Sσ has no non-trivial units or, in other words, if

σ spans NR. Write S∗σ for the subgroup of units in Sσ. To any cone (σ,M) we may associate
a sharp cone (σ,M) by setting M = M/S∗σ; a morphism f : (σ ′,M ′) → (σ,M) induces a
morphism f : (σ ′,M

′
)→ (σ,M), since f#(S∗σ ′) ⊆ S∗σ. A morphism (σ ′,M ′)→ (σ,M) is said to

be a face map if it induces an isomorphism (σ ′,M
′
)
'−→ (τ,M) onto a face τ of σ. Notice that, in

particular, all automorphisms of a cone (σ,M) are face morphisms.
From now on we work only with sharp cones and the term cone will uniformly refer to a

sharp cone. We denote the category of sharp cones by RPC and write RPCf for the subcategory
of face maps.

Definition 3.1. A generalized rational polyhedral cone complex Σ, or simply a generalized cone
complex, is a topological space |Σ| together with a presentation as a colimit of a diagram
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σ : I −→ RPCf of face maps parameterized by an index category I, subject to the following
axioms:

(i) For every face τ of σi in the diagram, there is a morphism j→ i in I such that σj = τ and
the induced map σj → σi is the sharp face inclusion of τ into σ.

(ii) If u : j → i and v : : k → i are morphisms in I such that σv : σk → σi factors through a
face map σk → σj, then there is a unique morphism w : k → j such that u ◦w = v and
σw : σk → σj is the given face map.

The avid reader will notice that the two axioms in Definition 3.1 precisely say that the
functor σ : I→ RPCf defines a category fibered in groupoids. If we take the colimit not in the
category of topological spaces but rather in a 2-categorical sense, we obtain the notion of a
cone stack, as introduced in [CCUW17, Section 2], an analogue Deligne-Mumford stacks over
RPC. If I is the category associated to a poset, there is no 2-categorical structure and we obtain
a so-called cone space, an analogue of an algebraic spaces over RPC. Finally, if I is a poset and,
in (i), every face τ of σi is the image of exactly one morphism σj → σi, then the colimit of Σ is
a (rational polyhedral) cone complex in the sense of [KKMSD73].

In [ACP15, Section 2.6] a generalized cone complex is defined to be a topological space |Σ|

together with a presentation as an arbitrary diagram of face maps; our definition is equivalent
to theirs, since every diagram of face maps generates a unique minimal diagram fulfilling
axioms (i) and (ii) so that its colimit does not change.

A morphism f : Σ → Σ ′ of generalized cone complexes is a continuous map f : |Σ| → |Σ ′|

such that for every cone σi ′ in Σ ′ there is a cone σi in Σ such that f|σi factors through
σi ′ → Σ ′. Being a morphism of generalized cone complexes is a weaker condition than being a
morphism of categories fibered in groupoids over RPCf: for example, given a finite group G
acting trivially on a cone σ, the quotient σ/G is naturally isomorphic to σ.

The moduli spaces Mtrop
g,n , Divtropg,d+,d−

, and H
trop
g→h,d(µ), which we introduce below, are

generalized cone complexes. We require an analogue of the notion of a subvariety for cone
complexes. The image of a morphism of generalized cone complexes is not necessarily a
subcomplex, since cones are not required to map isomorphically to cones. For example, the
image of the map R≥0 → R2≥0 defined by x 7→ (x, x) is not a subcomplex of R2≥0. This motivates
the following definition.

Definition 3.2. Let Σ be a generalized cone complex. A subset X ⊂ |Σ| is called semilinear if,
for every cone σ → Σ in Σ the preimage X ∩ σ of X in σ is a union of finitely many subsets,
each of which is given by finitely many homogeneous Z-linear non-strict inequalities in the
coordinates on σ.

Given a semilinear subset X ⊂ |Σ|, we can (non-canonically) choose a suitable subdivision
of Σ ′ of Σ such that X is a subcomplex of Σ ′. In other words, a semilinear subset of Σ is a
subcomplex of a subdivision of Σ. In a slight abuse of notation, we simply write X ⊆ Σ for a
semilinear subset of a generalized cone complex Σ.

Proposition 3.3. Let f : Σ → Σ be a locally finite morphism of generalized cone complexes and let
X ⊂ Σ be a semilinear subset. Then f(X) ⊂ Σ is also a semilinear subset.
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Proof. This follows using standard linear algebra. Notice, however, that the condition of f
being locally finite is necessary to ensure that the intersection of f(X) with every cone is given
by finitely many inequalities.

We can also impose a stronger requirement on semilinear subsets.

Definition 3.4. A semilinear subset X ⊂ Σ is called linear if, for every cone σ → Σ, the
intersection X∩ σ is the union of the finitely many subsets, each of which is the quotient of the
intersection of an Aut(σ/Σ)-invariant linear subspace of Span(σ) with σ.

An equality is equivalent to a pair of non-strict inequalities, hence a linear subset is
semilinear. We note that the image of a linear subset is not necessarily linear. For example, the
subset {(x, y, z) : x = y+ z} ⊂ R3≥0 is linear, but its image under the map R3≥0 → R2≥0 sending
(x, y, z) to (x, y) is the subset {(x, y) : x ≥ y} ⊂ R2≥0, which is only semilinear.

3.2 Tropical curves and their moduli

We now recall the construction of the moduli space Mtrop
g,n of stable tropical curves of genus g

with n marked points, essentially following the treatment in [ACP15]. Let G be a graph with
n legs. A marking of G is a bijection

p : {1, . . . , n}→ L(G),

where we denote pi = p(i). A weighted marked graph is a weighted graph with a choice of
marking. A marking of a tropical curve Γ is a marking of a model of Γ ; this does not depend on
the choice of the model. In this section we recall from [ACP15, Section 4] how to construct a
generalized cone complex Mtrop

g,n that acts as a coarse moduli space of stable tropical curves of
genus g with n marked legs.

Let g and n be non-negative integers such that 2g− 2+ n > 0. Denote by Ig,n the category
whose objects are stable weighted marked graphs (G, gG, p) of genus g with n marked points.
The set of morphisms between two such graphs (G ′, g ′G ′ , p

′) and (G, gG, p) is the set of
contractions (see Def. 2.23) ϕ : (G ′, g ′G ′ , p

′)→ (G, gG, p) that preserve the markings, in other
words such that ϕ ◦ p ′ = p. Passing to the skeleton category, we can drop the marking and
simply denote the legs of any object in Ig,n by p1, . . . , pn, where pi = p(i). Furthermore, given
a morphism ϕ : G ′ → G in Ig,n, we can identify G with the contraction of G ′ along a subset of
edges S ′ ⊂ E(G ′), so any such map induces an injective map ϕ−1 : E(G)→ E(G ′).

The initial objects in Ig,n are weighted marked graphs G having g(v) = 0 and val(v) = 3
for all v ∈ V(G); we call such graphs maximally degenerate. The unique terminal object in Ig,n is
the graph •g,n consisting of a genus g vertex with n legs and no edges.

Given G ∈ Ig,n, we denote
M
trop
G := (R≥0)E(G) .

This cone is naturally a parameter space for pairs (Γ, φ) consisting of a stable tropical curve Γ
and a weighted edge contraction φ : G→ Gmin(Γ), where Gmin(Γ) denotes the minimal model
of Γ . The tropical curve Γ is hereby identified with (l(e))e∈E(Γ) ∈M

trop
G .

A morphism φ : (G, gG, p)→ (G ′, gG ′ , p
′) in Ig,n induces a face morphism M

trop
G →M

trop
G ′ :

• An automorphism of (G, gG, p) induces an automorphism of the cone Mtrop
G given by

permuting the entries according to the permutation of E(G).
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• A weighted edge contraction φ : (G, gG, p)→ (G ′, gG ′ , p
′) contracting the edges S ⊆ E(G)

induces a face map Mtrop
G ′ ↪→M

trop
G onto the face that is given by setting the S-coordinates

in Mtrop
G = RE(G)≥0 equal to zero.

Proposition 3.5. The contravariant functor (G, gG, p) 7→M
trop
G defines a generalized cone complex

M
trop
g,n that functions as a parameter space of stable tropical curves of genus g with n marked legs.

Proof. This easy verification of the axioms is left to the avid reader.

Definition 3.6. The generalized cone complex Mtrop
g,n is called the (coarse) moduli space of stable

tropical curves of genus g with n marked points.

Remark 3.7. In our paper, we restrict our attention to Mtrop
g,n and do not study the compactified

moduli space Mtrop
g,n (as introduced in [Cap13, Section 3.3]), which is obtained by allowing

edge lengths to be infinite.

We now recall the tropical forgetful maps (as e.g. introduced in [ACP15, Section 8]).

Definition 3.8. We define the map π :Mtrop
g,n+1 →M

trop
g,n forgetting the leg pn+1 in the following

way. Let Γ ∈ Mtrop
g,n+1 be a metric graph with combinatorial type G = C(Γ), and let v =

rG(pn+1) ∈ V(G) be the vertex at which the leg pn+1 is attached. If χ(v) = −1, then the
condition 2g−2+n > 0 implies that g(v) = 0 and val(v) = 3, and that the other two half-edges
at v either correspond to two distinct edges, or to an edge and a leg.

• Suppose that g(v) = 0, val(v) = 3, and that v is the endpoint of two edges e1, e2 ∈ E(G)
whose other endpoints are v1 and v2, respectively. We let π(G) be the graph obtained
from G by removing pn+1, v, e1, and e2, and attaching an edge e at v1 and v2, and we let
π(Γ) be the metric graph obtained from π(G) by setting lπ(G)(e) = lG(e1) + lG(e2), and
setting all other edge lengths to be the same as in Γ .

• Suppose that g(v) = 0, val(v) = 3, and that v is the endpoint of an edge e ∈ E(G) whose
other endpoint is u, and a leg pi. We let π(G) be the graph obtained from G by removing
pi, pn+1, v, and e and reattaching pi to u, and we let π(Γ) be the metric graph whose
combinatorial type is π(G), and with the same edge lengths as Γ .

• If χ(v) ≤ −2, we let π(Γ) be the metric graph whose combinatorial type is G\{pn+1}, and
with the same edge lengths as Γ .

3.3 Moduli of tropical divisors

Let g ≥ 1, and let d+, d− ≥ 0. In this section, we construct a generalized cone complex
Divtropg,d+,d−

that parameterizes triples (Γ,D+, D−) consisting of a stable tropical curve Γ of genus
g and two effective divisors D+ ∈ Div+d+(Γ) and D− ∈ Div+

d−
(Γ) on Γ . The idea is that, for a

fixed tropical curve Γ , the locus where the support of D+ and D− are disjoint parameterizes
divisors of degree d = d+−d− that can be written as a difference D+−D− without cancellation.

In this section only, we consider divisors on weighted graphs. For a weighted graph G, we
define Div(G) to be the free abelian group on V(G). It is clear that a divisor D on a weighted
graph G induces a divisor on any tropical curve of which G is a model, and conversely any
divisor on a tropical curve can be obtained in this way for an appropriate choice of model.

We consider the category Ig,(d+,d−). Its objects are triples (G,D+, D−) of the following form.
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• G is a semistable weighted graph of genus g.

• D+ ∈ Divd+(G) and D− ∈ Divd−(G) are effective divisors of degrees d+ and d−, respec-
tively, such that the union of the supports of D+ and D− contains all simple vertices of
G.

The morphisms in the category Ig,(d+,d−) are generated by the following:

• For every object (G,D+, D−), an isomorphism ϕ : G → G ′ induces a corresponding
isomorphism ϕ : (G,D+, D−)→ (G ′, D ′+, D

′
−), where D ′± = ϕ∗D±.

• For every object (G,D+, D−) and every edge set S ⊂ E(G), the edge contraction ϕS : G→
G/S induces a morphism ϕS : (G,D+, D−)→ (G/S,DS+, D

S
−), where DS± = [ϕS]∗(D±).

We remark that automorphisms and weighted edge contractions are (non-finite) harmonic
morphisms of degree one, so for a divisor D =

∑
aivi its pushforward under such a ϕ is

simply ϕ∗D =
∑
aiϕ(vi).

Given an object (G,D+, D−) in Ig,(d+,d−), we denote by Div(G,D+,D−) the cone

Div(G,D+,D−) = (R≥0)E(G) . (10)

This association defines a contravariant functor Ig,(d+,d−) → RPCf as follows:

• Given an object (G,D+, D−) and an isomorphism ϕ : G→ G ′, there is a corresponding
isomorphism of cones from Div(G ′,D ′+,D

′
−) to Div(G,D+,D−) that permutes the entries

according to the permutation ϕ : E(G)→ E(G ′) of the edges.

• Given an object (G,D+, D−) and an edge contraction ϕS : G → G/S, there is a face
morphism from Div(G/S,DS+,D

S
−) isomorphically onto the face of Div(G,D+,D−) obtained by

setting all coordinates corresponding to S ⊂ E(G) to zero.

Given a stable tropical curve Γ with a pair of divisors D+ and D−, there is a unique minimal
semistable model GΓ,D+,D− of Γ whose vertex set contains the supports of D+ and D−. It is
clear that the points of Div(G,D+,D−) parameterize triples (Γ,D+, D−) consisting of a tropical
curve Γ and two effective divisors D+, D− of degree d+, d− respectively, together with a choice
of isomorphism of GΓ,D+,D− with G.

Proposition 3.9. The association (G,D+, D−) 7→ Div(G,D+,D−) defines a generalized cone complex
Divtropg,d+,d−

: Ig,d+,d− → RPCf whose geometric realization parameterizes stable tropical curves Γ of
genus g together with two effective divisors D+ of degree d+ and D− of degree d− on Γ .

Proof. We again leave this straightforward verification of the two axioms to the avid reader.

Definition 3.10. The generalized cone complex Divtropg,d+,d−
is called the moduli space of tropical

divisors of zero degree d+ and polar degree d−, or short of degree (d+, d−).

Let ε = 1
d++d−

. Denote by Mtrop

g,εd++d−
the moduli space of weighted stable tropical curves

of type (g, εd++d−) introduced in [Uli15b] and [CHMR16], a tropical analogue of Hassett’s
moduli spaces of weighted stable curves in [Has03]. The space Mtrop

g,εd++d−
has the structure
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of a generalized cone complex and parameterizes tropical curves of genus g with d+ + d−
marked legs that are stable of type εd++d− , i.e. that fulfill

2g(v) − 2+ |v|ε > 0

for all vertices of the minimal model G of Γ . Here |v|ε denotes the weighted valence of v in Γ
given by

|v|ε = |v|E + ε · |v|L
where |v|E and |v|L denote respectively the number of bounded edges and the number of legs
emanating from v. Note, that, given an εd++d−-stable curve (Γ, p1, . . . , pd++d−), the underlying
tropical curve Γ◦ obtained by removing the legs is already stable.

Proposition 3.11. There is a natural morphism M
trop

g,εd++d−
→ Divtropg,d+,d−

given by

(
Γ, p1, . . . , pd++d−

)
7−→ (

Γ,

d+∑
i=1

pi,

d−∑
i=1

pd++i

)
that induces an isomorphism

M
trop

g,εd++d−

/
(Sd+ × Sd−)

'−−→ Divtropg,d+,d−
.

Proof. A graph G with d++d− legs is stable of type εd++d− if and only if the graph G◦ obtained
by removing the legs is semistable. So the association defines a morphism of generalized
cone complexes that is surjective, since we may replace every divisor D± at a vertex v by
D±(v)-many legs, making the resulting legged graph stable of type εd++d− . This morphism is
not injective: the extra datum in Mtrop

g,εd++d−
is precisely the full order on the marked points,

which disappears when we take a quotient by Sd+ × Sd− .

3.4 Moduli of tropical admissible covers

In this section, we recall the construction (see [CMR16]) of the moduli space Htrop
g→h,d(µ) of

tropical admissible covers. We fix integers g, h ≥ 0 and d > 0, and a vector of partitions
µ = (µ1, . . . , µr) of d. We write |µi| for the length of the partition µi. We consider the category
Ig→h,d(µ) defined as follows.

The objects of Ig→h,d(µ) are morphisms ϕ : G ′ → G of the following kind:

• G ′ is a stable weighted graph of genus g with marked legs p ′ij for i = 1, . . . , r and
j = 1, . . . , |µi|, and additional marked legs q ′ij for i = 1, . . . , s and j = 1, . . . , d− 1.

• G is a stable weighted graph of genus h with marked legs pi for i = 1, . . . , r, and
additional marked legs qi for i = 1, . . . , s.

• ϕ is an unramified harmonic morphism of degree d, mapping the legs p ′ij to pi with
dilation profile µi, and the legs q ′ij to qi with dilation profile (2, 1, . . . , 1).

Since ϕ is unramified, we have χ(G ′) = dχ(G), which means that s is uniquely determined by
the following formula:

s = 2g− 2dh+ 2d− 2+

r∑
i=1

|µi|− rd (11)

The morphisms in Ig→h,d(µ) are generated by the following:
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• Isomorphisms of ϕ : G ′ → G, i.e. pairs of isomorphisms γ ′ : G ′ '−→ G̃ ′ and γ : G '−→ G̃

such that ϕ ◦ γ ′ = γ ◦ϕ.

• Weighted edge contractions ϕS : G ′/S ′ → G/S induced by the weighted contraction of
the base graph G along a subset S ⊂ E(G) of its edges (see Def. 2.24 for details; it is clear
that for any ϕ : G ′ → G the multiplicity profiles of any such contracted ϕS along the legs
are the same).

Given an object ϕ : G ′ → G, we define a rational polyhedral cone

Mϕ = RE(G)≥0

that parametrizes unramified harmonic morphisms of tropical curves which on the underlying
graphs agrees with a weighed edge contraction of ϕ, where the set of contracted edges
S ⊂ E(G) is the set of edges whose corresponding coordinate is zero. The association ϕ 7→Mϕ

defines a functor Ig→h,d(µ)→ RPCf as follows:

• An automorphism of ϕ induces a permutation of the entries of Mϕ = RE(H)≥0 .

• A weighted edge contraction induces the embedding of the face of Mϕ = RE(H)≥0 corre-
sponding to the contracted edges.

Proposition 3.12. The association ϕ 7→ Mϕ defines a generalized cone complex Htropg→h,d(µ) that
parameterizes unramified harmonic morphisms [Γ ′ → Γ ] from a genus g stable tropical curve Γ ′ to a
genus h stable tropical curve Γ ; having dilation profile µi on marked legs p ′ij ⊂ Γ ′ over marked legs
pi ⊂ Γ (for i = 1, . . . , r and j = 1, . . . , |µi|) and dilation profile (2, 1, . . . , 1) on marked legs q ′ij ⊂ Γ ′

over marked legs qi (for i = 1, . . . , s and j = 1, . . . , d− 1).

Proof. Both axioms follow from the construction of weighted edge contractions of unramified
harmonic morphisms in Definition 2.24 and Lemma 2.25. We leave the details to the avid
reader.

Let N =
∑r
i=1 |µ

i| + (d − 1)s be the number of marked legs on the source graph. As
explained in [CMR16], there are two tautological morphisms associated with the moduli space
H
trop
g→h,d(µ):
• The source map Htropg→h,d(µ)→M

trop
g,N that sends

[
Γ ′ → Γ

]
to the tropical curve Γ ′ with its

N marked legs.

• The target map H
trop
g→h,d(µ)→M

trop
h,r+s that sends

[
Γ ′ → Γ

]
to the tropical curve Γ with its

r+ s marked legs.

It is readily verified that the source and target maps are morphisms of generalized cone
complexes.

4 The locus of principal divisors

In this section, we define the locus of principal divisors PDtrop
g,a ⊂M

trop
g,n of a given multiplicity

profile a ∈ Zn and prove that it is a generalized cone complex of the same dimension as Mtrop
g,n .
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Definition 4.1. Let n ≥ 2, and let a = (a1, . . . , an) ∈ Zn be nonzero integers such that
a1 + · · · + an = 0. The locus of principal divisors PDtrop

g,a ⊆ M
trop
g,n is the set of stable marked

tropical curves (Γ, p1, . . . , pn) such that there is a harmonic function f on Γ whose (outgoing)
slope along the leg pi is −ai.

Note that by Proposition 2.29 a harmonic function f with slopes −ai along pi exists if and
only if the divisor

∑n
i=1 aic(pi) on Γ◦ is principal. So Definition 4.1 is equivalent to Definition

1.1 in the introduction. Whenever there is no chance of confusion we drop the superscript and
simply write PDg,a instead of PDtrop

g,a for the locus of principal divisors.
Denote the analytification of the algebraic double ramification locusDRg,a by DRang,a. By the

slope formula [BPR13, Theorem 5.14] the restriction of the tropicalization map tropg,n :M
an
g,n −→

M
trop
g,n to DRang,a naturally factors through PDg,a ⊆Mtrop

g,n . This also follows from Corollary 2.31
and Proposition 6.13 below.

Theorem 4.2. The locus of principal divisors PDg,a is a semilinear subset in Mtrop
g,n that contains

maximal cones of every codimension between zero and g.

Theorem 4.2 implies Theorem B (i) from the introduction. Its proof follows the ideas
laid out in the proof of [LU17, Theorem 1.2] describing the structure of the tropical Hodge
bundle, which in turn is based on the polyhedral description of tropical linear series in
[GK08, HMY12, MZ08].

Proof of Theorem 4.2. Let G be a stable weighted graph of genus g with n marked legs. We
need to show that Mtrop

G ∩ PDg,a is an intersection of the cone Mtrop
G = RE(G)≥0 with a union of

finitely many linear subspaces of RE(G).
Denote by Sa ⊆ ZH(G) the affine subspace of possible choices of slopes s = (sh)h∈H(G) of a

rational function on G having outgoing slopes ai on the legs pi. In other words, the numbers
sh satisfy sh = −sι(h) for every edge e = {h, ι(h)} of G, spi = −ai for all legs pi, and the
harmonicity condition ∑

r(h)=v

sh = 0

at every vertex v ∈ V(G). The slopes on the legs are fixed, so we think of Sa as a subset of
ZE(G).

Let ` : E(G) → R≥0 be an edge length function on G, where we allow edge lengths to
be zero by contracting the corresponding edges. A tuple (sh)h∈H(G) ∈ Sa is represented by
a function on (G, `) if and only if the edge lengths satisfy a set of constraints. Denote by
C1(G,Z) = ZE(G) the group of simplicial 1-chains, and by H1(G,Z) ⊆ C1(G,Z) the group of
1-cycles on G. The metric ` defines an edge length pairing

〈., .〉` : C1(G,Z)× C1(G,Z) −→ R

by the formula 〈 ∑
e∈E(G)

ae · e,
∑
e∈E(G)

be · e
〉
`
=
∑
e∈E(G)

aebe · `(e) .

For a given s ∈ Sa, denote by Es ⊂ RE(G)≥0 the set of edge lengths on G (zero edge lengths are
allowed) such that there exists a rational function on (G, `) having slopes s. It is equal to

Es =
{
` ∈ RE(G)≥0

∣∣∣〈s, γ〉` = 0 for all γ ∈ H1(G,Z)
}
.
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The set Es ∈ RE(G)≥0 is a rational polyhedral cone, since it is the intersection of Mtrop
G = RE(G)≥0

with finitely many Z-linear subspaces (corresponding to a Z-basis of H1(G,Z)). Moreover, we
have that

M
trop
G ∩ PDg,a =

⋃
s∈SG

Es .

Therefore, we need to show that Es is equal to {0} ∈ RE(G)≥0 for all but finitely many s ∈ SG. In

fact, it is enough to show that Es is a subset of a proper face of RE(G)≥0 for all but finitely many
s, since these faces correspond to MG ′ with a G ′ a weighted edge contraction of G.

We proceed by induction on the genus g of G. If g = 0, the graph G is a tree with zero
vertex weights, and the slopes along the legs uniquely determine the slopes along the finite
edges, in other words the entire vector s. So, in this case we have

M
trop
G ∩ PDg,a = Es .

for a unique vector s, proving the claim.
Suppose now that g > 0. We first claim that we can assume that G is trivalent, with all

vertex weights equal to zero, and that every vertex has at most one leg rooted at it. Indeed, if
G does not satisfy the above properties, we can perform one of the following operations to it:

• Replace a vertex v of positive weight g(v) with a genus zero vertex having g(v) loops.

• Split a vertex of valence val(v) > 3 into two vertices of valence at least 3, connected by
an edge.

• If there is a trivalent vertex having two legs and an edge, replace the two legs and the
edge with a single leg, and the slopes with the sum of the slopes (in other words, there
is a secondary induction on n).

Repeating this operation, we obtain a trivalent graph having each leg rooted at a unique vertex.
By harmonicity, a choice of slopes on the original graph uniquely determines a choice of slopes
on the resulting graph, so it is sufficient to prove our theorem for graphs satisfying the above
conditions.

We claim that, whenever Es is not a subset of a proper face of RE(G)≥0 , there is a leg p rooted
at a vertex v such that the outgoing slopes along the two edges e1 and e2 rooted at v have the
same sign. Indeed, suppose that that there is no leg with this property. Orient each edge of G
so that s has positive slope with respect to the orientation. At every vertex v ∈ V(G) with a leg,
one of the two edges is incoming, while the other is outgoing. Therefore the edge orientation
on G descends to an edge orientation on the graph obtained from G by removing the legs.
By the harmonicity condition on G there no vertex with all negative or all positive incoming
slopes, hence this orientation is not acyclic. Choose a positively oriented path γ, then any
rational function with slopes given by s has positive slopes along γ. The only way that this is
possible is if the lengths of all edges in γ are zero, so Es is a subset of a proper face of RE(G)≥0 .

Now let pi be a leg rooted at a vertex v, so that the outgoing slopes se and se ′ of the two
edges e and e ′ rooted at v have the same sign. We now consider the graph G̃ obtained from
G as follows: remove p and v, and replace e and e ′ with two new legs l and l ′. There are
two possibilities. First, it may happen that G̃ has two connected components, each of which
necessarily has genus greater than zero, and therefore less than g. The slopes se and se ′ on the
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legs l and l ′ are then uniquely determined by the slopes of the other legs on each component,
since the slope of all legs on a single component add to zero. By induction, there are finitely
many ways to choose the slope vectors on each component, and hence on all of G. On the
other hand, if G̃ is connected, then it has genus g− 1. The slopes se and se ′ along the legs l
and l have the same sign and add up to ai, so there are finitely many possibilities for them.
We now apply induction for each such choice and complete the proof.

The statement concerning the existence of a cone of every codimension between 0 and g
follows from the following two examples.

Example 4.3 (Bridges). Let G◦ be a maximally degenerate stable graph of genus g with no legs
and a bridge edge e. Split e into n+ 1 bridges at vertices v1, . . . , vn, labelled left to right, and
let G be the stable graph formed by attaching legs p1, . . . , pn at v1, . . . , vn. For any choice of
edge length ` : E(G)→ R>0, there exists a harmonic function f on Γ = (G, `) such that its slope
along the leg li is −ai. Indeed, f is constant on the part of Γ to the left of v1, has slope a1 on
the edge connecting v1 and v2, slope a1 + a2 on the edge connecting v2 and v3, and so on, and
then again constant to the right of vn. Therefore the whole cell Mtrop

G = RE(G)≥0 of dimension
3g − 3 + n is part of the principal divisor locus. This shows that PDg,a always has a cell of
codimension zero.

Example 4.4 (Chain of loops). Let G◦ be a chain of g loops, and let 1 ≤ k ≤ g. Pick a bridge
e ∈ E(G◦) and edges f1, . . . , fk ∈ E(G◦) lying on distinct loops. Similarly to the construction
above, let G be the stable graph obtained by attaching k legs p1, . . . , pk to vertices on f1, . . . , fk,
and the remaining legs pk+1, . . . , pn to vertices on e. Then the metric graph (G, `) lies in PDg,a
if and only if the lengths of the subdivisions of fi satisfy k independent constraints, while
the legs on the bridge impose no constraints. This shows that PDg,a has a maximal cone of
codimension k in Mtrop

g,n for all 1 ≤ k ≤ g.

5 The tropical double ramification locus

As we have noted in the introduction, a basic problem in tropical geometry is that "tropical
curves have too many principal divisors". Specifically, we saw in Theorem 4.2 that, given a
multiplicity profile a = (a1, . . . , an) with a1+ · · ·+an = 0, the locus PDg,a ⊂Mtrop

g,n of principal
divisors of profile a has cells of top dimension 3g− 3+ n. On the other hand, by a toroidal
version of the Bieri–Groves theorem [Uli15a, Theorem 1.1], the tropicalization of the double
ramification locus DRg,a ⊂Mg,n is a semilinear subset of Mtrop

g,n of dimension at most 2g− 3.
For this reason, tropical linear series are typically much larger in dimension than expected, and,
in particular, have larger dimensions than the tropicalizations of the corresponding algebraic
linear series.

In this section we provide a solution to this problem by defining a tropical double ramification
locus DRg,a ⊂Mtrop

g,n , which contains (and is, in general, strictly greater than) the tropicalization
of DRg,a, but has the correct dimension. A marked curve (X, p1, . . . , pn) ∈Mg,n lies in DRg,a
if it admits a map X → P1 with prescribed ramification profiles over 0 and ∞, so we define
DRg,a as the set of tropical marked curves admitting a morphism to a tree ∆ with specified
degrees over two legs 0 and∞ of ∆. Borrowing an idea from Cools and Draisma [CD18], we
require that the morphism be finite and effective, and we allow tropical modifications on the
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source curve Γ ; this turns out to be necessary to produce a locus of the correct dimension.
We then prove Theorem 5.2, stating that the tropical double ramification locus DRg,a is a
semilinear subset of PDg,a ⊂Mtrop

g,n of dimension 2g− 3+ n, which is the main result of our
paper.

Definition 5.1. Let g ≥ 1, n ≥ 2, and let a = (a1, . . . , an) ∈ Zn be an n-tuple of nonzero
integers such that a1 + · · ·+ an = 0. We define the double ramification locus DRg,a ⊂Mtrop

g,n to be
the set of stable tropical curves (Γ, p1, . . . , pn) such that there exists a finite effective morphism
τ : Γ ′ → ∆ of the following kind:

1. Γ ′ is a tropical modification of Γ .

2. ∆ is a marked tree of genus 0 having two legs 0 and∞.

3. τ acts in the following way on the legs:

τ(pi) =

{
0, if ai > 0∞, if ai < 0

and dτ(pi) = |ai|. (12)

We call the integer d =
∑
i:ai>0

ai = −
∑
i:ai<0

ai the degree of the double ramification locus

DRg,a; it is equal to the degree of any such map τ.

The following Theorem 5.2 is Theorem B (b) from the introduction.

Theorem 5.2. Suppose that d ≥ 2. The double ramification locus DRg,a is a semilinear subset of
PDtrop

g,a of dimension 2g− 3+ n.

Before we proceed with the proof, we explain why all of the conditions in the theorem are
necessary.

1. If we drop the requirement that the morphism τ be finite, then we will obtain the
principal divisor locus PDg,a. Indeed, a piecewise-linear function f : Γ → R can be
viewed as a harmonic, not necessarily finite, morphism to the tree R, and condition 12
then implies that the divisor

∑
aipi is principal. Hence the condition that τ be finite is

necessary to obtain a locus of dimension 2g− 3+ n.

2. A somewhat more subtle observation is that if we relax the requirement that τ be
effective, then the resulting double ramification locus will also be of dimension greater
than 2g − 3 + n. As an example, let Γ be one of the stable genus three hyperelliptic
curves mentioned in Remark 5.23, and let ϕ : Γ → ∆ be the hyperelliptic morphism.
Attaching two legs p1 and p2 to Γ at any two points in the interior bold subgraph, and
corresponding legs 0 and ∞ to ∆, we obtain a cone in the double ramification locus
DR3,(2,−2) of dimension 8, in other words, of codimension zero in Mtrop

3,2 .

3. We also observe that if Γ ′ ⊃ Γ is a tropical modification of Γ and τ : Γ ′ → ∆ is a
finite effective harmonic morphism as above, then the restriction of τ to Γ need not be a
harmonic morphism. Therefore, the locus inMtrop

g,n consisting of stable curves Γ admitting
a morphism τ : Γ → ∆ of the type described above is strictly smaller than DRg,a, and
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will not in general contain the tropicalization of the algebraic double ramification locus.
For example, let g = 1 and a = (2, 1,−2,−1), and consider the following morphism
τ : Γ ′ → ∆ (τ has degree 2 on the thick edges and degree 1 elsewhere):

p1
p3
p2
p4

0∞
Removing the unstable edge of Γ ′ would violate the harmonicity condition at its root
vertex. The morphism τ has degree three, and all Hurwitz numbers of degree three
are nonzero, hence τ is algebraizable and the stabilization of Γ is contained in the
tropicalization of the algebraic double ramification locus.

We will later see in Proposition 5.26 that for d = 2, any morphism τ : Γ ′ → ∆ naturally
restricts to the stabilization Γ of Γ ′.

The proof of Theorem 5.2 is given in Section 5.2. First, we prove Lemma 5.4 on reversing
edge contractions, this is the content of Section 5.1. The proof itself consists of two parts. First,
we give an algorithm, explicit but in general computationally intractable, for describing DRg,a.
The algorithm also establishes the dimension bound dimDRg,a ≤ 2g− 3+ n. The second part
of the proof consists of constructing a cone of DRg,a of the maximal dimension 2g − 3 + n.
This construction uses the inductive procedure of grafting a tree and is borrowed from [CD18].

We conclude with a conjecture on the topological structure of the double ramification locus.

Conjecture 5.3. The double ramification locus DRg,a is connected in codimension one and all of its
maximal cones have dimension 2g− 3+ n.

This conjecture is supported by two extended examples: in Section 5.3 we compute
DR1,(a,−a) ⊂ M

trop
1,2 for all a ≥ 2, and in Section 5.4 we compute the hyperelliptic loci

DRg,(2,−2) ⊂M
trop
g,2 , DR2,(2,−1,−1) ⊂M

trop
g,3 , and DR2,(1,1,−1,−1) ⊂M

trop
g,4 .

5.1 A lemma on reversing edge contractions

Before proving the main theorem, we first prove a result about reversing contractions of
unramified harmonic morphisms (see Definition 2.24).

Lemma 5.4. Let ϕ : G ′ → G be an unramified harmonic morphism of weighted graphs, let K be a
weighted graph, and let S ⊂ E(K) be a subset of edges of K such that K/S is isomorphic to G. Then
there exists a weighted graph K ′ and an unramified harmonic morphism ψ : K ′ → K such that the
contraction ψS of ψ along S is isomorphic to ϕ.

Remark 5.5. If the morphism ϕ is realizable, then the result follows from the properness
of the target map on the moduli space of admissible covers. Indeed, let f : X ′ → X be an
admissible cover of stable algebraic curves over a non-Archimedean field K, such that G ′ and
G are respectively the dual graphs of X ′ and X and the induced map on the dual graphs is
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ϕ. Further, assume that the graph K is the dual graph of a stable algebraic curve Y obtained
by degenerating X, with the edges S corresponding to the nodes of Y that are smoothed in
X. By properness, the admissible cover f extends to an admissible cover g : Y ′ → Y, and it is
clear that ϕ is the contraction of the tropicalization ψ : K ′ → K of g along S. In other words,
we can interpret the above result as saying that "the target map of the moduli space of tropical
unramified covers is proper".

Proof. To avoid talking about isomorphisms, we identify K/S with G. Factoring into edge
contractions, we can assume that S consists of a single edge e ∈ E(K).

We first consider the simpler case when e is a loop at a vertex v ∈ V(K), in which case V(K)
is identified with V(G). Let ϕ−1(v) = {v ′1, . . . , v

′
m}, then gG(v) = gK(v) + 1 ≥ 1, hence for each i

Ramϕ(v
′
i) = 0 implies that

gG ′(v
′
i) = dϕ(v

′
i)(gG(v) − 1) +

1

2
dϕ(v

′
i)val(v) − val(v ′i) + 1 ≥ 1.

We therefore construct K ′ from G ′ by attaching a loop e ′i at each vertex v ′i and reducing its
genus by one. We define ψ by ψ(e ′i) = e with dψ(e ′i) = dϕ(v

′
i), . We note that χK(v) = χG(v)

and χK ′(v ′i) = χG ′(v
′
i), therefore ψ is unramified at v ′i . It follows that ψ is unramified, and it is

clear that ψS is isomorphic to ϕ.
We now suppose that e = {ev, ew} is rooted at distinct vertices v,w ∈ V(K). Let u ∈ V(G)

be the vertex of genus g(v) + g(w) obtained from merging v and w. We construct K ′ from
G ′ in the following way. Pick a vertex u ′ ∈ V(G ′) such that ϕ(u ′) = u. We replace u ′ with
an appropriate bipartite subgraph L ′ that ψ maps to the subgraph L = {v,w, e} ⊂ K. The
subgraph L ′ consists of vertices v ′i and w ′j mapping to v and w, respectively, and a number of
edges that are all mapped to e. Every half-edge h ∈ TuG = (TvK∪TwK)\{ev, ew} is rooted either
at v or at w, and we correspondingly need to root the half-edges ϕ−1(h) either at the v ′i or at
the w ′j , in such a way that the harmonicity condition (3) is satisfied. Finally, we need to define
the local degrees of ψ at the edges of L ′ so that harmonicity is preserved, and assign genera
on V(L ′) by formula (9), making sure that these are non-negative integers. This operation is
performed independently at each u ′ ∈ ϕ−1(u).

To construct the subgraph L ′ for a given u ′ ∈ ϕ−1(u), we look at the degrees and genera
of the vertices u ′, v, and w. It turns out that there are three possibilities. We may attempt to
choose L ′ to be the simplest subgraph possible, consisting of two vertices v ′ and w ′ connected
by a single edge e ′ (case (1) below). The harmonicity condition is then trivially satisfied,
but the genera g(v ′) and g(w ′) given by equation (9) may be half-integers, and one of them,
say g(v ′), may be negative. The former case can be resolved by adding a second edge to L ′

(case (2)), but the latter (case (3)) requires splitting v ′ into several vertices of genus zero, each
connected by a single edge to w ′.

For each of the three cases, we give an example. In all three cases, the vertex u has genus
one and valency four, while g(v) = 0, g(w) = 1, and val(v) = val(w) = 3:

f1

f2

h1

h2
1
u

f1

f2 v

e h1

h2
1
w

We label each edge and half-edge of O(u ′) and O(L ′) by its degree if it is greater than one. The
contracted edge e and the corresponding contracted edges in L ′ are shown thick for emphasis.

35



Consider the tangent spaces at v, w and u:

TvK = {ev, f1, . . . , fm}, TwK = {ew, h1, . . . , hn}, and TuG = {f1, . . . , fm, h1, . . . , hn}.

Denote
d = dϕ(u

′), k = #(ϕ−1{f1, . . . , fm}), and l = #(ϕ−1{h1, . . . , hn}).

The condition that ϕ is unramified at u ′ reads

2− 2g(u ′) − k− l = χ(u ′) = dχ(u) = d
[
χ(v) + χ(w)

]
, (13)

which we rewrite as [
k− 1+ dχ(v)

]
+
[
l− 1+ dχ(w)

]
= −2g(u ′).

The two integers k− 1+ dχ(v) and l− 1+ dχ(w) sum to a non-positive even integer, so there
are three possibilities:

1. k − 1 + dχ(v) = −2x, l − 1 + dχ(w) = −2y for some non-negative integers x and y. In
this case we let L ′ be the graph consisting of two vertices v ′ and w ′ of genera g(v ′) = x
and g(w ′) = y, joined by one edge e ′. We glue L ′ to K in place of u by attaching the
half-edges ϕ−1{f1, . . . , fm} to v ′ and the ϕ−1{h1, . . . , hn} to w ′, and define ψ on L ′ by

ψ(v ′) = v, ψ(w ′) = w, ψ(e ′) = e, and dψ(v
′) = dψ(w

′) = dψ(e
′) = d.

We have χ(v ′) = 1 − 2x − k and χ(w ′) = 1 − 2y − l, so by the definition of x and y the
morphism ψ is unramified at v ′ and w ′.

An example of this case, with k = 2, l = 4, and d = 3, is given below.

f1

f2

h1

h2
1
u

f1

f2 v

e h1

h2
1
w

3

3

2

2
4

u ′

3

3

3
1

v ′

2

2
3

w ′

2. k− 1+ dχ(v) = −2x− 1, l− 1+ dχ(w) = −2y− 1 for some non-negative integers x and
y. This case is similar to the one above. We let L ′ be the graph consisting of two vertices
v ′ and w ′ of genera g(v ′) = x and g(w ′) = y, joined by two edges e ′1 and e ′2. We attach
the half-edges ϕ−1{f1, . . . , fm} to v ′ and the ϕ−1{h1, . . . , hn} to w ′, and define ψ on L ′ by

ψ(v ′) = v, ψ(w ′) = w, ψ(e ′i) = e, dψ(v
′) = dψ(w

′) = d, dψ(e
′
i) = di,

where d1 and d2 are any two positive integers summing to d. We have χ(v ′) = −2x− k

and χ(w ′) = −2y− l, and again ψ is unramified at v ′ and w ′ by the definition of x and y.

An example of this case, with k = 3, l = 3, and d = 3, is given below.
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f1

f2

h1

h2
1
u

f1

f2 v

e h1

h2
1
w

2

3

2

3
4

u ′ v ′

2

3

2 2

3
3

w ′

3. One of the integers k−1+dχ(v) and l−1+dχ(w) is positive, so we assume without loss
of generality that t = k+ dχ(v) ≥ 2. In this case we cannot replace u ′ with a one-edge
graph L ′ as in cases (1 )and (2) above, as that would require assigning a negative genus
to the vertex v ′ over v. Instead, the vertex v will have t preimages, and we need to split
up the preimages of the fi among them in a way that satisfies the harmonicity condition
(3). This requires a statement about partitions and their refinements (Lemma 5.6 below).

First, a few more definitions. Let d be a positive integer. A partition a = (a1, . . . , ak)

of d is a multiset of positive integers adding up to d. The length |a| of a is k. Let
a = (a1, . . . , ak) and b = (b1, . . . , bl) be two partitions of d. A refinement of a by b is a
map of multisets r : b→ a such that for each i, r−1(ai) is a partition of ai.

Denote
{f ′i1, . . . , f

′
iki

} = ϕ−1(fi), aip = dϕ(f
′
ip), and i = 1, . . . ,m,

then by the harmonicity condition (3) each ai = (ai1, . . . , aiki) is a partition of d, while
(k1, . . . , km) is a partition of k. We now observe that ki ≤ d for all i, hence k ≤ dm and
therefore t ≤ d(1− 2g(v)). This implies that g(v) = 0, g(w) = g(u) and

t = k− d(m− 1) = k1 + · · ·+ km − d(m− 1).

Therefore by Lemma 5.6 there exists a partition c = (c1, . . . , ct) of d and refinements ri :
ai → c such that for each j = 1, . . . , t, the total length of the partitions r−11 (cj), . . . , r

−1
m (cj)

is equal to cj(m− 1) + 1.

We now let L ′ be the graph having t vertices v ′1, . . . , v
′
t of genus 0, each connected by a

single edge e ′i to a vertex w ′ of genus g(u ′). For each i = 1, . . . ,m, attach those of the
e ′ip to v ′j whose corresponding degrees are in r−1i (cj), and attach all ϕ−1(h1, . . . , hn) to
w ′. We define ψ on L ′ by

ψ(v ′j) = v, ψ(w ′) = w, ψ(e ′i) = e, dψ(v
′
j) = dψ(e

′
j) = cj, dψ(w

′) = d.

For each j = 1, . . . , t, we have

g(v ′j) = 0, val(v ′j) =
m∑
i=1

|r−1i (cj)|+ 1 = cj(m− 1) + 2, and χ(v ′j) = cj(1−m),

while g(v) = 0 and χ(v) = 1−m. Hence the morphism ψ is unramified at v ′j . Similarly,

g(w ′) = g(u ′), val(w ′) = l+ t, and χ(w ′) = 2− 2g(u ′) − l− t

while g(w) = g(u) and χ(w) = 1− 2g(u) −n. Equation (13) and the definition of t imply
that ψ is unramified at w ′. This completes the proof.

An example is given below with k = 5, l = 3, and d = 3.
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f2
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h2
1
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2
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3
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u ′

2 v ′1
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2 2

3
3

w ′

Lemma 5.6. Let d be a positive integer, let a1 = (a11, . . . , a1k1), . . . , am = (am1, . . . , amkm) be an
m-tuple of partitions of d of lengths k1, . . . , km, and suppose that

t = k1 + · · ·+ km − d(m− 1) ≥ 1.

Then there is a partition c = (c1, . . . , ct) of d of length t and refinements ri : ai → c with the property
that, for each j = 1, . . . , t, the sum of the lengths of the partitions r−11 (cj), . . . , r

−1
n (cj) of cj is equal to

cj(d− 1) + 1.

Proof. We order each partition ai in an arbitrary way, and we visualize the entire m-tuple as
a rectangular wall of size d×m, with rows of horizontal blocks representing the partitions,
located on the xy-plane with the origin in the lower left corner. For example, if d = 6, m = 3,
a1 = (1, 2, 2, 1), a2 = (1, 1, 1, 2, 1) and a3 = (2, 1, 1, 1, 1), we obtain the following picture:

For each integer i = 0, . . . ,m, we define the function

F(i) = #
{

blocks lying to the left of the vertical line x = i
}
− i(m− 1).

In the example above, we have

F(0) = 0, F(1) = 0, F(2) = 0, F(3) = 1, F(4) = 0, F(5) = 1, F(6) = 2.

The function F satisfies the following properties:

F(0) = 0, F(d) = k1 + · · ·+ km − d(m− 1) = t, and 1−m ≤ F(i+ 1) − F(i) ≤ 1.

In other words, F changes from F(0) = 0 to F(d) = t and, at each step, either decreases, or
increases by at most 1. Furthermore, if F(i) − F(i− 1) = 1, then there are m more blocks to the
left of x = i than to the left of x = i− 1, meaning that the vertical line x = i does not bisect any
blocks.

By the pigeonhole principle, there is an increasing (not necessarily unique) sequence of
integers d1, . . . , dt = d such that

F(dj) = j and F(dj − 1) = j− 1.
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In the example above, we can choose d1 = 3 or d1 = 5. The vertical lines x = dj do not bisect
any blocks, and the number of blocks between x = dj−1 and x = dj is equal to

#
{

blocks between x = dj−1 and x = dj
}
= F(dj) − F(dj−1) + (dj − dj−1)(m− 1)

= (dj − dj−1)(m− 1) + 1.

It follows that cj = dj − dj−1 is the desired partition, and the refinement maps ri : ai → c send
the blocks in the i-th row between x = dj−1 and x = dj to cj.

5.2 Proof of Theorem 5.2

We are now ready to prove Theorem 5.2. By Corollary 2.31 we have a natural inclusion
DRtropg,a ⊆ PDtrop

g,a , so it is enough to show that DRg,a is a semilinear subset of Mtrop
g,n of

dimension 2g− 3+ n. The proof consists of two parts. First, we give an explicit algorithm for
computing DRg,a, which shows that it is a semilinear subset of Mtrop

g,n of dimension less than
or equal to 2g− 3+ n. The idea is that, given a finite effective harmonic morphism τ : Γ ′ → ∆

as above, we use Remark 2.18 and add enough legs to Γ ′ and ∆ to promote τ to an unramified
harmonic morphism τ̃ : Γ̃ → ∆̃ to a stable tree ∆̃ ∈ Mtrop

0,2g+n. We then enumerate all possible

stable trees ∆̃ and all unramified covers of ∆̃, and forget the additional legs to recover DRg,a.
This construction can be seen as a tropical analogue of classical dimension counts for gonality
loci.

Second, we inductively construct an explicit subset of DRg,a of dimension 2g− 3+ n. We
borrow an idea from [CD18], and indeed our theorem can be viewed as a generalization of
[CD18, Theorem 1].

Algorithm for constructing DRg,a. Let Γ ∈ DRg,a, and let τ : Γ ′ → ∆ be a finite effective
harmonic morphism, where (Γ ′)st = Γ , ∆ is a tree with two legs marked 0 and∞, and τ acts
on the legs according to (12). Equation (6) implies that

Ram(τ) = −χ(Γ ′) = 2g+ n− 2.

We now use Remark 2.18 and add legs to Γ ′ and ∆ to kill the ramification. Specifically, we
attach N = 2g + n − 2 legs q11, . . . , qN1 to Γ ′ at the support of the ramification divisor of τ,
then add N legs r1, . . . , rN to ∆ at the images of the ramification points, and finally N(d− 2)

additional legs qjk to Γ ′ at the remaining preimages of the attachment points of the rj, where
j = 1, . . . ,N and k = 2, . . . , d− 1. We denote the resulting curves by Γ̃ and ∆̃, and we extend
τ to the new legs by mapping qjk to rj, with degree 2 on the qj1 and degree 1 on the rest.
We then remove any remaining extremal edges from the source and target by passing to the
stabilization (see Definition 2.20). As a result, we obtain an unramified harmonic morphism
τ̃ : Γ̃ → ∆̃, where Γ̃ ∈Mtrop

g,n+N(d−1) and ∆̃ ∈Mtrop
0,2+N are stable curves. We consider the locus of

curves in Mtrop
g,n+N(d−1) that we obtain in this way:

Definition 5.7. Let g and n be such that 2g−2+n > 0, let a = (a1, . . . , an) ∈ Zn be an n-tuple
of nonzero integers such that a1 + · · · + an = 0, let d be the sum of the positive ai, and let
N = 2g + n − 2. We define D̃Rg,a ⊂ Mtrop

g,n+N(d−1) to be the locus of marked stable curves Γ̃

admitting an unramified harmonic morphism τ̃ : Γ̃ → ∆̃ of the following kind:
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1. Γ̃ is a stable tropical curve of genus g with n marked legs p1, . . . , pn and N(d − 1)

additional marked legs qjk, where 1 ≤ j ≤ N and 1 ≤ k ≤ d− 1.

2. ∆̃ ∈Mtrop
0,2+N is a stable tree with marked legs 0 and∞, and N additional marked legs rj,

where 1 ≤ j ≤ N.

3. τ̃ is an unramified harmonic morphism acting in the following way on the legs:

τ̃(pi) =

{
0, if ai > 0,∞, if ai < 0,

and dτ̃(pi) = |ai|

τ̃(qjk) = rj and dτ̃(qjk) =

{
2, if k = 1,

1, if k = 2, . . . , d− 1.

(14)

Let π :Mtrop
g,n+N(d−1) →M

trop
g,n be the map that forgets the additional marked legs qjk. We

claim that π(D̃Rg,a) = DRg,a. Indeed, the construction above shows that π(D̃Rg,a) ⊃ DRg,a,
since we can recover Γ from Γ̃ by removing the additional legs qjk and stabilizing. On the other
hand, suppose that τ̃ : Γ̃ → ∆̃ is an unramified harmonic morphism satisfying conditions (14).
Let Γ and ∆ be respectively Γ̃ and ∆̃ with the additional legs qjk and rj removed, and let
τ : Γ → ∆ be the restriction of τ̃ to Γ . Then by Remark 2.17 the morphism τ is finite and
effective, hence Γst lies in DRg,a and therefore π(D̃Rg,a) ⊂ DRg,a.

We now have an algorithm for constructing DRg,a = π(D̃Rg,a):

1. Enumerate all combinatorial types T̃ of tropical curves in Mtrop
0,2+N.

2. For each combinatorial type T̃ , use the algorithm of Proposition 2.21 to enumerate all
unramified harmonic morphisms ϕ̃ : G̃→ T̃ of graphs satisfying (14); there are finitely
many such morphisms.

3. By Remark 2.12, for each choice of metric on T̃ there is a unique choice of metric on
G̃ consistent with ϕ̃. We thus obtain a cone of D̃Rg,a for each unramified harmonic
morphism ϕ̃ : G̃→ T̃ constructed in Steps 1 and 2.

4. Apply the forgetful map to recover DRg,a = π(D̃Rg,a).

We observe that in Step 2, for any combinatorial type T̃ there does exist at least one unramified
harmonic morphism ϕ̃ : G̃→ T̃ satisfying (14). Indeed, the trivial graph •0,2+N is the contrac-
tion of T̃ along the set of its edges. The trivial morphism •g,n+N(d−1) → •0,2+N satisfying (14) is
an unramified harmonic morphism of degree d, and by Lemma 5.4 extends to an unramified
harmonic morphism ϕ̃ : G̃→ T̃ , which also satisfies (14). We note that in Step 1, it is sufficient
to enumerate all maximally degenerate combinatorial types in Mtrop

0,2g+n, since by Lemma 5.4

any unramified harmonic morphism ϕ̃ : G̃ → T̃ is an edge contraction of an unramified
harmonic morphism whose target is maximally degenerate.

We now finish the proof of the first part of the theorem. For each unramified harmonic
morphism ϕ̃ : G̃→ T̃ satisfying (14), the corresponding cone of D̃Rg,a has the same dimension
as Mtrop

T̃
⊂ Mtrop

0,2+N. Furthermore, the conditions on the metric on G̃ are Z-linear, hence the

set of metric graphs G̃ that we obtain this way (together with their edge contractions) is a
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linear subset of Mtrop
g,n+N(d−1), of dimension dimM

trop

T̃
. Taking the union of these subsets over

all combinatorial types T̃ in Mtrop
0,2+N and all unramified harmonic morphisms ϕ̃ : G̃→ T̃ , we

obtain that D̃Rg,a is a linear subset of Mtrop
g,n+N(d−1) of dimension N− 1 = 2g+ n− 3. Hence by

Proposition 3.3 the double ramification locus DRg,a = π(D̃Rg,a) is a semilinear subset of Mtrop
g,n

of dimension less than or equal to 2g+ n− 3.
If d ≥ 3, then the map π may have positive-dimensional fibers on D̃Rg,a (an example is

given in Remark 5.8). Therefore, we cannot yet conclude that DRg,a has dimension 2g− 3+ n.
However, we will see in Section 5.4 that π has finite fibers on D̃Rg,a when d = 2.

We remark that the moduli space Mtrop
g,n is equidimensional in the sense that its maximal

cones with respect to inclusion have the same dimension. In addition, Mtrop
g,n is connected

through codimension one. The locus D̃Rg,a inherits these properties from M
trop
g,2+N, however,

we cannot conclude the same about its projection DRg,a. We nevertheless believe that DRg,a is
also equidimensional and connected through codimension one.

A cell of top dimension. We now produce a cone of DRg,n of dimension 2g − 3 + n. We
first prove that dimDRg,a = 2g − 3 + n when n = 2d and a = (1, . . . , 1,−1, . . . ,−1) ∈ Z2d. If
d ≤ g/2+ 1, this follows directly from the results of Cools and Draisma [CD18]. Indeed, the
principal result of [CD18], rephrased in our language, is the following: the locus of curves
in Mtrop

g having a tropical modification that admits a finite effective harmonic morphism of
degree d to a metric tree has dimension min(2g+ 2d− 5, 3g− 3), which is equal to 2g+ 2d− 5
if d ≤ g/2+ 1. Given such a morphism τ : Γ → ∆, we attach two legs 0 and∞ to ∆ at arbitrary
points, and attach dτ(x) legs to Γ at every point x of τ−1({0,∞}). Extending τ to the legs with
degree one does not change the ramification degree, hence the curve Γ with the new legs lies
in DRg,a. The choice of the attaching points of 0 and∞ was arbitrary, hence

dimDRg,a = 2g+ 2d− 5+ 2 = 2g− 3+ n.

For d > g/2+1 we proceed by induction, using the procedure of grafting a tree (see Section 4.1
in [CD18]). Assume that dimDRg,a = 2g−3+n when n = 2d and a = (1, . . . , 1,−1, . . . ,−1) ∈
Z2d. Pick a curve Γ ∈ DRg,a and let τ : Γ ′ → ∆ be the corresponding morphism. Let p1, . . . , pd
and q1, . . . , qd be the legs of Γ ′ mapping to 0 and∞, respectively. Let

Ξ =
{
x ′ ∈ Γ ′

∣∣dϕ(x ′) = 1} ⊂ Γ ′
then Ξ is open and non-empty, since the degree function is upper semi-continuous on Γ ′

and since Ξ contains the legs of Γ ′. Pick three points x ′i ∈ Ξ and three positive lengths
li, for i = 1, 2, 3. Associated to this data, we construct a curve Γ̃ ∈ DRg+2,ã, where ã =

(1, . . . , 1,−1, . . . ,−1) ∈ Z2d+2, in the following steps.

1. Let ∆̃ be the tree obtained from ∆ by attaching a finite edge ei of length li to the point
xi = τ(x

′
i), for i = 1, 2, 3. We denote yi the free endpoint of ei.

2. Denote ϕ−1(xi) = {x ′i1, . . . , x
′
imi

}, so that x ′i1 = x ′i . Let Γ ′′ denote the graph obtained
from Γ ′ by attaching finite edges e ′ij of lengths li to the points x ′ik, where i = 1, 2, 3 and
j = 1, . . . , d, in such a way that e ′i1 is attached to x ′i and the number of edges e ′ij that are
attached to x ′ik is equal to dϕ(x ′ik). Denote y ′i the free endpoint of e ′i1.
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3. Let Γ̃ ′ be the union of Γ ′′ and a copy of ∆̃, where we glue y ′i ∈ Γ ′′ to yi ∈ ∆̃ for i = 1, 2, 3.
The curve Γ̃ ′ has genus g+ 2, 2d legs pj and qj, and two additional legs coming from ∆̃,
which we denote 0 ′ and∞ ′.

4. We define ϕ̃ : Γ̃ ′ → ∆̃ using ϕ on Γ ′ ⊂ Γ ′′ ⊂ Γ̃ ′, by sending the edges e ′ij ⊂ Γ ′′ to ei with
degree one, and as the identity on ∆̃.

It is easy to check that ϕ̃ is an unramified harmonic morphism of degree d+ 1, mapping
the legs pj and 0 ′ to 0 and the legs qj and ∞ ′ to ∞. Therefore we have constructed a curve
Γ̃ = (Γ̃ ′)st ∈ DRg+2,ã. We now count parameters. The curve Γ̃ depends on choosing three
points x ′i ∈ ∆ and three lengths li, so we have constructed a six-dimensional family of curves
Γ̃ ∈ DRg+2,ã for each Γ ∈ DRg,a. It follows that

dim DRg+2,ã = dim DRg,a+6 = 2g+ 2d− 3+ 6 = 2(g+ 2) + (2d+ 2) − 3,

which proves the induction step, because ã has 2d+ 2 entries.
To prove that dim DRg,a = 2g − 3 + n for any a = (a1, . . . , an), we proceed by induction

on max |ai|, the base case ai = ±1 having been established above. Let a ′ = (a1, . . . , an, b, c)

be a ramification profile with b and c both positive (or both negative, the argument is
identical), and suppose that we have established that dim DRg,a ′ = 2g − 1 + n. We claim
that dim DRg+1,a ′′ = 2g + n, where a ′′ = (a1, . . . , an, b + c). Indeed, pick a curve Γ ∈ DRg,a ′ ,
and let ϕ : Γ ′ → ∆ be the corresponding morphism, where (Γ ′)st = Γ . The curve Γ ′ has legs
p1, . . . , pn mapping with degree |ai| to 0 or∞ (depending on whether ai > 0 or ai < 0), and
two additional legs l1 and l2 mapping to the leg 0 in ∆.

We now construct a curve Γ̃ ∈ DRg+1,a ′′ as follows. Pick a point x anywhere on the
leg 0 ⊂ ∆, and let x ′1 and x ′2 be the preimages of x on l1 and l2, respectively. We define
Γ̃ by gluing the two legs l1 and l2 together into a single leg starting at the points x ′1 and
x ′2. We define the morphism ϕ̃ : Γ̃ → ∆ by sending l to 0 with degree b + c, and as ϕ on
the remainder of Γ̃ . The curve Γ̃ has genus g + 1, and ϕ̃ has ramification degree one at the
identified point x ′1 = x

′
2, therefore ϕ̃ is finite and effective, and hence (Γ̃)st ∈ DRg+1,a ′′ . Since

dim DRg,a ′ = 2g − 1 + n and the construction involved choosing an arbitrary point x ∈ 0, it
follows that dim DRg+1,a ′′ = 2g+ n. This completes the proof.

5.3 Elliptic curves with two marked points: DR1,(d,−d)

In this section, we demonstrate the algorithm of Theorem 5.2 by computing the double
ramification locus DR1,(d,−d) ⊂M

trop
1,2 , where d ≥ 2. We recall that DR1,(d,−d) = π(D̃R1,(d,−d)),

where D̃R1,(d,−d) ⊂M
trop
1,2d is the locus is given by Definition 5.7, and π :Mtrop

1,2d →M
trop
1,2 is the

forgetful map. Specifically, D̃R1,(d,−d) consists of curves Γ̃ admitting an unramified harmonic
morphism τ̃ : Γ̃ → ∆̃ of the following kind:

1. Γ̃ ∈Mtrop
1,2d is a stable tropical curve with legs p1 and p2, and additional legs qij, where

i = 1, 2 and j = 1, . . . , d− 1.

2. ∆̃ ∈Mtrop
0,4 is a stable tree with legs 0,∞, and additional legs r1 and r2.
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3. τ̃ acts on the legs as follows:

τ̃(p1) = 0 and τ̃(p2) =∞ with dτ̃(p1) = dτ̃(p2) = d,

τ̃(qij) = ri with dτ̃(qij) =

{
2 if j = 1,
1 if j = 2, . . . , d− 1.

We enumerate the possible target trees ∆̃ ∈Mtrop
0,4 , and for each tree we construct the possible

covers τ̃ : Γ̃ → ∆̃. For each Γ̃ , we then forget the additional legs qij and stabilize to obtain the
locus DR1,(d,−d).

1. We first consider the following tree ∆̃:

e

v1

0

r1

∞
r2v2

Let τ̃ : Γ̃ → ∆̃ be an unramified harmonic morphism of the type described above. Since 0
and∞ each have one preimage in Γ̃ , it follows that the graph Γ̃ has two vertices v ′1 and
v ′2, mapping with degree d to v1 and v2, respectively, and that the legs qij are attached to
v ′i . Let τ̃−1(e) = {e ′1, . . . , e

′
n} be the edges of Γ̃ , then val(v ′1) = val(v ′2) = d+ n, hence the

conditions
0 = Ramτ̃(v

′
i) = dχ(vi) − χ(v

′
i) = 2g(v

′
i) + n− 2

imply that n = 2 and g(v ′1) = g(v ′2) = 0. The harmonicity condition implies that the
degrees b1 = dϕ(e ′1) and b2 = dϕ(e ′2) are arbitrary positive integers adding up to d, and
the lengths of e ′1 and e ′2 satisfy the condition b1l(e ′1) = l(e) = b2l(e

′
2). Hence we obtain

the following unramified harmonic morphism τ̃ : Γ̃ → ∆̃:

e ′1

e ′2
v ′1

p1

q1j v ′2

p2

q2j

e

v1

0

r1

∞
r2v2

2. Exchanging the legs r1 and r2 in ∆̃ above corresponds to relabeling the legs qij in Γ̃ , and
produces the same curve Γ ∈ DR1,(d,−d).

3. We now consider the following tree ∆̃:

e

v1

0

∞ v2

r1

r2
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Let τ̃ : Γ̃ → ∆̃ be an unramified harmonic morphism, then v1 has a unique preimage
v ′ ∈ V(Γ̃), and dϕ(v ′) = d. Let τ̃−1(e) = {e ′1, . . . , e

′
n} be the legs of Γ̃ . The condition

0 = Ramτ̃(v
′) = dχ(v1) − χ(v

′) = 2g(v ′) + n− d

implies that either g(v ′) = 0 and n = d, or g(v ′) = 1 and n = d − 2, because the total
genus of Γ̃ is equal to one.

(a) If g(v ′) = 0 and n = d, then dϕ(e ′j) = 1 for all j = 1, . . . , d, and therefore all e ′j
have the same length as e. Let τ̃−1(v2) = {u ′1, . . . , u

′
m} be the remaining vertices

of Γ̃ . Without loss of generality assume that the leg q11 is attached to u ′1, then
dτ̃(u

′
1) ≥ 2 and hence m ≤ d− 1. The genus of Γ̃ is equal to d−m plus the sum of

the genera of the u ′j , which implies that m = d − 1, g(u ′j) = 0 for j = 1, . . . , d − 1,
dτ̃(u

′
1) = 2, and dτ̃(u ′j) = 1 for j = 2, . . . , d − 1. Looking at the local degrees, and

relabeling as necessary, we see that the edges e ′j and the legs qij are attached to
u ′j for j = 1, . . . , d − 1, while e ′n is attached to u ′1. Hence we obtain the following
unramified harmonic morphism τ̃ : Γ̃ → ∆̃:

e ′1 e ′2

v ′

p1

p2

u ′1

q11

q21

e ′3

u ′2

q12

q22

e ′d

u ′d−1

q1,d−1

q2,d−1

e ′i

e

v1

0

∞ v2

r1

r2

(b) If g(v ′) = 1 and n = d − 2, the genus constraint implies that each e ′j is attached
to a distinct vertex u ′j ∈ τ̃−1(v2) of genus zero. The degrees dτ̃(e ′j) = dτ̃(u

′
j) form

a partition of d of length d − 2. Relabeling if necessary, we see that there are two
possibilities:

• d ≥ 3, dτ̃(u ′1) = 3, dτ̃(u ′j) = 1 for i = 2, . . . , d − 2, qij are attached to u ′j for
j = 1, . . . , d− 2, qi,d−1 are attached to u ′1.

• d ≥ 4, dτ̃(u ′1) = dτ̃(u ′2) = 2, dτ̃(u ′j) = 1 for j = 3, . . . , d − 2, q11, q22, and q2,d−1
are attached to u ′1, q21, q12, and q1,d−1 are attached to u ′2, and qij are attached
to u ′j for j = 3, . . . , d− 2.

We obtain the following unramified harmonic morphisms τ̃ : Γ̃ → ∆̃:
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e ′1

1
v ′

p1

p2

u ′1

q11
q21
q1,d−1
q2,d−1

e ′2

u ′2

q12

q22

e ′d−2

u ′d−2

q1,d−2

q2,d−2

e ′i

1

e

v1 v2

0

∞
r1

r2

e ′1

v ′

p1

p2

u ′1

q11
q22
q2,d−1

e ′2

u ′2

q21
q12
q1,d−1

e ′d−2

u ′d−2

q1,d−2

q2,d−2

e ′i

1

e

v1 v2

0

∞
r1

r2

4. Finally, if ∆̃ consists of a single vertex v with all legs attached to it, then Γ̃ consists of a
single vertex v ′ of genus one with all legs attached to it.

We now consider the image of the locus D̃R1,(d,−d) described above under the map π :

M
trop
1,2d → M

trop
1,2 that forgets the legs qij and stabilizes. The curves Γ̃ described in 1 and 3a

above project to the following one-dimensional families of curves in DR1,(d,−d) ⊂M
trop
1,2 :

e ′1

e ′2p1 p2
p1

p2

The curve on the right has a loop of arbitrary length, while the edge lengths of the curve on
the left satisfy the constraint

b1l(e
′
1) = b2l(e

′
2), b1, b2 ≥ 1, b1 + b2 = d. (15)

On the other hand, the curves described in 3b and 4 all project to the curve

p1 p21

Remark 5.8. We observe that the curves of type 3b form one-dimensional strata in D̃R1,(d,−d),
but project to a single point in DR1,(d,−d). Hence the map π : D̃Rg,a → DRg,a may in general
have positive-dimensional fibers. Note that this behavior appears only when d ≥ 3.

We see that the double ramification locus DR1,(d,−d) ⊂ M
trop
1,2 consists of bd/2c + 1 one-

dimensional faces corresponding to the partitions d = b1 + b2, and an additional one-
dimensional face.

It is instructive to compare the loci DR1,(d,−d) and PD1,(d,−d). The former is contained in the
latter, and geometrically it is clear that Equation (15) states that the point p1 − p2 is a d-torsion
point in the Jacobian of Γ . However, PD1,(d,−d) contains the following additional cone, which
has empty intersection with DR1,(d,−d):

p1

p2

Unlike DR1,(d,−d), this stratum has codimension zero in Mtrop
1,2 .
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5.4 The hyperelliptic case

In this section, we work out the example of hyperelliptic double ramification loci. Specifically,
we give a detailed description of the three (up to relabeling) double ramification loci of degree
two, namely DRg,(2,−2) ⊂ M

trop
g,2 , DRg,(2,−1,−1) ⊂ M

trop
g,3 , and DRg,(1,1,−1,−1) ⊂ M

trop
g,4 . We also

determine the relationship of these double ramification loci to the hyperelliptic locus Hg ⊂Mg.
Our main result is Theorem C, which we now restate:

Theorem 5.9. The double ramification loci

DRg,(2,−2) ⊂M
trop
g,2 , DRg,(2,−1,−1) ⊂M

trop
g,3 , and DRg,(1,1,−1,−1) ⊂M

trop
g,4

are linear subsets, connected in codimension one, having maximal cones of dimensions 2g− 1, 2g, and
2g+ 1, respectively. Their projections to Mtrop

g are equal to the realizable hyperelliptic locus Hg:

π2
(

DRg,(2,−2)
)
= Hg, π3

(
DRg,(2,−1,−1)

)
= Hg, and π4

(
DRg,(1,1,−1,−1)

)
= Hg.

The fibers of this projection have dimensions 0, 1, and 2, respectively.

Proof. This theorem will follow from the explicit description for these loci that is given in
Props. 5.27, 5.28, 5.29, and 5.30.

We extensively use the theory of hyperelliptic tropical curves, as discussed in the intro-
duction (see [Cha13], [ABBR15b], [BBC17]). First, we give some definitions and results about
harmonic morphisms of degree two.

Definition 5.10. Let G be a weighted graph. A hyperelliptic morphism on G is a finite harmonic
morphism ϕ : G → T of degree two, where T is a weighted graph of genus zero, such that
dϕ(v) = 2 for any vertex v ∈ V(G) such that g(v) > 0. We say that a hyperelliptic morphism is
effective or unramified if it is so as a harmonic morphism, and we similarly define (effective,
unramified) hyperelliptic morphisms of weighted metric graphs and tropical curves.

Let ϕ : G→ T be a hyperelliptic morphism. Given a vertex, edge, or leg x ∈ X(T), there are
two possibilities: either x has two preimages on each of which ϕ has degree one, or x has a
unique preimage on which ϕ has degree two. If ϕ has degree two on a half-edge of G, then it
necessarily has degree two on its endpoint, so the subset of X(T) on which ϕ has degree two
forms a subgraph:

Definition 5.11. Let ϕ : G→ T be a hyperelliptic morphism of weighed graphs. We define the
dilation subgraph Cϕ ⊂ T to be

Cϕ =
{
x ∈ X(T)

∣∣#(ϕ−1(x)) = 1
}
= ϕ

({
x ′ ∈ X(G)

∣∣degϕ(x
′) = 2

})
.

We similarly define the dilation subgraph of a hyperelliptic morphism of weighted metric
graphs or tropical curves. The preimage ϕ−1(Cϕ) ⊂ G is isomorphic, viewed as a graph
without weights, to Cϕ, so by abuse of notation we will occasionally refer to the preimage
ϕ−1(Cϕ) as the dilation subgraph, and denote it Cϕ.
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Remark 5.12. Given the dilation subgraph Cϕ ⊂ T of a hyperelliptic morphism ϕ : G → T ,
we can uniquely reconstruct the graph G and the map ϕ, but not the vertex weighting on G.
Indeed, as a set X(G) is the disjoint union of one copy D of X(Cϕ) and two copies U1 and
U2 of X(T)\X(Cϕ). We define the graph structure on G by gluing each Ui to D according to
how they are glued in T . Finally, we define ϕ : G→ T by sending D to X(Cϕ) with degree 2
everywhere, and each Ui to X(T)\X(Cϕ) with degree 1 everywhere.

We will be frequently using the ramification divisor of a hyperelliptic morphism:

Proposition 5.13. Let ϕ : G → T be a hyperelliptic morphism, where G is a graph of genus g. The
ramification divisor of ϕ is equal to the inverse of the canonical divisor of the preimage ϕ−1(Cϕ) of the
dilation subgraph:

Ramϕ = −Kϕ−1(Cϕ) =
∑

v∈V(Cϕ)

[
2g(v) + 2− valCϕ(v)

]
v. (16)

If G and T have no legs, then deg Ramϕ = 2g+ 2.

Proof. Let v ∈ V(G). If v /∈ V(Cϕ), then ϕ has degree one at v and g(v) = 0, so ϕ is a local
isomorphism in the neighborhood of v, and therefore Ramϕ(v) = 0. If v ∈ V(Cϕ), then there
are valCϕ(v) dilated and valG(v) − valCϕ(v) undilated tangent directions at v. Therefore

valT (ϕ(v)) = valG(v) +
valG(v) − valCϕ(v)

2
=

valG(v) + valCϕ(v)
2

,

and since g(v) = 0 we obtain that

Ramϕ(v) = 2χT (ϕ(v)) − χG(v) = 2g(v) + 2− valCϕ(v).

Finally, if G and T have no legs, then by the global Riemann–Hurwitz formula (6)

deg Ramϕ = degϕ · χ(T) − χ(G) = 2g+ 2.

A hyperelliptic morphism ϕ : G→ G defines an involution on G whose fixed locus is Cϕ,
providing an alternative and equivalent point of view.

Definition 5.14. Let G be a weighted graph. A hyperelliptic involution on G is a non-trivial
involution σ : G→ G such that the quotient graph G/σ, equipped with the trivial weighting,
has genus zero, and such that σ(v) = v for all v ∈ V(G) with g(v) > 0. A hyperelliptic
involution is called effective if for any v ∈ V(G) fixed by σ, the number κ(v) of tangent
directions fixed by σ is less than or equal to 2g(v) + 2, and unramified if κ(v) = 2g(v) + 2 for all
v ∈ V(G) fixed by σ. We define (effective, unramified) hyperelliptic involutions of weighted
metric graphs and tropical curves similarly.

The following proposition is elementary:

Proposition 5.15. Let ϕ : G → T be a hyperelliptic morphism with dilation subgraph Cϕ. Define
the involution σ : G → G to act trivially on ϕ−1(Cϕ), and by exchanging the two preimages of any

47



x ∈ X(T)\X(Cϕ). Then σ is a hyperelliptic involution. Conversely, let σ : G → G is a hyperelliptic
involution and let ϕ : G→ T be the induced map to the quotient T = G/σ. For x ∈ X(G) let

dϕ(x) =

{
2 if σ(x) = x,
1 if σ(x) 6= x.

Then ϕ is a hyperelliptic morphism. Under this bijection, effective and unramified hyperelliptic
morphisms correspond to respectively effective and unramified hyperelliptic involutions.

Proof. Let ϕ : G→ T be a hyperelliptic morphism, and let σ : G→ G be as above. Then clearly
G/σ = T is a tree, and if v ∈ V(G) is a vertex of positive genus, then dϕ(v) = 2, so σ fixes
v. Hence σ is a hyperelliptic involution. Conversely, if σ is a hyperelliptic involution and ϕ
is the morphism defined above, then ϕ is harmonic, and for any v ∈ V(G), if g(v) > 0, then
σ(v) = v and hence dϕ(v) = 2. Finally, for any v ∈ V(G) fixed by σ we have κ(v) = valCϕ(v),
so Equation (16) implies that ϕ is effective (respectively, unramified) if and only if σ is.

Example 5.16. We give an example of a hyperelliptic morphism η : Γ → ∆, where Γ is a stable
genus two curve:

v2 v3
v1 v4

The dilation cycle on ∆ is marked in bold and includes the end vertices. The ramification
divisor is R = v1 + v2 + v3 + v4.

If ϕ : G→ T is an unramified hyperelliptic morphism with dilation subgraph Cϕ, then the
condition

2g(v ′) + 2 = κ(v) = valCϕ(v) for every v = ϕ(v ′) ∈ Cϕ

implies that valCϕ(v) is even for all v ∈ Cϕ. Conversely, as we will see, any subgraph satisfying
this constraint is the dilation subgraph of a unique unramified hyperelliptic morphism.

Definition 5.17. Let G be a graph. A cycle C in G is a semistable subgraph such that valC(v) is
even for all v ∈ V(C).

We observe that a cycle on a graph with legs is not necessarily a topological cycle, since
there is no point at the end of a leg. In particular, a tree with at least two legs has nontrivial
cycles, and such a cycle is uniquely determined by its set of legs (this result generalizes Lemma
2.4 in [BBC17] to arbitrary D):

Proposition 5.18. Let T be a tree, and let D ⊂ L(T) be a subset of legs of T with an even number of
elements. Then there exists a unique cycle C in T whose set of legs is D.

Proof. We proceed induction on the number of vertices of T . If T consists of a single vertex v,
then we set V(C) = {v} and L(C) = D.

Now suppose that the result holds for trees with n vertices. Let T be a tree with n + 1

vertices, and let D ⊂ L(T) be a set of legs of T such that #D is even. Pick a vertex v ∈ V(T) that
has a unique edge e attached to it, and let Dv ⊂ D be the legs attached to v. Let T ′ be the tree
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obtained from T by removing v, e, and Dv. If #Dv is even, then by induction there is a unique
cycle C ′ ⊂ T ′ whose set of legs is D\Dv, and the required cycle C ⊂ T is equal to C ′ ∪ {v} ∪Dv
if #Dv is positive and C ′ if Dv is empty. If #Dv is odd, instead consider the tree T ′ ∪ {e}, with e
attached as a leg. By induction, there is a unique cycle C ′ ⊂ T ′ whose set of legs is {e} ∪D\Dv.
Hence the required cycle C ⊂ T is C ′ ∪ {v} ∪ {e} ∪Dv.

Proposition 5.19. Let ϕ : G→ T be an unramified hyperelliptic morphism. Then the dilation subgraph
Cϕ is a cycle, called the dilation cycle of ϕ. Conversely, given a tree T and a cycle C ⊂ T , there exists a
unique unramified hyperelliptic morphism ϕ : G→ T having dilation cycle C.

Proof. We have already seen above that Cϕ is a cycle if ϕ : G→ T is an unramified hyperelliptic
morphism. Conversely, let C ⊂ T be a cycle on a tree. Remark 5.12 describes how to construct
a unique hyperelliptic morphism ϕ : G→ T having dilation subgraph C. The weight g(v ′) of a
vertex v ′ ∈ V(G ′) is uniquely specified by the condition 2g(v ′) + 2 = valC

(
ϕ(v)

)
, where we

note that g(v ′) ≥ 0 because C is semistable.

Remark 5.20. This terminology is borrowed from Jensen and Len (see Chapter 5 of [JL18]),
who considered unramified harmonic covers ϕ : Γ̃ → Γ of degree two, where Γ is a tropical
curve of genus g with trivial weights and no legs. Such a curve has #H1(Γ,Z/2Z) = 2g different
cycles, and for any cycle C ⊂ Γ there are 2h degree two unramified harmonic covers having
dilation cycle C, where h = g(Γ\C) (see [JL18, Lemma 5.8]). Hence Proposition 5.19 follows
as a natural generalization to double covers of tropical curves with legs. In [LUZ19], further
generalize this construction to unramified harmonic covers ϕ : Γ̃ → Γ with an action of a finite
abelian group G, and Proposition 5.19 follows from [LUZ19, Theorem 4.1].

In the algebraic setting, a curve is hyperelliptic if and only if it has a g12. Additionally, a
hyperelliptic curve is defined by 2g + 2 distinct points in P1 up to the action of Aut(P1). In
the tropical setting, the relationship is more complex, and has been studied by a number of
authors. We recall the connection.

Definition 5.21. (see [AC13]) Let g ≥ 2, and Γ ∈Mtrop
g be a stable tropical curve with no legs.

Let Γ # ⊃ Γ be the tropical curve obtained by attaching g(x) loops of arbitrary positive length to
each x ∈ Γ with g(x) > 0. For a divisor D on Γ , let r#(D) denote its rank on Γ #. We say that Γ
is hyperelliptic if there exists a divisor D on Γ of degree two such that r#(D) = 1.

We now reformulate Theorems 4.12 and 4.13 of [ABBR15b] using our definitions. We note
in passing that there is a typo in the formulation Theorem 4.12 of [ABBR15b]: condition (3)
should not include the word "effective".

Theorem 5.22. A stable tropical curve Γ is hyperelliptic if and only if it admits a hyperelliptic morphism,
which is unique if it exists. Furthermore, a hyperelliptic tropical curve is the tropicalization of an
algebraic hyperelliptic curve if and only if the hyperelliptic morphism is effective.

Remark 5.23. It has long been observed that tropical curves defined by Brill–Noether conditions
have unexpectedly large dimensions in moduli; this is of course one of the primary motivations
for our paper. For example, any genus three curve of the following kind
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is hyperelliptic, with the dilation subgraph of the unique hyperelliptic morphism marked in
bold. Curves of this kind form a cone of maximal dimension in Mtrop

3 , while we expect the
hyperelliptic locus to have codimension one. Requiring that the hyperelliptic curve be effective
simultaneously solves the realizability problem and cuts out a locus of the correct dimension.

Definition 5.24. Let Γ ∈ Mtrop
g be a hyperelliptic curve. We say that Γ is effective if the

hyperelliptic morphism on Γ (which is unique by Theorem 5.22) is effective. We denote the
locus of effective hyperelliptic curves by Hg ⊂Mtrop

g .

Hyperelliptic curves have genus at least two by definition, so to present our results in a
uniform manner we formally introduce the cone complex H1 =M

trop
1 = R≥0. A point l ∈ R>0

corresponds to the tropical curve Γ consisting of two vertices v1 and v2 joined by two edges e1
and e2 of length l. The target tree T of the hyperelliptic morphism η : Γ → T has a single edge
of length l, the hyperelliptic involution σ : Γ → T fixes v1 and v2 and exchanges e1 and e2, and
the ramification divisor of η is Ramη = 2v1 + 2v2. Finally, the origin 0 ∈ H1 corresponds to the
tropical curve Γ consisting of a single point v of genus one, with σ(v) = v and ramification
divisor 4v.

An algebraic hyperelliptic curve of genus g is uniquely determined by 2g+2 distinct points
of P1, and we can identify the hyperelliptic locus Hg ⊂Mg with the quotientM0,2g+2/S2g+2.
The same picture holds in the tropical setting if we restrict to the locus of effective hyperelliptic
curves. We summarize the relationship between effective hyperelliptic curves and Mtrop

0,2g+2.

Proposition 5.25. Let ∆̃ ∈ Mtrop
0,2g+2 be a stable tree with legs q1, . . . , q2g+2. Then there exists

a unique stable curve Γ̃ ∈ Mtrop
g,2g+2 with legs p1, . . . , p2g+2 admitting an unramified hyperelliptic

morphism τ : Γ̃ → ∆̃ with τ(pi) = qi. Denote Hg,2g+2 ⊂ Mtrop
g,2g+2 the locus of such curves, and

π : Hg,2g+2 →M
trop
g the restriction of the forgetful map to Hg,2g+2. Then π(Hg,2g+2) = Hg, and for

any Γ ∈ Hg the fiber π−1(Γ) is finite. In particular, dimHg = 2g− 1.

Proof. This result follows from Lemma 2.4 in [BBC17]. We give a proof for the sake of
completeness.

The existence and uniqueness of τ : Γ̃ → ∆̃ follows from Propositions 5.18 (taking D to be
the set of all legs of ∆̃) and 5.19. Let Γ denote the curve Γ̃ with all legs removed, we claim that
Γ is stable. Indeed, let x ∈ Γ̃ be the point of attachment for n ≥ 2 legs. If x is unstable in Γ , then
g(x) = 0 and val

Γ̃
(x) = n+ 1, and the unique edge at x is also dilated, so val

∆̃
(τ(x)) = n+ 1.

Computing the ramification degree

0 = Ramx(τ) = 2χ∆̃(τ(x)) − χΓ̃ (x) = n− 1,

we obtain a contradiction. It follows that Γ = π(Γ̃), and the restriction of τ to Γ is an effective
hyperelliptic morphism to the tree ∆ obtained by removing all legs of ∆̃. Hence Γ ∈ Hg.

Conversely, given Γ ∈ Hg with effective hyperelliptic morphism ϕ : Γ → ∆, we reconstruct
all curves τ : Γ̃ → ∆̃ projecting to Γ by attaching the legs p1, . . . , p2g+2 to the 2g + 2 points
(counted with multiplicity) of the effective ramification divisor of ϕ.
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We now consider the double ramification loci DRg,(2,−2) ⊂M
trop
g,2 , DRg,(2,−1,−1) ⊂M

trop
g,3 , and

DRg,(1,1,−1,−1) ⊂ M
trop
g,4 of degree two. Recall that a curve Γ lies inside a double ramification

locus if a tropical modification Γ̃ of Γ admits a finite effective harmonic morphism to a tree
with specified action on the legs. We first observe that for hyperelliptic morphisms, we can in
fact always assume that Γ̃ = Γ .

Proposition 5.26. Let Γ be a tropical curve, let Γ ′ ⊃ Γ be a tropical modification of Γ , and let τ : Γ ′ → ∆

be a hyperelliptic morphism. Then the restriction of τ to Γ is a hyperelliptic morphism, which is effective
if τ is effective.

Proof. Fix a model ϕ : G ′ → G for τ. Let v ′ ∈ V(G ′) be an extremal vertex attached to an edge
e ′ ∈ E(G ′), and let v = ϕ(v ′) and e = ϕ(e ′). If dϕ(v ′) = 2, then dϕ(e ′) = 2, so ϕ−1(v) = {v ′}

and ϕ−1(e) = {e ′}, and the restriction of ϕ to G ′\{v ′, e ′} is a hyperelliptic morphism onto
G\{v, e} (see Remark 2.17). On the other hand, if dϕ(v ′) = 1, then dϕ(e ′) = 1, and v ′′ = σ(v ′) is
an extremal vertex attached to e ′′ = σ(e ′). Hence ϕ−1(v) = {v ′, v ′′} and ϕ−1(e) = {e ′, e ′′}, and
the restriction of ϕ to G ′\{v ′, v ′′, e ′, e ′′} is a hyperelliptic morphism onto G\{v, e}. Proceeding
in this way, we remove all extremal edges of G ′ and obtain a model of Γ . Finally, if τ is effective,
then ϕ is effective by Remark 2.17.

We note that this result is specific for morphisms of degree two, and does not hold for
higher degrees (see example following Thm. 5.2).

We are now ready to determine the structure of the double ramification loci of degree two.

Proposition 5.27. Let g ≥ 1, and denote πn : Mtrop
g,n → M

trop
g the projection maps for n = 2, 3, 4.

Then the images of the double ramification loci of degree two are all equal to the effective hyperelliptic
locus:

π2
(

DRg,(2,−2)
)
= Hg, π3

(
DRg,(2,−1,−1)

)
= Hg, and π4

(
DRg,(1,1,−1,−1)

)
= Hg.

For each Γ ∈ Hg, the fibers(
π−12 (Γ)

)
∩DRg,(2,−2),

(
π−13 (Γ)

)
∩DRg,(2,−1,−1), and

(
π−14 (Γ)

)
∩DRg,(1,1,−1,−1)

have dimensions 0, 1, and 2, respectively.

Proof. Let Γ̃ be a curve lying in one of the double ramification loci DRg,(2,−2), DRg,(2,−1,−1), or
DRg,(1,1,−1,−1), and let Γ = πn(Γ̃) ∈Mtrop

g for the appropriate n. By definition, there exists an
effective hyperelliptic morphism from a tropical modification of Γ̃ to a tree. Proposition 5.26
implies that in fact this morphism restricts to an effective hyperelliptic morphism ϕ : Γ̃ → ∆̃,
where ∆̃ is a tree with legs 0 and∞. Remove the legs from Γ̃ and ∆̃ to obtain the curves Γ0 and
∆, respectively, then ϕ restricts to an effective hyperelliptic morphism ϕ|Γ0 : Γ0 → ∆. Since Γ0
is a tropical modification of Γ , Proposition 5.26 implies that ϕ further restricts to an effective
hyperelliptic morphism on Γ . Hence Γ ∈ Hg, and we have shown that

π2
(

DRg,(2,−2)
)
⊆ Hg, π3

(
DRg,(2,−1,−1)

)
⊆ Hg, and π4

(
DRg,(1,1,−1,−1)

)
⊆ Hg.

We prove that these inclusions are equalities, and the dimension results for the fibers, by giving
an explicit description of all curves in the three double ramification loci whose underlying
unmarked curve is a given effective hyperelliptic curve. For the remainder of this section, we
fix the following notation:
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1. Γ ∈ Hg is an effective hyperelliptic curve.

2. σ : Γ → Γ is the hyperelliptic involution.

3. η : Γ → ∆ is the hyperelliptic morphism.

4. R ∈ Div2g+2(Γ) is the ramification divisor of the hyperelliptic morphism.

Proposition 5.28. The curves Γ̃ ∈ DRg,(2,−2) with π2(Γ̃) = Γ are obtained by choosing points
x1, x2 ∈ Γ such that x1 + x2 ≤ R, and attaching the legs p1 and p2 to x1 and x2, respectively.

Proof. Pick x1, x2 ∈ Γ such that x1+x2 ≤ R, these points are dilated. Attach p1 and p2 as dilated
legs to x1 and x2, respectively, and attach legs 0 and∞ to ∆ at η(p1) and η(p2), respectively, to
obtain a hyperelliptic morphism ϕ : Γ̃ → ∆̃. Attaching a single leg to the source and target
reduces the ramification degree at the attaching point by one, hence the ramification divisor
Ramϕ = R − x1 − x2 of ϕ is effective, and therefore Γ̃ ∈ DRg,(2,−2). We note that there are
finitely many such curves Γ̃ .

Conversely, let Γ̃ ∈ DRg,(2,−2) be such that π(Γ̃) = Γ , let ϕ : Γ̃ → ∆̃ be the hyperelliptic
morphism, and let Γ0 ⊂ Γ̃ be Γ̃ with p1 and p2 removed. We claim that Γ0 is equal to its
stabilization Γ . Indeed, let x1 ∈ Γ0 and x2 ∈ Γ0 be the attachment points of p1 and p2,
respectively. If x1 6= x2, or if x1 = x2 is a point of positive genus, then Γ0 is stable. Now suppose
that x1 = x2 = x and g(x) = 0. Since val

∆̃

(
ϕ(x)

)
≥ 3, the Riemann–Hurwitz condition

Ramϕ(x) = 2− 2val
∆̃

(
ϕ(x))

)
+ val

Γ̃
(x) ≥ 0

at x implies that val
Γ̃
(x) ≥ 4. Therefore valΓ0(x) ≥ 2, hence Γ0 is stable. Finally, comparing the

ramification divisors R = Ramϕ|Γ = Ramϕ+ x1 + x2, we see that x1 + x2 ≤ R because Ramϕ

is effective.

The proofs of the following propositions are similar.

Proposition 5.29. The curves Γ̃ ∈ DRg,(2,−1,−1) with π3(Γ̃) = Γ are obtained in one of the following
ways.

1. Choose points x1, x2, x3 ∈ Γ such that x1 ≤ R and σ(x2) = x3. Attach the legs p1, p2, and p3 to
Γ at x1, x2, and x3, respectively.

2. Choose points x1, x2 ∈ Γ such that x1 + x2 ≤ R. Attach the leg p1 to x1, attach a dilated edge e
of arbitrary length to x2, and attach the legs p2 and p3 to the other endpoint of e.

3. Choose a point x1 ∈ Γ such that x1 ≤ R. Attach a dilated edge e of arbitrary length to x1, and
attach the legs p1, p2, p3 to the other endpoint of e.

Proof. Let Γ̃ be one of the curves defined above, it is clear that π3(Γ̃) = Γ . We obtain the target
tree ∆̃ from ∆ as follows:

1. In case (1), attach 0 to η(x1) and∞ to η(x2) = η(x3), respectively.
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Type (1) Type (2)
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Type (3)

Figure 1: Examples of marked curves in DRg,(2,−1,−1) with the same underlying hyperelliptic
curve of Example 5.16. The thick edges and the leg p1 are dilated, pairs of edges with dashes
have the same length.

2. In case (2), attach 0 to η(x1), an edge of length l(e)/2 to η(x2), and∞ to the free endpoint
of the edge.

3. In case (3), attach an edge of length l(e)/2 to η(x1), and attach 0 and ∞ to the free
endpoint of the edge.

It is clear how to extend η : Γ → ∆ to a hyperelliptic morphism ϕ : Γ̃ → ∆̃, and the restrictions
on the points imply that ϕ is effective, hence all Γ̃ constructed in this way lie in DRg,(2,−1,−1).
We observe that for any Γ ∈ Hg constructions (2) and (3) give one-dimensional families of
curves in DRg,(2,−1,−1) with underlying unmarked curve Γ , and so does construction (1) unless
Γ = •g. We also observe that these three one-dimensional families have common degenerations,
for example setting x1 = x2 = x3 in (1) gives the same curve as choosing an edge e of length
zero in (3).

Conversely, let Γ̃ ∈ DRg,(2,−1,−1) be a stable curve with dilated leg p1 and undilated legs p2
and p3, such that Γ = π(Γ̃). Let ϕ : Γ̃ → ∆̃ be the effective hyperelliptic morphism to a tree ∆̃
with legs 0 and ∞, with p1 mapping to 0, and p2 and p3 mapping to ∞. Denote Γ0 ⊂ Γ̃ the
graph Γ̃ with the legs pi removed, so Γ ⊂ Γ0 is its stabilization.

Let yi ∈ Γ0 be the points at which the legs pi are attached to Γ̃ . Then y1 is dilated, and
either y2 6= y3 and they are both undilated, or y2 = y3 is dilated. In addition, σ(y2) = y3.
Hence we have the following possibilities:

1. The points y1 are all distinct. In this case, removing the legs pi does not destabilize
the graph, hence Γ0 = Γ . Denoting xi = yi for i = 1, 2, 3, we see that σ(x2) = x3, and
comparing the ramification divisors R = Ramϕ|Γ = Ramϕ + x1 we see that x1 ≤ R.
Hence we obtain a curve of type (1).

2. y1 6= y2 = y3. If g(y2) ≥ 1 or val
Γ̃
(y2) ≥ 4, then Γ0 = Γ is already stable. Denoting xi = yi

for i = 1, 2, 3, we see that σ(x2) = x3, and R = Ramϕ+ x1, hence x1 ≤ R and we obtain a
curve of type (1).

Now suppose that χ
Γ̃
(y2) = −1, then y2 is an unstable point of Γ0 and is the free endpoint

of a dilated edge e attached to the rest of Γ0 at a point z. If z 6= y1, then removing e
does not destabilize y1, hence y1 ∈ Γ . Denoting x1 = y1 and x2 = y2 = y3, we see that
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R = Ramϕ + x1 + x2, where x1 = y2 = y3, hence x1 + x2 ≤ R and we have a curve of
type (2). If z = y1, we claim that y1 ∈ Γ . Indeed, either Γ̃ has no edges other than e,
in which case g(y1) ≥ 1 and y1 ∈ Γ , or there are additional edges at y1, in which case
val

∆̃
(ϕ(y1)) ≥ 3. The Riemann–Hurwitz condition

Ramϕ(c) = 2
(
2− val

∆̃
(ϕ(y1))

)
− χ

Γ̃
(y1) ≥ 0

at y1 then implies that χ
Γ̃
(y1) ≤ −2, so χΓ0(y1) ≤ −1 and y1 ∈ Γ . Therefore, the curve Γ̃

is of type (2) with x1 = x2 = y1.

3. y1 = y2 = y3. If g(y1) ≥ 1 or val
Γ̃
(y1) ≥ 5, then Γ0 = Γ is stable. Denoting xi = yi for

i = 1, 2, 3, we see that σ(x2) = x3, and R = Ramϕ + x1, hence x1 ≤ R and we obtain a
curve of type (1).

If g(y1) = 0 and val
Γ̃
(y1) = 4, then y1 is an unstable point of Γ0, hence Γ0 consists of Γ

with a dilated edge e attached at a point x1 ∈ Γ , whose free endpoint is y1. In this case
R = Ramϕ+ x1, hence x1 ≤ R and we have a curve of type (3).

Proposition 5.30. The curves Γ̃ ∈ DRg,(1,1,−1,−1) with π4(Γ̃) = Γ are obtained in one of the following
ways (see Figure 2):

1. Choose points x1, x2, x3, x4 ∈ Γ such that σ(x1) = x2 and σ(x3) = x4. For i = 1, 2, 3, 4, attach
the leg pi to Γ at xi.

2. Choose points x1, x2, x3 ∈ Γ such that x1 ≤ R and σ(x2) = x3. Attach a dilated edge e of
arbitrary length to x1. Attach the legs p1 and p2 to the free endpoint of e, and attach p3 and
p4 to x2 and x3, respectively. Alternatively, attach p3 and p4 to e, and p1 and p2 to x2 and x3,
respectively.

3. Choose points x1, x2 ∈ Γ such that x1 + x2 ≤ R. Attach dilated edges e1 and e2 of arbitrary
lengths to x1 and x2, respectively. Attach the legs p1 and p2 to e1, and attach p3 and p4 to e2.

4. Choose points x1, x2 ∈ Γ such that σ(x1) = x2. Attach undilated edges e1 and e2 of equal lengths
to x1 and x2. Attach the legs p1 and p3 to the free endpoint of e1, and attach p2 and p4 to the free
endpoint of e2. Alternatively, attach p1 and p4 to e1, and p2 and p3 to e2.

5. Choose a point x1 ∈ Γ such that x1 ≤ R. Attach a dilated edge e of arbitrary length to x1, and
attach undilated edges f1 and f2 of equal lengths to the other endpoint of e. Attach the legs p1
and p3 to the free endpoint of f1, and the legs p2 and p4 to the free endpoint of f2. Alternatively,
attach p1 and p4 to f1, and p2 and p3 to f2.

6. Choose a point x1 ∈ Γ such that x1 ≤ R. Attach a dilated edge e to x1 of arbitrary length, and
attach a dilated edge f of arbitrary length to the free endpoint y of e. Attach the legs p1 and p2 to
y, and attach p3 and p4 to the free endpoint of f. Alternatively, attach p3 and p4 to y, and attach
p1 and p2 to f.
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Figure 2: Examples of marked curves in DRg,(1,1,−1,−1) with the same underlying hyperelliptic
curve of Ex. 5.16. Thick edges are dilated, pairs of edges with dashes have the same length.

Proof. Let Γ̃ be one of the curves defined above, it is clear that π4(Γ̃) = Γ . We obtain the target
tree ∆̃ from ∆ as follows:

1. In case (1), attach 0 to η(x1) = η(x2) and∞ to η(x3) = η(x4), respectively.

2. In case (2), attach an edge of length l(e)/2 to η(x1). Attach 0 to the free endpoint of the
edge and∞ to η(x2) = η(x3), or vice versa.

3. In case (3), attach edges f1 and f2 of lengths l(e1)/2 and l(e2)/2 to η(x1) and η(x2),
respectively. Attach 0 and∞ to the free endpoints of f1 and f2, respectively.

4. In case (4), attach an edge of length l(e1) = l(e2) to η(x1) = η(x2), and attach 0 and∞ to
the free endpoint of the edge.

5. In case (5), attach an edge of length l(e)/2 to x1, and attach an edge of length l(f1) = l(f2).
Attach 0 and∞ to the free endpoint of the second edge.

6. In case (6), attach an edge of length l(e)/2 with free endpoint z to x1, and attach an edge
of length l(f)/2 to z. Attach 0 to z and∞ to the free endpoint of the second edge, or vice
versa.

It is clear how to extend η : Γ → ∆ to a hyperelliptic morphism ϕ : Γ̃ → ∆̃, and the
restrictions on the points imply that ϕ is effective, hence all Γ̃ constructed in this way lie
in DRg,(1,1,−1,−1). We observe that for any Γ ∈ Hg constructions (3), (5), and (6) give two-
dimensional families of curves in DRg,(1,1,−1,−1) with underlying unmarked curve Γ , and so do
constructions (1), (2), and (4) unless Γ = •g. As in Proposition 5.29, there are various common
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degenerations between the families, for example choosing x1 = x2 ≤ R in (4) is equivalent to
choosing an edge e of length zero in (5).

Conversely, let Γ̃ ∈ DRg,(1,1,−1,−1) be a stable curve with undilated legs p1, p2, p3, and p4,
such that Γ = π(Γ̃). Let ϕ : Γ̃ → ∆̃ be the effective hyperelliptic morphism to a tree ∆̃ with legs
0 and∞, with p1 and p2 mapping to 0, and p2 and p3 mapping to∞. Denote Γ0 ⊂ Γ̃ the graph
Γ̃ with the legs pi removed, so Γ ⊂ Γ0 is its stabilization.

Let yi ∈ Γ0 be the points at which the legs pi are attached to Γ0. Then either y1 6= y2 and
they are both undilated, or y1 = y2 is dilated, and similarly for the pair y3 and y4. In addition,
σ(y1) = y2 and σ(y3) = y4. The points yi are stable in Γ̃ , and we consider whether or not
they are unstable in Γ0, which may happen if some of them coincide. We have the following
possibilities.

1. The points yi are all distinct and undilated. In this case all yi are semistable, hence
Γ0 = Γ . Denoting xi = yi for i = 1, 2, 3, 4, we see that σ(x1) = x2 and σ(x3) = x4, so we
obtain a curve of type (1).

2. The points y1, y3, and y4 are distinct, while y1 = y2. The points y3 and y4 are undilated
and semistable, while y1 = y2 is dilated. If y1 is semistable, then Γ0 = Γ is already stable.
Denoting xi = yi for i = 1, 2, 3, 4, we see that σ(x1) = x2 and σ(x3) = x4, so we obtain a
curve of type (1).

If χ
Γ̃
(y1) = −1, then y1 is an unstable point of Γ0, and is the free endpoint of dilated edge

e attached a point x1 ∈ Γ0. Since x1 is dilated it cannot be equal to y3 or y4, therefore
removing e does not destabilize y3 and y4. It follows that x1 ∈ Γ0. Denoting x2 = y3 and
x3 = y4, we see that R = Ramϕ+ x1, hence x1 ≤ R and we have a curve of type (2).

3. The points y1, y2, and y4 are distinct, while y3 = y4. This case is symmetric to the one
above and yields curves of types (1) and (2).

4. y1 = y2 6= y3 = y4, and both points are dilated. If y1 and y3 are semistable, then Γ0 = Γ ,
and denoting xi = yi for i = 1, 2, 3, 4 we obtain a curve of type (1).

If y1 is semistable and y3 is unstable, then y3 is the free endpoint of a dilated edge e
attached to the rest of Γ0 at a point z, and there are two possibilities. If z 6= y1, then
y1 ∈ Γ , since removing e does not destabilize y1. Denoting x1 = z and x2 = x3 = y1, we
see that R = Ramϕ+ x1, hence x1 ≤ R and we have a curve of type (2). If z = y1, it may
still happen that y1 ∈ Γ , and we again obtain a curve of type (2) with x1 = x2 = x3 = z. If
z = y1 and χΓ0(y1) = 2, then removing e destabilizes y1, hence y1 is connected to Γ by
a dilated edge f. Denoting x1 ∈ Γ the attaching point of f, we see that R = Ramϕ+ x1,
and our curve is of type (6). The case when y1 is unstable and y2 is semistable is treated
similarly and yields curves of types (2) and (6).

Finally, suppose that y1 and y2 are both unstable, then they are connected to Γ0 by dilated
edges e1 and e2 rooted at x1, x2 ∈ Γ . We see that R = Ramϕ+ x1 + x2, and our curve is
of type (3).

5. y1 = y3 6= y2 = y4, and both points are undilated. The hyperelliptic involution restricts
to an isomorphism of the neighborhoods of y1 and y2 in Γ0, which implies that y1 and
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y2 are both either semistable or unstable. If y1 and y2 are semistable, then Γ0 = Γ , and
denoting xi = yi for i = 1, 2, 3, 4 we obtain a curve of type (1).

If y1 and y2 are unstable, then they are the endpoints of two undilated edges e1 and
e2 attached to the rest of Γ0 at points z1 and z2. The hyperelliptic involution exchanges
e1 and e2, so l(e1) = l(e2) and σ(z1) = z2. If z1 6= z2, then removing e1 and e2 does not
destabilize z1 and z2, hence z1, z2 ∈ Γ . Denoting x1 = z1 and x2 = z2, we obtain a curve
of type (4). Similarly, if z1 = z2 and χΓ0(z1) ≤ −2, then z1 ∈ Γ , and we again obtain
a curve of type (4). Finally, if z1 = z2 and χΓ0(z1) = −1, then z1 is the endpoint of an
edge f attached attached to Γ at a point x1. Denoting e = f and fi = ei, we see that
R = Ramϕ+ x1, so we have a curve of type (5).

6. y1 = y4 6= y2 = y3, and both points are undilated. This case is symmetric to the one
above and yields curves of types (4) and (5).

7. y1 = y2 = y3 = y4 is a dilated point. If χΓ0(y1) ≤ −4, then Γ0 = Γ and denoting
xi = yi ∈ Γ for i = 1, 2, 3, 4, we obtain a curve of type (1). If χΓ0(y1) = −3, then y1 is
an unstable point of Γ0, connected by a dilated edge e to a point x1 ∈ Γ . This is the
degenerate case of type (6) when l(f) = 0, or type (5) when l(f1) = l(f2) = 0.

6 Tropicalization, specialization, and realizability

In this section we recall the moduli-theoretic and non-Archimedean approach to the process of
tropicalization for marked curves and admissible cover, as pioneered in [ACP15] and [CMR16],
and generalize this approach to divisors. In Section 6.5 we then proceed to prove Theorem
A and D from the introduction. From now we work over an algebraically closed field k of
characteristic zero carrying the trivial absolute value | · |.

6.1 Tropicalizing algebraic curves and their moduli spaces

Let X be a smooth projective curve over a non-Archimedean field K extending k and let
p1, . . . , pn ∈ X(K) be n marked points. The stable reduction theorem implies that, possibly
after replacing K by a finite extension, there is a unique flat and proper nodal model X of X
over the valuation ring R of K together with sections s1, . . . , sn of X extending p1, . . . , pn such
that the special fiber (X0, s1, . . . , sn) is a stable n-marked curve. We define a tropical curve ΓX
associated to this datum as follows:

• The underlying graph GX is the dual graph of X0: there is a vertex v ∈ V(GX) for every
irreducible component Xv of X0, there is an edge e ∈ E(GX) connecting vertices u and v
for every node connecting the two components Xu and Xv, and there is a marked leg
pi ∈ L(GX) attached to the vertex v for each section si intersecting Xv.

• The weight g(v) of a vertex v ∈ V(GX) is the genus of the normalization of Xv.

• The length of an edge e ∈ E(GX) is equal to val(te), where te ∈ R is an element such that
the node corresponding to e is locally given by the equation xy = te.
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A point in Man
g,n is given by a smooth projective algebraic curve X/K of genus g over a

non-Archimedean extension of k together with n marked rational points. So we obtain a
natural tropicalization map

tropg,n :M
an
g,n −→Mtrop

g,n[
X/K

]
7−→ [

ΓX
]
.

The Deligne-Mumford boundary ofMg,n has (stack-theoretically) normal crossings. Thus
the open immersion Mg,n ↪→ Mg,n is a toroidal embedding. So, by [Thu07] and [ACP15],
there is natural strong deformation retraction

ρg,n :Man
g,n −→Man

g,n

onto a closed subset known as the non-Archimedean skeleton Σg,n ofMg,n; it naturally has the
structure of a generalized cone complex.

Theorem 6.1 ([ACP15] Theorem 1.1). The tropicalization map tropg,n : M
an
g,n → M

trop
g,n has a

natural section Φg,n : M
trop
g,n → Man

g,n that induces an isomorphism M
trop
g,n

'−→ Σg,n and identifies
tropg,n with the deformation retraction ρg,n.

Theorem 6.1, a posteriori, shows that tropg,n is well-defined, continuous, proper and
surjective.

Remark 6.2. The space Man
g,n is non-Archimedean analytic stack, i.e. a category fibered in

groupoids over the category of non-Archimedean analytic spaces, for which topological notions
such as deformation retractions do not a priori make sense; as a remedy we implicitly work
with its underlying topological space, which (topologically) agrees with the non-Archimedean
analytification of the coarse moduli space Mg,n ofMg,n (see [Uli17, Section 3] for details).

6.2 Compactifying the moduli space of divisors

Before we can study the specialization of divisors from algebraic to tropical curves from
a moduli-theoretic point of view in Section 6.3, we first need to find a natural toroidal
compactification of the moduli space of divisors.

Definition 6.3. Let g ≥ 1 and d+, d− ≥ 0, and assume that either d+ > 0 or d− > 0 if g = 1.
Define Divg,(d+,d−) to be the fibered category overMg whose fiber over a stable curve X→ S

is the set of pairs (X ′, D+, D−) consisting of a semistable model X ′ of X as well as two relative
effective Cartier divisorsD+ andD− of degrees d+ and d−, respectively, subject to the following
conditions:

(i) The supports of D+ and D− are contained in the non-singular part of X ′ in each fiber of
π : X ′ → S.

(ii) The twisted canonical divisor KX ′ +D+ +D− is π-relatively ample.

Write Divg,(d+,d−) for the restriction of Divg,(d+,d−) to the locus Mg of smooth curves in
Mg. It parametrizes smooth curves X together with a pair of effective divisors (D+, D−) of
degrees d+ and d−, and can be identified with the fibered product X (d+)

g ×Mg X
(d−)
g of two

symmetric powers of the universal curve Xg overMg.
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Theorem 6.4. The fibered category Divg,(d+,d−) defines a Deligne-Mumford stack that is smooth and
proper over k. Its coarse moduli space is projective and the complement of Divg,(d+,d−) in Divg,(d+,d−)

is a divisor with (stack-theoretically) normal crossings.

Proof. Let ε = 1
max(d+,d−) and consider the Hassett moduli spaceMg,εd++d− of weighted stable

curves of type (g, ε, . . . , ε). As in [MUW17, Section 1], the moduli space Divg,(d+,d−) is the
relative coarse moduli space (in the sense of [AOV11, Definition 3.2]) of the forgetful morphism[

Mg,εd++d−/Sd+ × Sd−
]
−→Mg .

This shows that Divg,(d+,d−) is a proper Deligne-Mumford stack with projective coarse moduli
space. The rest of the proof consists of a standard adaption of the deformation-theoretic
arguments for Hassett spaces, as in [Has03, Section 3.3]; it is left to the avid reader.

Remark 6.5. If d− = 0, then the moduli space Divg,d constructed in [MUW17, Section 2] that
provides us with a compactification of the moduli space of effective divisors of degree d on
smooth curves of genus g, i.e. of the d-th symmetric power of the universal curve overMg.
One can view this space also as a moduli space of stable quotients constructed by Marian,
Oprea, and Pandharipande (see [MOP11, Section 4.1]).

Remark 6.6. The moduli space Divg,(d+,d−) is neither equal to the fibered product X (d+)
g ×Mg

X (d−)
g of the universal curves X g overMg nor to Divg,d+ ×Mg

Divg,d− .

6.3 Specialization of divisors

In this section, we describe a universal version of the well-known procedure for specializing
divisors from algebraic to tropical curves (see [Bak08]).

Let X be a smooth curve over a non-Archimedean field K extending k, and let D be a
divisor on X. Choose two effective divisors D+ and D− on X such that D = D+ −D−. By the
valuative criterion of properness for Divg,(d+,d−), there is a finite extension K ′ of K as well as a
unique semistable model X ′ of XK ′ such that the following conditions hold:

(i) The closures D+ and D− of D+ and D− in X ′ do not meet the singularities of the special
fiber X ′0 of X ′.

(ii) The twisted canonical divisor KX ′ +D+ +D− is ample on X ′0 .

From this datum we define a divisor sp(D) on ΓX, called the specialization of D to ΓX, as follows.
The tropical curve associated to X ′ is ΓX, and we pick a model G ′X for ΓX having a vertex
v ∈ V(G ′X) for each irreducible component X ′v of X ′0 . We then set

sp(D) = mdeg(D+|X ′0 ) − mdeg(D−|X ′0 ).

Here mdeg(D±|X ′0 ) is the multidegree of D± on the irreducible components of X ′0 , so the
coefficient of v ∈ V(Γ ′X) in sp(D) is the difference of the intersection numbers of D+ and D−

with X ′v . We note that sp(D) does not depend on the choice of decomposition D = D+ −D−.
We have a natural tropicalization map

tropg,(d+,d−) : Div
an
g,(d+,d−) −→ Divtrop

g,(d+,d−)(
X/K,D+, D−

)
7−→ (

ΓX,mdeg(D+|X0),mdeg(D−|X0)
)
.
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By Theorem 6.4 the open immersion Divg,(d+,d−) ↪→ Divg,(d+,d−) is stack-theoretically a toroidal
embedding. So, again by [Thu07] and [ACP15], there is natural strong deformation retraction

ρg,(d+,d−) : Divang,(d+,d−) −→ Divang,(d+,d−)

whose image is the non-Archimedean skeleton Σg,(d+,d−) of Divg,(d+,d−).

Theorem 6.7. The tropicalization map tropg,(d+,d−) : Div
an
g,(d+,d−) → Divtrop

g,(d+,d−) has a natural

section Φg,(d+,d−) : Divtrop
g,(d+,d−) → Divang,(d+,d−) that induces an isomorphism

Divtrop
g,(d+,d−)

'−−→ Σg,(d+,d−)

and identifies tropg,d with the deformation retraction ρg,(d+,d−).

As above, Theorem 6.7 implies that the tropicalization map tropg,(d+,d−) is well-defined,
continuous, proper, and surjective.

Proof of Theorem 6.7. This proof follows the already well-paved road that has been built in the
proof of [ACP15, Theorem 1.2.1]. The central point is that both the cones of Divg,(d+,d−) and
the toroidal boundary strata of Divg,(d+,d−) are parameterized by the objects of the category
Ig,(d+,d−) of stable triples (G,D+, D−), as in Section 3.3. We leave the details of this argument
to the avid reader.

Proposition 6.8. Let (a+1 , . . . , a
+
n+

) and (a−1 , . . . , a
−
n−

) be partitions of d+ and d− respectively. Then
the natural diagram

Man
g,n++n−

M
trop
g,n++n−

Divang,d+,d− Divtropg,d+,d−

tropg,n++n−

tropg,(d+,d−)

is commutative, where the vertical maps send the marked points (or legs) p+1 , . . . , p
+
n+

and p−1 , . . . , p
−
n−

to the pair of divisors
∑n+

i=1 a
+
i p

+
i and

∑n−

i=1 a
−
i p

−
i .

Proof. Let ε = 1
d++d−

. By [Uli15b, Proposition 5.1], the natural diagram

Man
g,n++n−

M
trop
g,n++n−

Man
g,εn++n− M

trop
g,εn++n−

tropg,n++n−

trop
g,εn++n−

is commutative. Consider the natural closed immersion Mg,εn ↪→ Mg,εd++d− that sends
a pointed curve (X, p+1 , . . . , p

−
n−

) to the pointed curve (X, p+1 , . . . , p
+
1 , . . . , p

−
n−
, . . . , p−n−

) where
each point p+i is marked a+i many times, and each p−j is marked a−j many times. On the tropical
side, the analogous map identifies Mtrop

g,εn++n− with the subcomplex of Mtrop

g,εd++d−
consisting of

curves whose legs are split into groups of sizes a±i , with all legs in each group attached at a
single point. It is clear that both inclusions naturally commute with tropicalization. In Theorem
6.4 we have seen that Divg,(d+,d−) is a quotient of Mg,εd++d− by Sd+ × Sd− (quotients commute
with analytification by [CT09, Theorem 1.2.2.]) and in Proposition 3.11 that Divtrop

g,(d+,d−) is a

quotient of Mtrop

g,εd++d−
by Sd+ × Sd− . We prove our claim by observing that tropg,εd++d− is

(Sd+ × Sd−)-invariant.
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6.4 Tropicalization of admissible covers

We recall the tropicalization of admissible covers introduced in [CMR16]. Fix g, h ≥ 0, and let
µ = (µ1, . . . , µr) be a vector of partitions of an integer d > 0. Denote by Hg→h,d(µ) the moduli
space of degree d Hurwitz covers with ramification profile µ, parametrizing morphisms
f : X ′ → X of the following kind:

• X ′ is a smooth projective curve of genus g with marked points p ′ij for i = 1, . . . , r and
j = 1, . . . , |µi|, and additional marked points q ′ij for i = 1, . . . , s and j = 1, . . . , d− 1.

• X is a smooth projective curve of genus h with marked points pi for i = 1, . . . , r, and
additional marked points qi for i = 1, . . . , s.

• f is a degree d morphism mapping p ′ij to pi with ramification profile µi and q ′ij to qi
with simple ramification profile (2, 1, . . . , 1), and no other ramification points.

As in Chapter 3.4, the number s of simple ramification points is uniquely determined by
Eq. (11). We write Hg→h,d(µ) for the compactification of Hg→,d(µ) as a space of admissible
covers as in [HM82]1.

We define a natural tropicalization map

tropg→h,d(µ) : Hang→h,d(µ) −→ H
trop
g→h,d(µ)

as follows. A point in Hang→h,d(µ) is given by a degree d Hurwitz cover f : X ′ → X defined
over a non-Archimedean extension K of k, with ramification points and local degrees as
described above. The valuative criterion for properness, applied to Hg→h,d(µ), yields (possibly
after a finite extension of K) a unique extension of X ′ → X to a family of admissible covers
X ′ → X over the valuation ring R of K. This family defines an unramified harmonic morphism
ϕ : ΓX ′ → ΓX of tropical curves as follows.

• The family restricts to a map of the special fibers X ′0 → X0, which sends components to
components, nodes to nodes, and marked points to marked points. Hence there is an
induced map ϕ : GX ′ → GX on the dual graphs of the special fibers.

• Consider a node in X0, corresponding to an edge e ∈ E(GX) and having local equation
xy = te. A point over this node is a node in X ′0 , corresponding to an edge e ′ with local
equation x ′y ′ = te ′ , and furthermore there exists an integer re ′ ≥ 1 such that te = (te ′)

re ′

and the morphism is locally given by x = (x ′)re ′ and y = (y ′)re ′ . We set the degree of ϕ
on e ′ to be dϕ(e ′) = re ′ . For a vertex v ′ ∈ V(GX ′) the degree dϕ(v ′) is the degree of the
map X ′v ′ → Xϕ(v ′), while on the legs the degrees of ϕ are µij on p ′ij and (2, 1, . . . , 1) on
q ′ij.

Identifying ϕ with the restriction of fan : Xan → Yan to their minimal non-Archimedean
skeletons, we find that ϕ is a finite harmonic morphism by [ABBR15a, Theorem A]. This can
also be deduced from the fact that away from nodes and marked points the reduction of ϕ to

1We secretly work with the normalization of Hg→h,d(µ), constructed in [ACV03] as a moduli space of twisted
stable maps to BSn, or rather a cover thereof taking into account markings on the source curve (as in [JKK05, SvZ18]).
For the purpose of this paper it is safe to ignore this extra complication.
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the special fiber is a covering space. Finally, applying the Riemann-Hurwitz formula to each
component, we find that ϕ : ΓX ′ → ΓX is unramified, and therefore defines an element

tropg→h,d(µ)[f : X ′ → X
]
=
[
ϕ : ΓX ′ → ΓX

]
in the tropical Hurwitz space Htropg→h,d(µ).

The boundary of Hg→h,d(µ) in Hg→h,d(µ) has normal crossings. So there is a strong
deformation retraction ρg→h,d(µ) from Hang→h,d(µ) onto a closed subset Σg→h,d(µ), the non-
Archimedean skeleton of Hang→h,d(µ), as defined in [Thu07, ACP15]. The following Theorem 6.9
from [CMR16] shows that these two maps are compatible.

Theorem 6.9 ([CMR16] Theorem 1). The tropicalization map

tropg→h,d(µ) : Hang−→h,d(µ)→ Htropg→h,d(µ)
naturally factors through the retraction ρg→h,d(µ) : Hang→h,d(µ) → Σg→h,d(µ) and the induced map
Σg→h,d(µ)→ Htropg→h(µ) is a strict morphism of generalized cone complexes, i.e. the restriction of it to
every cone in Σg→h,d(µ) maps isomorphically onto a cone in Htropg→h,d(µ).

Again, we a posteriori see that the tropicalization map tropg→h,d(µ) is well-defined, contin-
uous, and proper. It is, however, not surjective.

Example 6.10. Let φ : •0,6 → •0,3 be the harmonic morphism of degree 4 from a tropical curve
consisting of one genus zero vertex and 6 legs to a tropical curve consisting of one genus zero
vertex and 3 legs, with dilation profiles (2, 2), (2, 2), (3, 1) along the legs. This morphism is
unramified, but it cannot be the tropicalization of a ramified cover P1 → P1 with multiplicity
profile (2, 2), (2, 2), (3, 1), since such a cover does not exist algebraically (see Example 3.4
in [ABBR15b])

Example 6.10 is the simplest negative example of the so-called Hurwitz existence problem. It
asks when, given two genera g, h ≥ 0 and a vector of partitions µ = (µ1, . . . , µn) of d > 0 that
fulfill the Riemann-Hurwitz condition, there is a ramified degree d cover X→ Y of compact
Riemann surfaces of genera g and h respectively with ramification profile µ. We refer the
reader to [PP06] for an extensive treatment of this still largely unsolved problem.

Let ϕ : G ′ → G be an unramified harmonic morphism of weighted graphs. For a vertex
v ′ ∈ V(G ′), we consider the degrees of f on the half-edges Tv ′G ′. Specifically, we let µϕ(v ′)
be the valϕ(v ′)-tuple of partitions of degϕ(v

′), indexed by the half-edges Tϕ(v ′)G. The local
Hurwitz number hg(v ′)→g(v)(µϕ(v ′)) is the number of ramified covers of an algebraic curve
of genus g(v) by an algebraic curve of genus g(v ′) with ramification profile µϕ(v ′) (weighted
by automorphism). We say that ϕ is a cover of Hurwitz type if the local Hurwitz numbers
hg(v ′)→g(v)(µϕ(v ′)) are not equal to zero for any v ′ ∈ V(G ′).

Theorem 6.11 ([CMR16] Theorem 2). The image of tropg→h,d(µ) are precisely the cones parametriz-
ing admissible covers of Hurwitz type.

In the proof of our result we will use that the tropicalization map naturally commutes with
the tautological morphisms.
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Theorem 6.12 ([CMR16] Theorem 4). Let N = |µ1|+ · · ·+ |µr|+ s(d−1) to be the number of points
in the preimage of the branch points. The tropicalization map tropg→h,d(µ) : Hang→h,d(µ)→ Htropg→h,d(µ)
naturally commutes with source and branch target morphisms. In other words, the diagram

Hang→h,d(µ) Man
h,r+s

H
trop
g→h,d(µ) M

trop
h,r+s

Man
g,N M

trop
g,N

bran

srcan

tropg→h,d(µ) troph,r+s

brtrop

srctrop

tropg,N

is commutative.

6.5 The realizability problem

Finally, we now prove Theorem A and D from the introduction. We first need to following
auxiliary result, which, together with Corollary 2.31, also implies that the tropicalization of
DRg,a is a semilinear subset of PDtrop

g,a .

Proposition 6.13. The restriction of the tropicalization map tropg,n : M
an
g,n −→ M

trop
g,n to DRang,a

naturally factors through DRtropg,a .

Proof. Let d =
∑
i:ai>0

ai = −
∑
i:ai<0

ai be the degree of a and µ = (µ1, . . . , µr) be a vector of
partitions of d such that µ1 = (ai)i:ai>0 and µ2 = (−ai)i:ai<0. Let N = |µ1|+ · · ·+ |µr|+ s(d− 1).
By Theorem 6.12 and [ACP15, Theorem 1.2.2] we have a natural commutative diagram

Hang→h,d(µ) H
trop
g→h,d(µ)

Man
g,N M

trop
g,N

Man
g,n M

trop
g,n

srcan

tropg→h,d(µ)

srctrop

forgetan

tropg,N

forget

tropg,n

(17)

where n = |µ1|+ |µ2|. Given a point in DRang,a ⊆Man
g,n, we find that it naturally lifts to a point

in Hang→h,d(µ) for some choice of µ as above. Therefore, by the commutativity of (17), its image
under the tropicalization map tropg,n also lies in DRtropg,a .

Proof of Theorem A and D. By Theorem 6.11, the image of tropg→h,d(µ) in (17) are precisely
those cones in Htropg→h,d(µ) that parametrize unramified covers of Hurwitz type. This immedi-
ately shows Theorem D. Since the diagram

Man
g,n M

trop
g,n

Divang,d,d Divtrop
g,(d,d)

tropg,n

tropg,d,d

commutes, by Proposition 6.8, this also implies Theorem A.
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