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ON SYMMETRIC PRIMITIVE POTENTIALS

PATRIK NABELEK, DMITRY ZAKHAROV, AND VLADIMIR ZAKHAROV

Abstract. The concept of a primitive potential for the Schrödinger op-

erator on the line was introduced in [2, 3, 4]. Such a potential is de-

termined by a pair of positive functions on a finite interval, called the

dressing functions, which are not uniquely determined by the potential.

The potential is constructed by solving a contour problem on the com-

plex plane. In this paper, we consider a reduction where the dressing

functions are equal. We show that in this case, the resulting potential

is symmetric, and describe how to analytically compute the potential as

a power series. In addition, we establish that if the dressing functions

are both equal to one, then the resulting primitive potential is the elliptic

one-gap potential.

Keywords: integrable systems, Schrödinger equation, primitive po-

tentials

1. Introduction

One of the fundamental insights underlying the modern theory of inte-

grable systems is the discovery of an intimate relationship between certain

linear differential or difference operators, on one hand, and corresponding

nonlinear equations on the other. The first of these relationships to be dis-

covered, and arguably the most important one, is the link between the one-

dimensional Schrödinger equation on the real axis

(1) − ψ′′ + u(x)ψ = Eψ, −∞ < x < ∞,

and the Korteweg–de Vries equation

(2) ut(x, t) = 6u(x, t)ux(x, t) − uxxx(x, t).

The study of solutions of the KdV equation has proceeded hand-in-hand

with an analysis of the spectral properties of the Schrödinger operator that

is applied to ψ on the left hand side of the Schrödinger equation (1).

There are three broad methods for constructing solutions of the KdV

equation, based on restricting the potentials of the Schrödinger operator.

The inverse scattering method (ISM) allows us to construct potentials, and

hence solutions of the KdV equation, that are rapidly vanishing as x→ ±∞.
1
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Such potentials have a finite discrete spectrum for E < 0 and a doubly de-

generate continuous spectrum for E > 0, and a subset of them, correspond-

ing to multisoliton solutions of the KdV equation, are reflectionless for pos-

itive energies. The finite-gap method, on the other hand, constructs periodic

and quasi-periodic potentials of the Schrödinger operator (1) whose spec-

trum consists of finitely many allowed bands, one infinite, separated by

forbidden gaps. These potentials are reflectionless in the allowed bands.

Both of these methods construct globally defined solutions of the KdV

equation. The third method, called the dressing method [1], constructs so-

lutions locally near a given point on the (x, t)-plane. An advantage of the

method is that the constructed solutions can be quite general. However, the

problem of extending such solutions to the entire (x, t)-plane is a difficult

one.

Our work is motivated by a pair of related questions. First, one can ask

what is the exact relationship between the ISM and the finite-gap method,

and whether they can both be generalized by the dressing method. It has

long been known that multisoliton solutions of the KdV equation are limits

of finite-gap solutions corresponding to rational degenerations of the spec-

tral curve. However, the converse relationship, which would consist in ob-

taining finite-gap solutions as limits of multisoliton solutions, has not been

worked out. Additionally, one can ask which potentials of the Schrödinger

operator, other than the finite-gap ones, have a band-like structure.

In the papers [2, 3, 4], the second and third authors presented a method

for constructing potentials of the Schrödinger operator (1), called primitive

potentials, that provides partial answers to these questions. Primitive po-

tentials are constructed by directly implementing the dressing method, and

can be thought of as the closure of the set of multisoliton potentials. This

procedure involves a reformulation of the ISM that is inherently symmetric

with respect to the involution x → −x, and the resulting primitive poten-

tials are non-uniquely determined by a pair of positive, Hölder-continuous

functions, called the dressing functions, defined on a finite interval.

In this paper we continue the study of primitive potentials. We consider

primitive potentials defined by a pair of dressing functions that are equal.

Such potentials are symmetric with respect to the reflection x → −x. We

show that the contour problem defining symmetric primitive potentials can

be solved analytically, and we give an algorithm for computing the Taylor

coefficients of a primitive potential. In the case when the dressing functions

are both identically equal to 1, we show that the corresponding primitive

potential is the elliptic one-gap potential.
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2. Primitive potentials

In this section, we recall the definition of primitive potentials, which were

first introduced in the papers [2, 3, 4] as generalizations of finite-gap poten-

tials. Primitive potentials are constructed by taking the closure of the set of

N-soliton potentials as N → ∞, so we begin by summarizing the inverse

scattering method (ISM) as a contour problem (see [6], [7]). The finite-

gap method is symmetric with respect to the transformation x→ −x, while

the ISM is not, so we give an alternative formulation of the ISM (in the

reflectionless case) that takes this symmetry into account.

2.1. The inverse scattering method. Consider the self-adjoint Schrödinger

operator

(3) L(t) = −
d2

dx2
+ u(x, t)

on the Sobolev space H2(R) ⊂ L2(R). We suppose that the potential u(x, t)

rapidly decays at infinity when t = 0:

(4)

∫ ∞

−∞
(1 + |x|)(|u(x, 0)| + |ux(x, 0)| + |uxx(x, 0)| + |uxxx(x, 0)|) dx < ∞

and satisfies the KdV equation (2). Under this assumption, the spectrum

of L(t) consists of an absolutely continuous part [0,∞) and a finite number

of eigenvalues −κ2
1
, . . . ,−κ2

N
that do not depend on t. There exist two Jost

solutions ψ±(k, x, t) such that

(5) L(t)ψ±(k, x, t) = k2ψ±(k, x, t), Im(k) > 0,

with asymptotic behavior

(6) lim
x→±∞

e∓ikxψ±(k, x, t) = 1.

The Jost solutions ψ± are analytic for Im k > 0 and continuous for Im k ≥ 0,

and have the following asymptotic behavior as k →∞ with Im k > 0:

(7) ψ±(k, x, t) = e±ikx

(
1 + Q±(x, t)

1

2ik
+ O

(
1

k2

))
,

where

(8) Q+(x, t) = −
∫ ∞

x

u(y, t) dy, Q−(x, t) = −
∫ x

−∞
u(y, t) dy.

The Jost solutions satisfy the scattering relations

(9) T (k)ψ∓(k, x, t) = ψ±(k, x, t) + R±(k, t)ψ±(k, x, t), k ∈ R,
where T (k) and R±(k, t) are the transmission and reflection coefficients, re-

spectively. These coefficients satisfy the following properties:
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Proposition 1. The transmission coefficient T (k) is meromorphic for Im k >

0 and is continuous for Im k ≥ 0. It has simple poles at iκ1, . . . , iκN with

residues

(10) Resiκ j
T (k) = iµ j(t)γ j(t)

2,

where

(11) γ j(t)
−1
= ||ψ+(iκ j, x, t)||2, ψ+(iκ j, x, t) = µ j(t)ψ−(iκ j, x, t).

Furthermore,

(12) T (k)R+(k, t) + T (k)R−(k, t) = 0, |T (k)|2 + |R±(k, t)|2 = 1.

If we denote R(k, t) = R+(k, t), R(k) = R(k, 0), and γ j = γ j(0), then

(13) T (−k) = T (k), R(−k) = R(k), k ∈ R, ,

(14) |R(k)| < 1 for k , 0, R(0) = −1 if |R(0)| = 1,

and the function R(k) is in C2(R) and decays as O(1/|k|3) as |k| → ∞. The

time evolution of the quantities R(k, t) and γ j(t) is given by

(15) R(k, t) = R(k)e8ik3t, γ j(t) = γ je
4κ3

j
t
.

The collection (R(k, t), k ≥ 0; κ1, . . . , κN , γ1(t), . . . , γN(t)) is called the scat-

tering data of the Schrödinger operator L(t). We encode the scattering data

as a contour problem in the following way. Consider the function

(16) χ(k, x, t) =

{
T (k)ψ−(k, x, t)eikx, Im k > 0,

ψ+(−k, x, t)eikx, Im k < 0.

Proposition 2. Let (R(k); κ1, . . . , κN , γ1, . . . , γN) be the scattering data of

the Schrödinger operator L(0). Then the function χ(k, x, t) defined by (16)

is the unique function satisfying the following properties:

(1) χ is meromorphic on the complex k-plane away from the real axis

and has non-tangential limits

(17) χ±(k, x, t) = lim
ε→0

χ(k ± iε, x, t), k ∈ R

on the real axis.

(2) χ has a jump on the real axis satisfying

(18) χ+(k, x, t) − χ−(k, x, t) = R(k)e2ikx+8ik3 tχ−(−k, x).

(3) χ has simple poles at the points iκ1, . . . , iκn and no other singulari-

ties. The residues at the poles satisfy the condition

(19) Resiκ j
χ(k, x, t) = ic je

−2κ jx+8κ3
j
t
χ(−iκ j, x, t), c j = γ

2
j .
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(4) χ has the asymptotic behavior

(20) χ(k, x, t) = 1 +
i

2k
Q(x, t) + O

(
1

k2

)
, |k| → ∞, Im k , 0.

The function χ is a solution of the equation

(21) χ′′ − 2ikχ′ − u(x)χ′ = 0,

and the function u(x, t) given by the formula

(22) u(x, t) =
d

dx
Q(x, t)

is a solution of the KdV equation (2) satisfying condition (4).

Remark 3. We note that the contour problem for χ is not symmetric with

respect to the transformation k → −k. The reflection coefficient R(k) satis-

fies the symmetry condition (13), however, χ is required to have poles in the

upper k-plane and be analytic in the lower k-plane. This asymmetry comes

from the definition (5) of the Jost functions and is therefore ultimately of

physical origin: in the ISM, we consider a quantum-mechanical particle ap-

proaching the localized potential from the right, in other words the method

is not symmetric with respect to the transformation x→ −x. We will see in

the next section that this asymmetry prevents us from directly relating the

ISM to the finite-gap method.

It is common (see [7]) to instead consider the two-component vector

[χ(k) χ(−k)]. The jump condition on the real axis (18) is then replaced by

a local Riemann–Hilbert problem. This Riemann–Hilbert problem includes

poles on the upper and lower k-planes, but the transformation k → −k

merely exchanges the components, which does not fix the asymmetry.

Remark 4. It is possible to relax the constraint |R(k)| < 1 for k , 0 and

allow |R(k)| to be equal to 1 inside two symmetric finite intervals v < |k| < u.

In this case, the Riemann–Hilbert problem (18) is still uniquely solvable

and generates a potential of the Schrödinger operator and a solution of the

KdV equation. However, in this case condition (4) is not satisfied, and the

potential is not rapidly decaying, at least when x → −∞. This extremely

interesting case is completely unexplored.

2.2. N-soliton solutions. We now restrict our attention to the reflectionless

case, in other words we assume that R(k) = 0. In this case, the function

χ has no jump on the real axis and is meromorphic on the entire k-plane

with simple poles at the points iκ1, . . . , iκN. Hence Prop. 2 reduces to the

following.
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Proposition 5. Let (0; κ1, . . . , κN , γ1, . . . , γN) be the scattering data of the

Schrödinger operator L(0) with zero reflection coefficient. Then the func-

tion χ(k, x, t) defined by (16) is the unique function satisfying the following

properties:

(1) χ is meromorphic on the complex k-plane with simple poles at the

points iκ1, . . . , iκN and no other singularities, and its residues satisfy

condition (19).

(2) χ has the asymptotic behavior (20) as |k| → ∞.

The corresponding solution u(x, t) of the KdV equation (2), given by for-

mula (22), is known as the N-soliton solution. Finding this solution is a

linear algebra exercise. If χ is expressed in terms of its residues

(23) χ = 1 +

N∑

n=1

χn

k − iκn

,

then plugging this into equation (19) gives a linear equation

(24) χn + cne−2κn x+8κ3
n t

N∑

m=1

χm

κn + κm

= cne−2κnx+8κ3
n t.

Let A be the determinant of this system:

(25) A =
∑

I⊂{1,...,N}

∏

(i, j)⊂I, i< j

(κi − κ j)
2

(κi + κ j)2

∏

i∈I

qie
−2κix+8κ3

i
t, qi =

ci

2κi

> 0.

Then the corresponding N-soliton solution of the KdV equation (2) is

(26) u(x, t) = −2
d2

dx2
log A.

2.3. The naı̈ve limit N → ∞. The papers [2], [3], [4] were motivated

by the following question. There exists a family of solutions of the KdV

equation, called the finite-gap solutions, that are parametrized by the data

of a hyperelliptic algebraic curve with real branch points and a line bundle

on it. The solutions are given by the Matveev–Its formula

(27) u(x, t) = −2
d2

dx2
lnΘ(Ux + Vt + Z|B),

where Θ(·|B) is the Riemann theta function of the hyperelliptic curve, and

U, V , and Z are certain vectors. The solution u(x, t) is quasiperiodic in x

and in t. It is well-known that the N-soliton solutions of the KdV equation

(26) can be obtained from the Matveev–Its formula by degenerating the

hyperelliptic spectral curve to a rational curve with N branch points. Is it

possible, conversely, to obtain the Matveev–Its formula (27) as some kind

of limit of N-soliton solutions (26) when N → ∞?
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We may attempt to naı̈vely pass to the limit N → ∞ in (26) in the fol-

lowing way. Let [a, b] be an interval on the positive real axis, let R1 be a

positive Hölder-continuous function on [a, b], and let µ be a non-negative

measure on [a, b]. Consider the following integral equation

(28) f (p, x, t) +
R1(p)

π
e−2px+8p3 t

∫ b

a

f (q, x, t)

p + q
dµ(q) = R1(p)e−2px+8p3 t

imposed on a function f (p, x, t), where p ∈ [a, b]. Let a = κ1 < κ2 <

· · · < κN = b be a partition of [a, b] uniformly approximating µ. Replacing

the above integral with the corresponding Riemann sum, and denoting cn =

R1(κn)(b−a)/πN and χn = f (κn)(b−a)/πN, we obtain equation (24). Hence

equation (28) can be seen as the limit of (24) as N →∞.

It is easy to show that (28) has a unique solution, and that the correspond-

ing function

(29) u(x, t) = −2
d

dx

∫ b

a

f (p, x, t)dµ(p)

is a bounded solution of the KdV equation, satisfying the condition −2b <

u < 0. The solution is oscillating as x → −∞, but as x → +∞ it is clear

that f (p, x, t) → R(k)e−2kx+8k3 t, hence u(x, t) decays exponentially. In other

words, u(x, t) can be viewed as a superposition of an infinite number of

solitons uniformly bounded away from +∞. In particular, no solution ob-

tained in this way will be an even function of x at any moment of time.

It is therefore impossible to obtain the finite-gap solutions given by the

Matveev–Its formula (27) in this way, since these solutions are not decreas-

ing as x→ +∞. This lack of symmetry is due to the formulation of the ISM

(see Remark 3). These observations were earlier made by Krichever [5],

and a rigorous study of the properties of such solutions, showing the above

results, was undertaken by Girotti, Grava and McLaughlin in [8].

2.4. Symmetric N-soliton solutions. In this section, we consider what

happens if we try to impose by hand symmetry with respect to the spatial

involution x 7→ −x at t = 0. We recall than an N-soliton solution of the KdV

equation (26) is determined by N distinct positive parameters κ1, . . . , κN and

N additional positive parameters q1, . . . , qN .

Proposition 6. Let κ1, . . . , κN be distinct positive numbers, and let

(30) qn =

∣∣∣∣∣∣∣
∏

m,n

κn + κm

κn − κm

∣∣∣∣∣∣∣
, n = 1, . . . ,N.

Then the N-soliton solution u(x, t) of the KdV equation given by (26) is

symmetric at time t = 0:

(31) u(−x, 0) = u(x, 0).
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Proof. At time t = 0, the function A(x) = A(x, t) is equal to

A(x) = 1+q1e−2κ1 x
+· · ·+qNe−2κN x

+· · ·+(q1 · · · qN)
∏

i< j

(κi − κ j)
2

(κi + κ j)2
e−2(κ1+···+κN )x.

Denote Φ = κ1 + · · · + κN . We observe that the function Ã(x) = eΦxA(x) is

symmetric: Ã(−x) = Ã(x). Therefore, so is the corresponding solution of

the KdV equation:

u = −2
d2

dx2
log A = − d2

dx2
log Ã.

�

We now observe that if we attempt to pass to the limit N → ∞, for

example by setting κn = a + (b − a)n/N, then the coefficients qn given

by (30) have small denominators and diverge. Therefore we cannot obtain

finite-gap solutions by this method.

2.5. From the ISM to the dressing method. One of the main results of

the papers [2], [3], [4] is a generalization of the ISM within the framework

of the dressing method. This construction allows us to take the N → ∞
limit of the set of N-soliton solutions and obtain finite-gap solutions. We

briefly describe this generalization.

An N-soliton solution is given by Eqs. (25)-(26), where the ci and the κi

are the scattering data of a reflectionless potential and are therefore positive.

However, formally these equations make sense under the weaker assump-

tion that κi + κ j , 0 for all i and j and that ci/κi are positive. The corre-

sponding function χ has poles on both the positive and the negative parts of

the imaginary axis.

Proposition 7. Let κ1, . . . , κN , c1, . . . , cN be nonzero real numbers satisfying

the following conditions:

(1) κi , ±κ j for i , j.

(2) c j/κ j > 0 for all j.

Then there exists a unique function χ(k, x, t) satisfying the following prop-

erties:

(1) χ is meromorphic on the complex k-plane with simple poles at the

points iκ1, . . . , iκN and no other singularities, and its residues satisfy

condition (19).

(2) χ has the asymptotic behavior (20) as |k| → ∞.

The function u(x, t) given by Eqs. (25)-(26) is a solution of the KdV equa-

tion (2).
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We emphasize that, for a given N, the set of solutions of the KdV equa-

tion obtained using this proposition is still the set of N-soliton solutions.

Specifically, one can check that the solution given by (25)-(26) for the data

(κ1, . . . , κN , c1, . . . , cN) is the N-solition solution given by the scattering data

(|κ1|, . . . , |κN |, c̃1, . . . , c̃N), where

(32)

c̃ j = c j

∏

κn<0

(
κ j − κn

κ j + κn

)2

if κ j > 0, c̃ j = −
4κ2

j

c j

∏

κn<0, n, j

(
κ j − κn

κ j + κn

)2

if κ j < 0.

In other words, a N-soliton solution with a given set of parameters κn > 0

and phases cn > 0 is described by Prop. 7 in 2N different ways, by choosing

the signs of the κn arbitrarily and adjusting the coefficients cn using the

above formula.

We now give an informal argument why this alternative description of

N-soliton potentials allows us to obtain finite-gap potentials in the N → ∞
limit. In the previous two sections, we made two attempts to use formu-

las (25)-(26) with κn > 0 to produce N-soliton solutions with large N. We

can either keep the qn bounded, in which case all solitons end up on the

left half-axis, or symmetrically distribute the solitons about x = 0, in which

case the qn (or, alternatively, the cn) need to be large.

To obtain a symmetric distribution of N solitons using Proposition 7, we

choose, as in Section 2.4, a set of parameteres κn > 0, and set the phases qn

according to (30). We then change the signs of half of the κn, and change

the cn according to Eq. (32). The resulting cn will be bounded for large N,

enabling us to take the N →∞ limit.

2.6. Primitive potentials. In the papers [2, 3, 4] the second and third au-

thors considered a contour problem that can be viewed as the limit of Prop. 7

as N → ∞.

Proposition 8. Let 0 < k1 < k2, and let R1 and R2 be positive, Hölder-

continuous functions on the interval [k1, k2]. Suppose that there exists a

unique function χ(k, x, t) satisfying the following properties:

(1) χ is analytic on the complex k-plane away from the cuts [ia, ib] and

[−ib,−ia] on the imaginary axis, and has non-tangential limits

(33) χ±(ip, x, t) = lim
ε→0

χ(ip ± ε, x, t), p ∈ (−k2,−k1) ∪ (k1, k2)

on the cuts.
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(2) χ has jumps on the cuts satisfying

χ+(ip, x, t) − χ−(ip, x, t) = iR1(p)e−2px+8p3 t[χ+(−ip, x, t) + χ−(−ip, x, t)],

(34)

χ+(−ip, x, t) − χ−(−ip, x, t) = −iR2(p)e2px−8p3 t[χ+(ip, x, t) + χ−(ip, x, t)],

(35)

for p ∈ [k1, k2].

(3) χ has asymptotic behavior at infinity

(36) χ(k, x, t) = 1 +
i

2k
Q(x, t) + O

(
1

k2

)
, |k| → ∞, Im k , 0.

(4) There exist constants C(x, t) and α < 1 such that near the points

±ik1 and ±ik2 the function χ satisfies

(37) |χ(k, x, t)| < C(x, t)

|k ∓ ik j|α
, k → ±ik j, j = 1, 2.

Then the function u(x, t) given by the formula

(38) u(x, t) =
d

dx
Q(x, t)

is a solution of the KdV equation (2).

We call solutions of the KdV equation obtained in this way primitive

solutions. For fixed moments of time, we obtain primitive potentials of the

Schrödinger operator (1).

Remark 9. Condition (37) does not appear in the papers [2, 3, 4] and is

an oversight of the authors. It is necessary, because we consider dressing

functions R1 and R2 that do not vanish at k1 and k2. For such functions χmay

have logarithmic or algebraic singularities at the endpoints. Condition (37)

is needed to exclude trivial meromorphic solutions of the Riemann–Hilbert

problem, having poles at ±ik j and no jump on the cuts.

We also note that formulas (34)-(35) differ from the ones in [2, 3, 4] by a

factor of π, this now seems to us to be a more natural normalization of the

dressing functions R1 and R2.

Remark 10. There is a simple observation that justifies the need to include

poles in both the upper and lower half planes when producing a finite gap

potential as a limit of N-soliton potentials as N → ∞. The spectrum of an

N-soliton potential determined by {κn, cn}Nn=1
is purely simple for the nega-

tive energy values E = −κ2
n, and doubly degenerate for E > 0. Therefore,

a limit as N → ∞ of N-soliton solutions with poles in the upper half-plane

will have a simple spectrum E ∈ [−k2
2
,−k2

1
] (in the one band case) and a

doubly degenerate spectrum for E > 0. This is precisely the structure of the
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spectrum of a one-sided primitive potential having R2 ≡ 0, which limits to

a finite gap solution as x→ −∞, but a trivial solution as x→∞.

A finite-gap potential, on the other hand, has a doubly degenerate contin-

uous spectrum on the interior of its bands, and a simple continuous spectrum

on the band ends. To produce a finite-gap potential as a limit of N-soliton

potentials as N → ∞, we need to include poles in both half-planes, so that in

the limit we end up with two linearly independent bounded wave functions

for E in the interior of a band.

A function χ(k, x, t) satisfying properties (33)-(36) can be written in the

form

(39) χ(k, x, t) = 1 +
i

π

∫ k2

k1

f (q, x, t)

k − iq
dq +

i

π

∫ k2

k1

g(q, x, t)

k + iq
dq,

for some functions f (q, x, t) and g(q, x, t) defined for q ∈ [a, b]. Plugging

this spectral representation into (34)-(35), we obtain the following system

of singular integral equations on f and g for p ∈ [k1, k2]:

f (p, x, t) +
R1(p)

π
e−2px+8p3 t

[∫ k2

k1

f (q, x, t)

p + q
dq +

? k2

k1

g(q, x, t)

p − q
dq

]
= R1(p)e−2px+8p3 t,

(40)

g(p, x, t) +
R2(p)

π
e2px−8p3 t

[? k2

k1

f (q, x, t)

p − q
dq +

∫ k2

k1

g(q, x, t)

p + q
dq

]
= −R2(p)e2px−8p3 t.

(41)

The corresponding solution of the KdV equation is equal to

(42) u(x, t) =
2

π

d

dx

∫ k2

k1

[
f (q, x, t) + g(q, x, t)

]
dq.

3. Symmetric primitive potentials

In this section, we show how to solve equations (40)-(41) analytically as

Taylor series in the case when R1 = R2. Suppose that

(43) R1(p) = R2(p) = R(p).

In this case g(p, x, t) = − f (p,−x,−t) and Eqs. (40)-(41) reduce to the single

equation for all p ∈ [k1, k2]:

(44)

f (p, x, t)+
R(p)

π
e−2px+8p3 t

[∫ k2

k1

f (q, x, t)

p + q
dq −

? k2

k1

f (q,−x,−t)

p − q
dq

]
= R(p)e−2px+8p3 t.

The corresponding primitive solution u(x, t) of the KdV equation

(45) u(x, t) =
2

π

d

dx

∫ k2

k1

[
f (q, x, t) − f (q,−x,−t)

]
dq
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satisfies the symmetry condition

(46) u(−x,−t) = u(x, t).

In particular, the potential u(x) = u(x, 0) at t = 0 is symmetric:

(47) u(−x) = u(x).

(48) u(x) =
2

π

d

dx

∫ k2

k1

[
f (q, x) − f (q,−x)

]
dq

Remark 11. We emphasize that, in order for a primitive potential to be

symmetric, it is sufficient but not necessary for the dressing functions R1

and R2 to be equal.

We now denote f (p, x) = f (p, x, 0) and set t = 0 in Eq. (44):

(49)

e2px f (p, x)+
R(p)

π

[∫ k2

k1

f (q, x)

p + q
dq −

? k2

k1

f (q,−x)

p − q
dq

]
= R(p), p ∈ [k1, k2].

We show that this equation can be solved analytically. Introduce the vari-

able s = p2 and expand f (p, x) as a Taylor series in x, separating the even

and odd coefficients in the following way:

(50) f (p, x) =

∞∑

k=0

1

(2k)!
x2k fk(s) +

∞∑

k=0

1

(2k + 1)!
x2k+1

√
shk(s), s = p2.

Plugging this into (49) and collecting powers of x, we obtain the following

system of equations on fk(s) and hk(s), where k is a non-negative integer:

(51)

fk(s)+R(
√

s)H[ fk](s) = R(
√

s)δ0k−
k−1∑

i=0

(
2k

2i

)
22k−2i sk−i fi(s)−

k−1∑

j=0

(
2k

2 j + 1

)
22k−2 j−1 sk− jh j(s),

(52)

hk(s)−R(
√

s)H[hk](s) = −
k∑

i=0

(
2k + 1

2i

)
22k−2i+1 sk−i fi(s)−

k−1∑

j=0

(
2k + 1

2 j + 1

)
22k−2 j sk− jh j(s).

Here H is the Hilbert transform on the interval [k2
1
, k2

2
]:

(53) H[ψ(s)] =
1

π

? k2
2

k2
1

ψ(s′)

s′ − s
ds′.

The corresponding primitive potential is given by

(54) u(x) =
2

π

∞∑

k=0

x2k

(2k)!

∫ k2
2

k2
1

hk(s′)ds′.
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Equations (51)-(52) can be solved recursively for fk and hk provided that we

know how to invert the operators 1 ± R(
√

s)H. This can be done explicitly

using the following proposition.

Proposition 12. Let α(s) be a Hölder-continuous function on the interval

[k2
1
, k2

2
]. The integral operator Lα defined by

(55) Lα[ψ(s)] = ψ(s) + tan(πα(s))H[ψ(s)]

has a unique inverse given by

(56)

L−1
α [ϕ(s)] = cos2(πα(s))ϕ(s)−sin(πα(s))e−πH[α(s)]H[cos(πα(s))eπH[α(s)]ϕ(s)].

If α is constant, then L−1
α can be written as

(57)

L−1
α [ϕ(s)] = cos2(πα)ϕ(s) − sin(πα) cos(πα)

(
s − k2

1

k2
2
− s

)α
H


(
k2

2
− s

s − k2
1

)α
ϕ(s)

 .

Proof. The singular integral equation Lα[ψ(s)] = ϕ(s) takes the form

(58) ψ(s) − tan(πα(s))

π

? k2
2

k2
1

ψ(r)

s − r
dr = ϕ(s).

We invert this equation to express ψ in terms of ϕ by reformulating it as an

inhomogeneous Riemann–Hilbert problem. The function Ψ(s) defined by

Ψ(s) =
1

π

∫ k2
2

k2
1

ψ(r)

s − r
dr

is holomorphic in s ∈ C \ [k2
1
, k2

2
]. The boundary values of Ψ from the right

and the left for s ∈ [k2
1, k

2
2] satisfy

(59)
i

2
(Ψ+(s) −Ψ−(s)) = ψ(s),

1

2
(Ψ+(s) + Ψ−(s)) =

1

π

? k2
2

k2
1

ψ(r)

s − r
dr.

The integral equation (58) is then equivalent to the Privalov problem

(60) Ψ
+(s) − e−2iπα(s)

Ψ
−(s) = −2i cos(πα(s))e−iπα(s)ϕ(s)

where Ψ is normalized by the asymptotic behavior Ψ(s)→ 0 as s→∞.

To be able to apply the Plemelj formula to solve the Privalov problem

(60) we first need to remove the multiplicative factor in front of Ψ−. We do

this by looking for Ψ in the form Ψ(s) = Φ(s)Ξ(s). Here the functions Φ(s)

andΞ(s) are holomorphic inC\[k2
1 , k

2
2], and satisfy the following conditions.

The function Φ(s) satisfies the corresponding homogeneous Riemann–

Hilbert problem

Φ
+(s) = e−2iπα(s)

Φ
−(s)
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and has the asymptotic behavior Φ(s) → 1 as s → ∞. Such a Φ(s) is given

by

Φ(s) = exp


∫ k2

2

k2
1

α(r)

s − r
dr

 .

The boundary values of Φ are

(61) Φ
±(s) = exp(−πH[α(s)] ∓ iπα(s))

for s ∈ [k2
1
, k2

2
]. Note that Φ→ Φ−1 under the transformation α→ −α.

The function Ξ(s) satisfies the jump condition

Ξ
+(s) − Ξ−(s) = cos(πα(s))e−iπα(s)−2iϕ(s)

Φ+(s)
= −2i cos(πα(s))eπH[α(s)]ϕ(s)

for s ∈ [k2
1, k

2
2] and has the asymptotic behavior Ξ(s)→ 0 as s→ ∞. By the

Plemelj formula, Ξ(s) is given by

Ξ(s) =
1

π

∫ k2
2

k2
1

cos(πα(r))eπH[α(r)]ϕ(r)

s − r
dr = H[cos(πα(s))eπH[α(s)]ϕ(s)].

The boundary values of Ξ are

(62) Ξ
±(s) = H[cos(πα(s))eπH[α(s)]ϕ(s)] ∓ i cos(πα(s))eπH[α(s)]ϕ(s)

for s ∈ [k2
1
, k2

2
].

We now evaluate ψ(s) using (59), (61) and (62):

ψ(s) =
i

2
(Ψ+(s) − Ψ−(s)) =

i

2
(Φ+(s)Ξ+(s) −Φ−(s)Ξ−(s))

= cos2(πα(s))ϕ(s) − sin(πα(s))e−πH[α(s)]H[cos(πα(s))eπH[α(s)]ϕ(s)],

proving the proposition. The result for constant α comes from the well-

known fact that

(63) πH[1] = log |s − k2
2| − log |s − k2

1|.

�

Using this proposition with α(s) = tan−1 R(
√

s)/π, we can recursively

solve equations (51)-(52) and obtain u(x) as a power series in x.

4. The case of constant R

As an example, we calculate the first two coefficients of u(x) as a Taylor

series in the case when R is a constant positive function. Let α = tan−1(R)/π,

then 0 < α < 1. By Prop. 12, the operators

L±α[ψ(s)] = ψ(s) ± tan(πα)H[ψ(s)]
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are inverted by

L−1
±α[ϕ(s)] = cos2(πα)ϕ(s) ∓ sin(πα) cos(πα)a±1(s)H[a∓1(s)ϕ(s)],

where the function

(64) a(s) =

(
s − k2

1

k2
2
− s

)α

is continuous on [k2
1
, k2

2
) and has an integrable singularity at s = k2

2
. The

equations (51)-(52) determining f0, h0, f1, h1 are

Lα[ f0(s)] = tan(πα),

L−α[h0(s)] = −2 f0(s),

Lα[ f1(s)] = −4sh0(s) − 4s f0(s),

L−α[h1(s)] = −6 f1(s) − 12sh0(s) − 8s f0(s).

We compute

L−1
α [1] = cos(πα)a(s),

L−1
−α[a(s)] =

1

2
(a(s) + a−1(s)),

L−1
α [sa−1(s)] =

s

2
(a(s) + a−1(s)) − α(k2

2 − k2
1)a(s),

L−1
−α[sa(s)] =

s

2
(a(s) + a−1(s)) − α(k2

2 − k2
1)a−1(s).

We therefore obtain

f0(s) = tan(πα)L−1
α [1] = sin(πα)a(s),

h0(s) = −2 sin(πα)L−1
−α[a(s)] = − sin(πα)(a(s) + a−1(s)),

f1(s) = 4 sin(πα)L−1
α [sa−1(s)] = 2 sin(πα)s(a(s) + a−1(s)) − 4α sin(πα)(k2

2 − k2
1)a(s),

h1(s) = 24(k2
2 − k2

1)α sin(πα)L−1
−α[a(s)] − 8 sin(πα)L−1

−α[sa(s)]

= (k2
2 − k2

1)α sin(πα)(12a(s) + 20a−1(s)) − 4 sin(πα)s(a(s) + a−1(s)).

The integrals

∫ k2
2

k2
1

a(s)ds =

∫ k2
2

k2
1

a−1(s)ds =
π(k2

2
− k2

1
)α

sin(πα)
,

∫ k2
2

k2
1

sa(s)ds =
πα

2 sin(πα)
((k4

2 − k4
1) + α(k2

2 − k2
1)2),

∫ k2
2

k2
1

sa−1(s)dp =
πα

2 sin(πα)
((k4

2 − k4
1) − α(k2

2 − k2
1)2),
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allow us to compute

2

π

∫ k2
2

k2
1

h0(s)ds = −4(k2
2 − k2

1)α,

2

π

∫ k2
2

k2
1

h1(s)ds = 8(k2
2 − k2

1)α(4(k2
2 − k2

1)α − (k2
2 + k2

1)),

therefore by Equation (54) we get

(65) u(x) = −4α(k2
2 − k2

1)+ 4α(k2
2 − k2

1)(4α(k2
2 − k2

1) − (k2
2 + k2

1))x2
+O(x4).

We know that R = 1 (hence α = 1/4) and k1 = 0 produces the exact solution

u(x) = −k2
2
, and indeed by the above formula we get u0 = −k2

2
and u1 = 0 in

this case.

Formula (65) has some interesting implications. In the limit as R → 0

we observe that u(0) → 0 and u′′(0) → 0. In the limit as R → ∞ we

observe that u(0) → −2(k2
2
− k2

1
) and u′′(0) → 4(k2

2
− 2k2

1
). Note that if

k2
2 > 2k2

1 then u′′(0) approaches a positive number from below as R → ∞,

but if k2
2
< 2k2

1
then u′′(0) approaches a negative number. If k2

2
< 2k2

1
we see

that in fact u′′(0) is negative for all R. On the other hand, if k2
2 ≥ 2k2

1 then

u′′(0) will be negative for R ∈ (0, tan(π(k2
2
− k2

1
)/(k1

2
+ k2

1
))), u′′(0) will be

positive for R ∈ (tan(π(k2
2 − k2

1)/(k1
2 + k2

1)),∞), and u′′(0) = 0 for R = 0 or

R = tan(π(k2
2
− k2

1
)/(k1

2
+ k2

1
)).

5. One-zone symmetric potential

In this section, we show that the dressing R1 = R2 = 1 on the interval

[k1, k2] produces the elliptic one-gap potential

(66) u(x) = 2℘(x + iω′ − ω) + e3.

Previously, in the papers [3, 4], the second and third authors showed that

this potential arises from the dressing

(67) R1(p) =
1

R2(p)
=

√
(q − k1)(q + k2)

(k2 − q)(q + k1)
.

Our new result uses the notation and calculations of [3, 4], but relies on the

results of Chapter 4.

First, we observe that if

R2(p) = 1/R1(p),

then equations (34)-(35) reduce to

χ+(ip, x, t) = iR1(p)e−2px+8p3 tχ+(−ip, x, t), χ−(ip, x, t) = −iR1(p)e−2px+8p3 tχ−(−ip, x, t),
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for p ∈ [k1, k2]. When R1(p) = 1 and t = 0, the contour problem for

χ(k, x) = χ(k, x, 0) is

(68)

χ+(ip, x) = ie−2pxχ+(−ip, x), χ−(ip, x) = −ie−2pxχ−(−ip, x), p ∈ [k1, k2].

Our goal is to find the function χ satisfying (68). This can in principle be

done using the inductive procedure described in Chapter 4 with R = 1 and

α = 1/4. However, we will need only the first Taylor coefficient. Indeed, if

we set x = 0, then

f (p, 0) = f0(p) = sin(πα)a(s) =
1
√

2

(
s − k2

1

k2
2
− s

)1/4

.

Hence we find that the function

ξ(k) = χ(k, 0) = 1 +
i

π

∫ k2

k1

f (q, 0)

k − iq
dq − i

π

∫ k2

k1

f (q, 0)

k + iq
dq =

(
k2
+ k2

1

k2 + k2
2

)1/4

satisfies equation (68) with x = 0:

(69) ξ+(ip) = iξ+(−ip), ξ−(ip) = −iξ−(−ip), p ∈ [k1, k2].

We now look for a solution of (68) in the form χ(k, x) = ξ(k)χ1(k, x),

where χ1(k, x) satisfies the condition

(70)

χ+1 (ip, x) = e−2pxχ+1 (−ip, x), χ−2 (ip, x) = e−2pxχ−2 (−ip, x), p ∈ [k1, k2].

Such a function has already been found in [2, 3]. Let e1, e2, e3 be defined by

the equations

k2
1 = e2 − e3, k2

2 = e1 − e3, e1 + e2 + e3 = 0.

Let ℘(z) = ℘(z|ω,ω′) be the Weierstrass function with half-periods ω and

ω′, where ω is real and ω′ is purely imaginary, such that

e1 = ℘(ω), e2 = ℘(ω + iω′), e3 = ℘(iω′).

We introduce, as in [2, 3], the variable z via the relation

(71) k2
= e3 − ℘(z).

This relation expresses the complex planeCwith cuts [ik1, ik2] and [−ik1,−ik2]

along the imaginary axis as a double cover of the period rectangle of ℘. The

Schrödinger equation (1) with potential given by (66) is the Lamé equation

(72) ϕ′′ − [2℘(x − ω − iω′) + ℘(z)]ϕ = 0.

The Lamé equation has a solution

(73) ϕ(x, z) =
σ(x − ω − iω′ + z)σ(ω + iω′)

σ(x − ω − iω′)σ(ω + iω′ − z)
e−ζ(z)x



18 P. NABELEK, D. ZAKHAROV, AND V. ZAKHAROV

which has an essential singularity ϕ(x, z) ∼ e−x/z near the point z = 0 (cor-

responding to k = ∞). Therefore the function

(74) χ1(k, x) = ϕ(x, z)e−ikx
= ϕ(x, z)e−ix/ sn z

tends to 1 as k → ∞. It is easy to check that χ1(k, x) satisfies the contour

problem (70). Putting everything together, we obtain the following result.

Proposition 13. Let k2 > k1 > 0. Then the function

(75) χ(k, x) =

(
k2
+ k2

1

k2 + k2
2

)1/4

ϕ(x, z)e−ikx, k2
= e3 − ℘(z)

satisfies conditions (33)-(37) with R1 = R2 = 1 and t = 0. The potential

u(x) defined by (38) is the elliptic one-gap potential (66).

In Section 2.5, we observed that an N-soliton potential is described using

the dressing method in 2N different ways. Since primitive potentials are

limits of N-soliton potentials, it is also true that a primitive potential can

be described using the dressing method in multiple ways, in other words by

different pairs of functions R1 and R2. Here we observe an example of this

behavior: the elliptic one-gap potential can be constructed using constant

dressing functions R1 = R2 = 1, or using the dressing (67).
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