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POWERS OF THE THETA DIVISOR AND RELATIONS

IN THE TAUTOLOGICAL RING

EMILY CLADER, SAMUEL GRUSHEVSKY, FELIX JANDA,
AND DMITRY ZAKHAROV

Abstract. We show that the vanishing of the (g + 1)-st power
of the theta divisor on the universal abelian variety Xg implies,
by pulling back along a collection of Abel–Jacobi maps, the van-
ishing results in the tautological ring of Mg,n of Looijenga, Ionel,
Graber–Vakil, and Faber–Pandharipande. We also show that Pix-
ton’s double ramification cycle relations, which generalize the theta
vanishing relations and were recently proved by the first and third
authors, imply Theorem ⋆ of Graber and Vakil, and we provide an
explicit algorithm for expressing any tautological class on Mg,n of
sufficiently high codimension as a boundary class.

1. Introduction

The tautological ring R∗(Mg) is the subring, of either the cohomol-
ogy or the Chow ring of Mg, generated by the Mumford–Morita–Miller
κ-classes [Mu83, Mo84, Mi86] defined by

κi = π∗(ψ
i+1),

where π : Mg,1 → Mg and ψ = c1(ωπ). Faber and Pandharipande
[FP05] gave an elegant extension of this definition to the Deligne-
Mumford compactification: the rings R∗(Mg,n) are the smallest system
of Q-subalgebras (either of the cohomology or the Chow ring of Mg,n)
closed under pushforward by the gluing morphisms

Mg1,n1+1 ×Mg2,n2+1 → Mg1+g2,n1+n2,

Mg,n+2 → Mg+1,n

and the forgetful morphisms

Mg,n+1 → Mg,n.
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Restricting R∗(Mg) to Mg recovers the κ-ring R∗(Mg), while more
generally, the restriction of the tautological ring to the open moduli
space Mg,n is generated by the κ-classes together with the ψ-classes,

ψi = c1(s
∗
iωπ),

in which π : Mg,n+1 → Mg,n and si is the section of π determined by
the i-th marked point.
Faber initiated an extensive study of R∗(Mg) in [F99B], using clas-

sical methods. Based on his observations, he formulated a striking
series of conjectures suggesting that the tautological ring possesses a
rich and remarkably well-behaved structure. In particular, he proposed
that R∗(Mg) vanishes in sufficiently high codimension, a result that
was proved by Looijenga and Ionel:

Theorem 1 (Looijenga [L95], Ionel [I02]). The tautological ring of
Mg,n vanishes in degrees greater than or equal to g, as well as in degree
g − 1 when n = 0.

A key geometric insight into these and other properties of the tau-
tological ring was provided by Graber and Vakil in [GraV05], in which
Theorem 1 was shown to be a consequence of the following result:

Theorem 2 (Theorem ⋆ of [GraV05]). Any tautological class on Mg,n

of codimension k can be represented by a class supported on the locus
of curves having at least k − g + 1 rational components.

More generally, Theorem ⋆ also implies several other properties of
the tautological rings, including the analogous vanishing statements to
Theorem 1 for curves with rational tails and curves of compact type
and the “socle” statements for these moduli spaces (that is, the one-
dimensionality of the tautological ring in the smallest nonzero codi-
mension); see [GraV05, Section 5].
A stronger form of Theorem ⋆ was proved by Faber and Pandhari-

pande:

Theorem 3 ([FP05]). There exists an expression for any codimension
k tautological class in terms of tautological classes supported on curves
with at least k − g + 1 rational components.

The point, here, is that the boundary expression is itself tautological.
However, implementing the proof of [FP05] as an algorithm to compute
this expression explicitly seems to be computationally impractical.
The main result of the current paper is a new proof of Theorem 1

from a family of tautological relations on Mct
g,n that we call the Θ-

relations. These relations arise by pulling back the universal theta
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divisor on the universal abelian variety to Mct
g,n under suitable Abel-

Jacobi maps, and observing that the its (g + 1)-st power vanishes in
the Chow ring. These were discussed in [H13, GZ14B], and we give the
details in Section 2. Thus, we prove:

Theorem 4. The Θ-relations on Mct
g,n imply Theorem 1 in the Chow

ring of Mg,n.

The key advantage of this new proof of Theorem 1 — aside from
the fact that it proceeds by an entirely elementary argument from the
Θ-relations — is that it leads naturally to a constructive proof of Theo-
rem ⋆ (and hence also implies Theorem 3). Indeed, the Θ-relations can
be viewed as the restriction to Mct

g,n of a family of relations called the
double ramification cycle relations (see Theorem 8 below), first conjec-
tured by Pixton and later proved by the first and third authors [ClJ16].
These relations arise, as we discuss in Section 2.2, from a perspective
on the theta divisor via the moduli space of relative stable maps to
the projective line. By carefully tracking the boundary contributions
to the double ramification cycle relations, the vanishing in the proof of
Theorem 1 from the Θ-relations is upgraded to an explicit algorithm for
computing tautological boundary expressions for tautological classes in
degree at least g.
We summarize the preceding discussion in the following theorem:

Theorem 5. Pixton’s double ramification cycle relations on Mg,n im-
ply Theorem ⋆ (and its strengthening, Theorem 3), as well as an al-
gorithm for computing explicit tautological boundary formulas in the
Chow ring for any tautological class on Mg,n of codimension at least
g.

The paper is organized as follows. We recall the definition of the
Θ-relations and Pixton’s double ramification cycle relations in Section
2, and in Section 3, we give the proofs of Theorems 4 and 5. We then
exemplify our algorithm by using it to compute boundary expressions
for ψ1 and κ1 on M1,1 in Section 4. Throughout the paper, we work
in the Chow ring with rational coefficients; all results also imply the
analogous statements in the Q-cohomology since, by definition, the
cycle class map is surjective on the tautological ring.

2. The Θ-relations and Pixton’s double ramification

cycle relations

Fix a genus g ≥ 0 and an integer n > 0 such that 2g − 2 + n > 0,
and let

A := (a1, . . . , an), ai ∈ Z
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be a vector satisfying the condition

n∑

i=1

ai = 0.

Define the locus Zg,A ⊂ Mg,n to consist of marked curves (C, p1, . . . , pn)
satisfying

(1) OC

(
n∑

i=1

aipi

)
∼= OC .

Then Zg,A is of pure codimension g in Mg,n. Eliashberg posed the
question of computing the class [Zg,A] of Zg,A, in the cohomology or
the Chow ring of Mg,n, and of defining and computing the extension
of [Zg,A] to Mg,n.

2.1. The Θ-relations and moduli of abelian varieties. One ap-
proach to Eliashberg’s problem, introduced by Hain in [H13], is to con-
sider (1) as a relation on the Jacobian variety of the curve C, and vary
it in moduli. Let Ag denote the moduli space of principally polarized
abelian varieties, and define the Abel–Jacobi map sA : Mg,n → Xg to
the universal abelian variety Xg = {([A], z) | [A] ∈ Ag, z ∈ A} by the
formula

(2) sA(C, p1, . . . , pn) := (Jac0C ,OC(a1p1 + . . .+ anpn)).

The locus Zg,A is then easily seen to be the preimage of the zero section
of Xg under sA:

Zg,A := s−1
A Zg, where Zg := {([A], 0) | [A] ∈ Ag} ⊂ Xg.

A stable curve is of compact type if and only if its Jacobian is an
abelian variety, and the Abel–Jacobi map sA naturally extends to the
moduli space of curves of compact type Mct

g,n ⊂ Mg,n (see formula (14)
in [GZ14A] or Section 0.2.3 in [JPPZ16]). To define this extension, let

(C, p1, . . . , pn) be a stable marked curve of compact type, let C̃ be the

normalization, let C̃ = C1 ⊔ . . . ⊔ CN be the decomposition of C into
irreducible components, and for each j, let qjk ∈ Cj be the preimages
of the nodes. There is a unique way to assign weights ajk to the nodes
such that the weights at a pair of matching nodes sum to zero, and on
each Cj, we have

∑

i : pi∈Cj

ai +
∑

k

ajk = 0.
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Then

Jac(C) =

N∏

j=1

Jac(Cj),

and the extension sA : Mct
g,n → Xg is defined by the following formula:

(3)

sA(C, p1, . . . , pn) =


Jac(C),

N∏

j=1

OCj




n∑

i:pi∈Cj

aipi +
∑

k

ajkqjk




 .

The closure of Zg,A in Mct
g,n is contained in s−1

A (Zg), and

s−1
A (Zg) ∩Mg,n = Zg,A.

However, s−1
A (Zg) has components of excessive dimension, coming from

curves having a rational tail. To account for these, we consider the
pullback

(4) Rct
g,A := s∗A[Zg],

either in the cohomology ring or in the Chow ring of Mct
g,n.

In [H13], Hain computed the class Rct
g,A in cohomology, using Hodge-

theoretic techniques. Hain’s calculations were simplified and extended
to the Chow ring by the second and fourth authors in [GZ14B]. The
main idea is to use the following result, which follows from the results of
Deninger and Murre [DM91, Cor. 2.22], by applying the Fourier-Mukai
transform to theta divisor, as explained in [EGM12, Exercise 13.2] or
in [BL04, Sec. 16.4, Exercise 16.8.1]; this was also independently proven
in cohomology by Hain [H13]:

Theorem 6. Let Θ ∈ CH1(Xg) denote the universal symmetric theta
divisor trivialized along the zero section. Then

(1) [Zg] =
Θg

g!
in CHg(Xg),

(2) Θg+1 = 0 in CHg+1(Xg).

To compute Rct
g,A, it thus suffices to compute the pullback of the

divisor Θ, which is a standard calculation using test curves. In addition,
for every A we get a relation [s∗AΘ]g+1 = 0 in CHg+1(Mct

g,n). We
summarize the results of [H13] and [GZ14B] in the following theorem,
where from now we denote [n] the set {1, . . . , n}:
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Theorem 7 (Θ-relations). The pullback of Θ to Mct
g,n along the Abel–

Jacobi map (3) is equal to

(5) s∗AΘ = −
1

4

g∑

h=0

∑

P⊂[n]

a2P δ
P
h ,

where aP =
∑

i∈P ai for any P ⊂ [n]. Here, δPh is the class of the
closure of the locus of curves having an irreducible component of genus
h containing the marked points indexed by P and an irreducible com-
ponent of genus g − h containing the remaining marked points. In the

cases when the resulting curve is not stable, we set δ
{i}
0 = δ

[n]\{i}
g = −ψi

and δ∅0 = δ
[n]
g = 0.

Formula (5) and Theorem 6 imply that the pullback of the zero section
is given by the following formula:

(6) Rct
g,A =

1

g!
[s∗AΘ]g ∈ CHg(Mct

g,n),

and that following relation holds:

(7) [s∗AΘ]g+1 = 0 ∈ CHg+1(Mct
g,n).

In [GZ14A], the second and fourth authors considered an extension
of this method further into the boundary of Mg,n. It was shown that

the Abel–Jacobi map sA extends to a map sA : M
o

g,n → X part
g , where

M
o

g,n is the moduli space of stable marked curves having at most one
non-separating node, and X part

g is the universal family over Mumford’s
partial compactification of Ag, parametrizing semiabelian varieties of
torus rank at most one. The principal result of [GZ14A] is the extension
of the formula [Zg] = Θg/g! for the zero section in CHg(Xg) to an
explicit polynomial relation in CHg(X part

g ), and the computation of its

pullback to CHg(M
o

g,n).
Following this approach further would involve extending the Abel–

Jacobi map to further intermediate compactifications of Mg,n, and
simultaneously adding boundary strata to Xg that parametrize higher
torus-rank degenerations of principally-polarized abelian varieties. This
leads to two technical difficulties. First, the extension of the formula
[Zg] = Θg/g! to X part

g obtained in [GZ14A] is already quite compli-
cated, and the deeper boundary strata of Xg have an increasingly com-
plex combinatorial structure, so the corresponding calculations do not
seem combinatorially manageable at this point. In addition, on bound-
ary strata not contained in M

o

g,n the Abel–Jacobi map does not extend
to a morphism, and its indeterminacy locus needs to be resolved. The



POWERS OF THE THETA DIVISOR AND VANISHING 7

question of extending the Abel–Jacobi map (3) to various compactifi-
cations of the universal Jacobian variety and resolving the singularities
of the Abel–Jacobi map has been considered in a number of recent
papers (see [Du15, Ho14, KPag15, Me11, MeRV14, Me16]).

2.2. The double ramification cycle and Pixton’s relations. An
alternative way to extend Zg,A to Mg,n is given by the double rami-
fication cycle. To motivate the definition, we observe that the locus
Zg,A ⊂ Mg,n of marked curves satisfying condition (1) has an equiva-
lent definition as the locus of (C, p1, . . . , pn) admitting a ramified cover
f : C → P1 such that

• f−1(0) = {pi | ai > 0} and f−1(∞) = {pi | ai < 0}.
• The ramification profiles of f over 0 and∞ are µ = {ai | ai > 0}
and ν = {|ai| | ai < 0}, respectively.

(No condition is imposed on the marked points pi with ai = 0.) To ex-
tend Zg,A to Mg,n, then, one can compactify the space of such ramified
covers, allowing both C and the target P1 to degenerate. The resulting
object is what is called the moduli space of rubber relative stable maps
to P1 and is denoted Mg,n0(P

1;µ, ν)∼, where n0 := # {i | ai = 0}.
For more details on the moduli space of rubber relative stable maps,

see [FP05]. The crucial property required here is that it admits a
virtual fundamental class (constructed algebraically by Jun Li [Li01]):

[Mg,n0(P
1;µ, ν)∼]vir ∈ CHvdim(Mg,n0(P

1;µ, ν)∼).

From here, one defines the double ramification cycle by pushforward

Rg,A := τ∗[Mg,n0(P
1;µ, ν)∼]vir ∈ CHg(Mg,n)

along the natural forgetful morphism

τ : Mg,n0(P
1;µ, ν)∼ → Mg,n.

The restriction of Rg,A to Mg,n is the class of Zg,A, essentially by
definition. Marcus and Wise [MW13] proved, moreover, that the re-
striction of Rg,A to Mct

g,n is equal to the class Rct
g,A defined by (4), and

in [CMW12], Cavalieri, Marcus, and Wise independently computed the
restriction of Rg,A to the moduli space Mrt

g,n of curves with rational
tails, obtaining the same result as in Theorem 7.
Faber and Pandharipande proved in [FP05] that the class Rg,A is

tautological, and provided a method to calculate it in principle. The
computational difficulties of their method, however, are too great to
obtain an explicit formula. This situation was remedied by a conjecture
of Pixton, which proposed not only a formula for Rg,A (generalizing



8 E. CLADER, S. GRUSHEVSKY, F. JANDA, AND D. ZAKHAROV

equation (6) of Theorem 7) but also a generalization of the Θ-relations
(equation (7) of Theorem 7) to all of Mg,n.
The basic idea of Pixton’s conjecture, which we explain further in

Section 4.1 below, is to view the terms [s∗AΘ]g and [s∗AΘ]g+1 appearing
in Theorem 7 as appropriate multiples of the parts in degree g and g+1
of the mixed-degree class exp[s∗AΘ] ∈ CH∗(Mct

g,n). The expression (5)
can be packaged into an elegant formula for exp[s∗AΘ] as a graph sum,
and Pixton used an ingenious modification of this graph sum to extend
exp[s∗AΘ] to a class Ωg,A ∈ CH∗(Mg,n). Generalizing both statements
of Theorem 7, then, he conjectured that Ωg,A coincides with Rg,A in
codimension g and vanishes in higher codimension.
Both parts of Pixton’s conjecture have recently been proven:

Theorem 8 ([JPPZ16, ClJ16]). Let [•]d denote the degree-d part of
a mixed-degree class in CH∗(Mg,n). Then the class Ωg,A satisfies the
following:

(1) [Ωg,A]g = Rg,A.
(2) [Ωg,A]d = 0 for d > g.

The second of these statements is what we refer to as “Pixton’s
double ramification cycle relations.”
The proof of part (1), by the third author, Pandharipande, Pixton,

and Zvonkine, uses localization on the moduli space of relative stable
maps to an orbifold projective line in order to compare Ωg,A to the
virtual cycle of a simpler moduli space of orbifold stable maps. Part
(2) was proved by the first and third authors by leveraging relations
on the orbifold stable maps space previously observed in [Cl13]. In
addition, it was shown in [ClJ16] that Pixton’s relations follow from
another collection of relations, also originally conjectured by Pixton,
known as the 3-spin relations and proved in [J15] and [PPZ15].

Remark 9. The restriction of the class Ωg,A to the moduli space M
o

g,n

of [GZ14A] is equal to the pullback of the zero section Zpart
g of the

partial compactification of X part
g under the Abel–Jacobi map sA.

We give the explicit formula for Ωg,A as Equation (28) in Section 4.1.
The calculations of Section 3, in which we prove Theorems 4 and 5,
do not require the full formula for Ωg,A but only the existence of an
extension of the Θ-relations.

3. Proofs of vanishing theorems

We now turn to the proof of the vanishing of the tautological ring
Rk(Mg,n) in degree k ≥ g − δ0n, and of Graber–Vakil’s Theorem ⋆,
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via explicit computation from the relations discussed in the previous
section. More precisely, the results we need are the following:

Θ-relations, Theorem 7: Let s∗AΘ be the pullback of the theta divisor
(5). Then

[s∗AΘ]g+1 = 0 ∈ CHg+1(Mct
g,n).

This relation is a polynomial of degree 2g + 2 in the variables ai.

Pixton’s relations, Theorem 8: For each A there exists an expression
[Ωg,A]g+1 in tautological classes of codimension g + 1 that vanishes as
an element of CHg+1(Mg,n) and that restricts in CHg+1(Mct

g,n) to the

expression for [s∗AΘ]g+1/(g + 1)! given by (5). In other words, one has
the relation

(8) [s∗AΘ]g+1 = DA,g+1 ∈ CHg+1(Mg,n),

where s∗AΘ on Mg,n is defined by (5) and DA,g+1 is a tautological class
supported away from Mct

g,n.

It is conjectured (see [Pi16] or [ClJ16, Lemma 2.1]) that the classes
[Ωg,A]g+1, and hence DA,g+1, are polynomial in the variables ai. How-
ever, this fact has not yet been definitively established, and is not
necessary for our results.

3.1. Some properties of tautological classes. Several formulas in-
volving the tautological classes on Mg,n will be useful later.
Let πn+1 : Mg,n+1 → Mg,n be the map that forgets the last marked

point. The pullbacks of ψ- and κ-classes under it are as follows (see
[ACo96, Section 1]):

(9) π∗
n+1ψi = ψi − δ

{i,n+1}
0 , π∗

n+1κa = κa − ψan+1,

where δ
{i,n+1}
0 is defined as in Theorem 7. The pushforward of a mono-

mial in the ψ-classes is equal to

πn+1,∗[ψ
k1
1 · · ·ψknn ψ

kn+1+1
n+1 ] = ψk11 · · ·ψknn κkn+1.

More generally, suppose n > m. Then the pushforward of a mono-
mial in the ψ-classes from Mg,n to Mg,m is given by the following
formula, originally due to Faber:
(10)

(πm+1◦· · ·◦πn)∗[ψ
k1
1 · · ·ψkmm ψ

km+1+1
m+1 · · ·ψkn+1

n ] = ψk11 · · ·ψkmm R(km+1, . . . , kn).

Here, R(km+1, . . . , kn) is a polynomial in the κ-classes,

R(km+1, . . . , kn) =
∑

σ∈Sn−m

κσ,
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where κσ is defined as follows: Given a permutation σ ∈ Sn−m, write it
as a product σ = α1 · · ·αν(σ) of disjoint cycles, and for a cycle α, define
|α| =

∑
i∈α km+i to be the sum of those among km+1, . . . , kn that are

permuted by α. Then

κσ := κ|α1| · · ·κ|αν(σ)|.

Note that

(11) R(km+1, . . . , kn) = κkm+1 · · ·κkn+

(monomials in fewer than n−m κ-classes),

where the first term on the right-hand side corresponds to the trivial
permutation in Sn−m. In particular, we note that R(k, 0, . . . , 0) is a
nonzero multiple of κk and R(0, . . . , 0) is a nonzero constant (recall
that κ0 = 2g − 2 + n).
We will also use the following simple lemma:

Lemma 10. Let 1 ≤ i1, . . . , ik ≤ n be integers, and let I ⊂ [n]. Then

(12) δI0ψi1 · · ·ψik = 0

on Mg,n whenever # {j|ij ∈ I} ≥ #I − 1.

Proof. Indeed, δI0 is the class of the boundary divisor ∆I
0, which is the

image under the gluing map of the product M0,#I+1 × Mg,n−#I+1.
When ij ∈ I, it is clear that the class ψij on Mg,n restricts on ∆I

0 to

the ψ-class of the corresponding point on M0,#I+1. Hence any class of
the form (12) vanishes if # {j|ij ∈ I} ≥ #I−1 = dimM0,#I+1+1. �

Finally, we recall the low genus topological recursion relations, ex-
pressing the divisors ψi and κ1 as boundary divisors (see Theorem 2.2
in [ACo98]):

(13) κ1 = ψ1 =
1

12
δirr ∈ CH1(M1,1),

(14) ψi =
∑

i∈I⊂[n]
#I=n−2

δI0 ∈ CH1(M0,n).

Here, δirr is the class of the locus of curves that have a non-separating
node.
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3.2. Additive generators of the tautological ring. We recall, for
future use in the proof of theorem ⋆ in subsection 3.5, the explicit set
of additive generators for the tautological ring defined via the strata
algebra ofMg,n; for references, see [GraP03] and [Pi13]. A stable graph
Γ = (V,H, g, p, ι) consists of the following data:

(1) A set of vertices V equipped with a genus function g : V → Z≥0.
(2) A set of half-edges H equipped with a vertex assignment p :

H → V and an involution ι : H → H .

We define the set of edges E of Γ to be the set of orbits of ι that are
of cardinality 2, and the set of legs L of Γ to be the set of fixed points
of ι; the pair (V,E) is then an ordinary graph. The valence of a vertex
v ∈ V is defined as n(v) = #p−1(v). We require that the following
conditions be satisfied:

(1) The graph Γ is connected.
(2) For every vertex v ∈ V ,

2g(v)− 2 + n(v) > 0.

We define the genus of a stable graph Γ to be

(15) g(Γ) = h1(Γ) +
∑

v∈V

g(v),

where h1(Γ) = #E−#V +1. An automorphism of a stable graph is a
permutation on both V and H , that preserves the incidence relations
and acts as the identity on legs.
Given a stable curve C of genus g with n marked points, its dual

graph is a stable graph of genus g with n legs. For a stable graph Γ of
genus g with n legs, let

MΓ :=
∏

v∈V

Mg(v),n(v).

Then there is a canonical gluing morphism

(16) ξΓ : MΓ → Mg,n,

whose image is the locus inMg,n in which the generic point corresponds
to a curve with stable graph Γ.
Let Γ be a stable graph. For each v ∈ V , let {xi[v]}i>0 and {y[h]}h∈p−1(v)

be sets of positive integers. Associated to each such choice of integers,
there is a basic class

γv =
∏

i>0

κ
xi[v]
i

∏

h∈p−1(v)

ψ
y[h]
h ∈ CHd(γv)(MΓ),
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having degree

d(γv) =
∑

i>0

ixi[v] +
∑

h∈p−1(v)

y[h].

We define

(17) γ =
∏

v∈V

γv ∈ CHd(γ)(MΓ),

whose degree is d(γ) =
∑

v∈V d(γv). The pair (Γ, γ) defines a tautolog-
ical class

ξΓ∗(γ) ∈ CHd(γ)+#E(Mg,n),

and the tautological ring of Mg,n is spanned by classes of this form.

3.3. A preliminary lemma. As a starting point toward the proof of
Theorem 4, and as an illustration of the methods we will use in the
rest of the paper, we prove the following lemma:

Lemma 11. Any degree-k monomial in the ψ-classes vanishes on Mg,n

if k ≥ g + 1 and n ≥ 2g + 3.

Proof. First, assume that k = g + 1 and n = 2g + 3.
Let ι : Mg,2g+3 → Mct

g,2g+3 be the inclusion map, and let A =
(a1, . . . , a2g+3) be such that

∑
ai = 0. The restriction of the Θ-relations

to CHg+1(Mg,2g+3) give

ι∗[s∗AΘ]g+1 =

[
1

2

2g+3∑

i=1

a2iψi

]g+1

= 0 ∈ CHg+1(Mg,2g+3),

where here and for the rest of the proof ψi denotes the ψ-class on
Mg,2g+3. Eliminating a2g+3 = −(a1 + . . . + a2g+2) and dropping the
1/2, we obtain

(18)

[
2g+2∑

i=1

a2iψi + (a1 + . . .+ a2g+2)
2ψ2g+3

]g+1

= 0

for any (a1 . . . , a2g+2) ∈ Z2g+2. This relation is a homogeneous polyno-
mial in the integer variables ai and the classes ψi, of degrees 2g+2 and
g+1, respectively, and we prove the lemma by alternatively considering
(18) as a polynomial in one set of variables or the other.
First, we view (18) as a polynomial in the a-variables taking values

in CHg+1(Mg,2g+3). It vanishes for all integer values of the ai only
if it is the zero polynomial— in other words, only if the coefficient in
front of each monomial in the ai is zero. Thus, any monomial in the
ai of degree 2g + 2 gives a relation in CHg+1(Mg,2g+3), which itself is
a polynomial of degree g + 1 in the ψ-classes. We need to check that
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there are enough such relations to ensure that every monomial in the
ψ-classes of degree g + 1 vanishes.
We now make a key observation. Consider (18) as a polynomial in

the ψ-classes whose coefficients are polynomials in the a-variables. For
every 1 ≤ j ≤ 2g + 2, ψj appears in (18) in the term a2jψj , hence the

coefficient of any ψ-monomial that is a multiple of ψkj is an a-polynomial

that is a multiple of a2kj .
If we now again view (18) as a polynomial in the ai, then the observa-

tion of the preceding paragraph implies that, for every 1 ≤ j ≤ 2g+2,
the coefficient of any monomial that is not a multiple of a2kj is a poly-
nomial in the ψ-classes that contains no monomials that are multi-
ples of ψkj . For example, the coefficient of the monomial a1 · · · a2g+2

does not contain the classes ψ1, . . . , ψ2g+2, and indeed, it is equal to

(2g + 2)!ψg+1
2g+3. We thus obtain our first vanishing,

(19) ψg+1
2g+3 = 0 ∈ CHg+1(Mg,2g+3)

which serves as the base of a descending induction on the power of
ψ2g+3 from which we prove the claim.
Let 1 ≤ k ≤ g + 1, and suppose that we have shown that any

monomial of degree g + 1 in the ψ-classes that is a multiple of ψk2g+3

vanishes. Let K = (k1, . . . , k2g+2) be non-negative integers satisfying

(20)

2g+2∑

i=1

ki = g + 1− (k − 1),

and denote
ΨK := ψk11 · · ·ψ

k2g+2

2g+2 .

Let j be the 2(k − 1)-st element, in increasing numerical order, in the
set

IK := {i | ki = 0} ⊂ {1, . . . , 2g + 2}.

(The fact that #IK ≥ 2(k − 1) is clear: indeed, otherwise we would
have g+1− (k− 1) =

∑2g+2
i=1 ki ≥ (2g+2)− 2(k− 1)+ 1, which would

imply k ≥ g + 3.) For 1 ≤ i ≤ 2g + 2, define mi by

mi =





2ki, i /∈ IK ,

1, i ∈ IK and i ≤ j,

0, i ∈ IK and i > j.

Since k1+. . .+k2g+2 = g+1−(k−1), we have m1+. . .+m2g+2 = 2g+2.
To show that ΨKψ

k−1
2g+3 = 0, we consider the monomial am1

1 · · · a
m2g+2

2g+2 .
The coefficient of this monomial in (18) is a polynomial of degree

g + 1 in the ψ-classes, and by the above observation, this polynomial
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contains no monomial that is a multiple of ψ
kj+1
j for any 1 ≤ j ≤ 2g+2.

But by (20), any ψ-monomial of degree g + 1 that is not a multiple of

any ψ
kj+1
j is a multiple of either ΨK or ψk2g+3. Hence the monomial

am1
1 · · ·a

m2g+2

2g+2 imposes the following relation:

CKΨKψ
k−1
2g+3 + [a multiple of ψk2g+3] = 0 ∈ CHg+1(Mg,2g+3),

where CK is a positive multinomial coefficient depending on K. By
induction, all ψ-monomials that are multiples of ψk2g+3 vanish, hence

so does ΨKψ
k−1
2g+3. This proves that any ψ-monomial of degree g + 1

vanishes on Mg,2g+3.
To finish the proof of the lemma, we note that, for n > 2g + 3, any

ψ-monomial of degree g + 1 on Mg,n can be obtained using (9) by
pulling back a ψ-monomial from Mg,2g+3 along a forgetful map, and
that the vanishing of all ψ-monomials in degree g + 1 trivially implies
vanishing in higher degrees. �

Remark 12. We have shown that the Θ-relations imply the vanish-
ing of the monomials of degree g + 1 in the ψ-classes on Mg,2g+3, by
what is really just a multidimensional Gaussian elimination. The same
Gaussian elimination can be used to obtain boundary formulas for these
classes on all of Mg,2g+3. For this, we use Pixton’s double ramification
cycle relations, as stated in equation (8). The left-hand side of (8) is
a polynomial of degree 2g + 2 in the ai, each coefficient of which is a
polynomial of degree g+ 1 in the ψ-classes and the boundary divisors.
The right-hand side is some tautological class supported on the divisor
∆irr of curves with a non-separating node. Moving all boundary terms
from the left to the right, we obtain an expression of the left-hand side
of (18) as a boundary class on Mg,2g+3.
To obtain boundary formulas for degree g + 1 monomials in the ψ-

classes, we proceed from equation (18) as in the proof of Lemma 11,
but we now keep track of the boundary on the right-hand side. If we
assume that Pixton’s class [Ωg,A]g+1 is a polynomial in the ai, then so is
Dg,A, and the proof is identical: each monomial of degree 2g+2 in the
ai imposes a relation in Mg,2g+3, and these relations imply the vanish-
ing of all ψ-monomials on Mg,2g+3, so the same Gaussian elimination
produces boundary formulas for all such monomials on Mg,2g+3. Even
without assuming polynomiality, one can construct a collection of finite
difference operators1 in the ai that isolate the coefficients of any degree
2g+2 polynomial in the ai. We then apply these operators (which are

1For example, if f(x, y) = ax2+bxy+cy2, then b = f(x+1, y+1)−f(x+1, y)−
f(x, y + 1) + f(x, y).
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defined for any function of the ai) to equation (8) and proceed as in
the proof of Lemma 11.

3.4. Proof of Theorem 1 from the Θ-relations. In this subsec-
tion, we prove Theorem 4; that is, we deduce Theorem 1 from the
Θ-relations. This also serves as the key technical step in our proof of
Theorem ⋆.

Proof of Theorem 4. Recall that Theorem 1 states that Rk(Mg,n) van-
ishes in degrees k ≥ g if n > 0 and in degrees k ≥ g − 1 if n = 0.
The proof of this statement is an elaboration of the technique of

Lemma 11, which constitutes the special case in which we restrict at-
tention to tautological classes involving only ψ-classes, assume that
n ≥ 2g + 3, and, most importantly, prove vanishing starting in degree
g+1 rather than g. In order to obtain relations in degree g, we consider
the Θ-relations on Mg,2g+3, multiply by appropriate classes, and push
forward under a forgetful map. The major new complication is that
we need too ensure that the forgetful map is proper. To this end, we
have to pass to the moduli space of curves of rational type, which ne-
cessitates keeping track of those boundary terms in (5) that map onto
the open part of the moduli space under the forgetful map.
Assume, first, that n ≤ g; in particular, we must have g > 0. Choose

non-negative integers c1, . . . , c2g+3 such that ci ≥ 1 for each n + 1 ≤
i ≤ 2g + 2, and denote

ΨC := ψc11 · · ·ψ
c2g+3

2g+3 .

Let c :=
∑2g+3

i=1 ci.
We multiply the Θ-relation (5) by ΨC and pull back under the inclu-

sion ιrt : M
rt
g,2g+3 → Mct

g,2g+3. After substituting a2g+3 = −a1 − . . . −
a2g+2 as before, we obtain:

(21)

ι∗rt[2s
∗
AΘ]g+1ΨC =



2g+2∑

i=1

a2iψi +

(
2g+2∑

i=1

ai

)2

ψ2g+3 +
∑

I⊂[2g+2],#I≥2

a2Iδ
I
0

+
∑

I⊂[2g+2],#I≥1

a2Icδ
I∪{2g+3}
0



g+1

ΨC = 0 ∈ CHc+g+1(Mrt
g,2g+3).

Here, we denoted aIc :=
∑

i∈[2g+2]\I ai, and we have explicitly separated
out the boundary divisors parametrizing curves having the last marked
point lying on the rational component. As in Lemma 11, this relation
is a homogeneous polynomial of degree 2g + 2 in the variables ai, and
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every monomial in the ai gives a separate relation in the tautological
ring, which is a polynomial of degree c + g + 1 in the ψ-classes and
boundary divisors on Mrt

g,2g+3.
We now make the following important observation.

Claim 1. The coefficient in (21) of any a-monomial that is a multiple
of a1 · · ·an is the sum of a polynomial in only the ψ-classes and a
collection of terms supported on the boundary, and each boundary term
that occurs is either a multiple of a divisor δI0 having #(I ∩ [n]) ≥ 2 or

of a divisor δ
I∪{2g+3}
0 having #(I ∩ [n]) ≥ 2.

Proof of Claim 1. First, we note that, according to Lemma 10, for any
I ⊂ [2g + 2] we have

(22) δI0ΨC = 0 if #(I ∩ [n]) ≤ 1,

(23) δ
I∪{2g+3}
0 ΨC = 0 if I ∩ [n] = ∅.

Therefore, the only boundary divisors that appear in (21) are δI0 with

#(I ∩ [n]) ≥ 2 and δ
I∪{2g+3}
0 with #(I ∩ [n]) ≥ 1.

Now, let I ⊂ [2g + 2] be such that I ∩ [n] = {i}. Suppose that

δ
I∪{2g+3}
0 appears in (21) in an a-monomial that is a multiple of ai.

Then, since a2Ic does not involve ai, this can only occur if δ
I∪{2g+3}
0 is

multiplied by one of the classes ψi, ψ2g+3, δ
J
0 for i ∈ J , or δ

J∪{2g+3}
0 for

i /∈ J . In the first two cases, the product is zero by Lemma 10:

δ
I∪{2g+3}
0 ψiΨC = δ

I∪{2g+3}
0 ψ2g+3ΨC = 0.

In the third case, the product is zero whenever #(J ∩ [n]) = 1, by
the previous paragraph. The product is also zero in the fourth case
whenever #(J ∩ [n]) = 1, because

δ
I∪{2g+3}
0 δ

J∪{2g+3}
0 = 0

represents a geometrically empty intersection.
Now, consider the coefficient of any a-monomial in (21) that is a

multiple of ai. This coefficient consists of a polynomial only in the
ψ-classes, as well as an expression supported on the boundary. The
previous paragraph shows that any term in the boundary part con-

taining δ
I∪{2g+2}
0 with I ∩ [n] = {i} also contains at least one boundary

divisor δJ0 or δ
J∪{2g+3}
0 with #(J∩[n]) ≥ 2. Hence, given an a-monomial

in (21) that is a multiple of a1 · · · an, applying the above reasoning for
each ai proves the claim. �
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The importance of Claim 1 is the following. Let Πn := πn+1 ◦ · · · ◦
π2g+3 denote the map forgetting the points pn+1, . . . , p2g+3:

Πn : Mrt
g,2g+3 → Mrt

g,n.

If (C, p1, . . . , p2g+3) lies on a boundary divisor ∆I
0 or ∆

I∪{2g+3}
0 having

#(I ∩ [n]) ≥ 2, then it remains singular after forgetting the points
pn+1, . . . , p2g+3 and stabilizing. In other words, the pushforward along
Πn of any tautological class on Mrt

g,2g+3 that is a multiple of any of
these divisors is a boundary stratum on Mrt

g,n. Hence, if we take the
pushforward of (21) to Mrt

g,n, and only consider relations that come
from a-monomials that are multiples of a1 · · · an, any terms involving
boundary divisors on Mrt

g,2g+3 vanish when restricted to Mg,n.
We can get rid of all a-monomials that are not multiples of a1 · · · an

by formally differentiating (21) with respect to these variables. Thus,
if ιn : Mg,n → Mrt

g,n denotes the inclusion, we have shown the following

relation in CHc−g−2+n(Mg,n):

(24)
∂n

∂a1 · · ·∂an
ι∗nΠn∗




2g+2∑

i=1

a2iψi +

(
2g+2∑

i=1

ai

)2

ψ2g+3




g+1

ΨC = 0

whenever ci ≥ 1 for n+ 1 ≤ i ≤ 2g + 2.
This implies the vanishing of a collection of tautological classes on

Mg,n:

Claim 2. Assume that n ≤ g, and let d1, . . . , d2g+3 be non-negative
integers satisfying

• d :=

2g+3∑

i=1

di ≥ 3g + 3− n,

• di ≥ 1 for i ≥ n + 1,
• #

{
i
∣∣ di = 0

}
≤ d2g+3.

Then

(25) ι∗nΠn∗[ψ
d1
1 · · ·ψ

d2g+3

2g+3 ] = 0 ∈ CHd+n−2g−3(Mg,n).

Proof of Claim 2. We first rewrite the ψ-monomial in question in no-
tation similar to what appears in (21). Namely, we claim that we can
write

ψd11 · · ·ψ
d2g+3

2g+3 = ψk11 · · ·ψ
k2g+3

2g+3 ΨC ,

where ΨC is a multiple of ψn+1 · · ·ψ2g+2, and the integers ki satisfy

(26)

2g+3∑

i=1

ki = g + 1, min(1,#{i | 1 ≤ i ≤ n, ki = 0}) ≤ k2g+3.
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Indeed, set

k′i =





1, i ≤ n and di > 0,

0, di = 0,

min
(
1,#

{
i
∣∣ di = 0

})
, i = 2g + 3.

Then the integers k′i satisfy the conditions

k′i ≤ di for 1 ≤ i ≤ n, k′i ≤ di − 1 for n + 1 ≤ i ≤ 2g + 2,

min (1,# {i | 1 ≤ i ≤ n, k′i = 0}) ≤ k′2g+3.

Now let ki be any collection of integers that satisfy the same inequalities
as above, such that k′i ≤ ki, and such that they add to g + 1.
To prove the claim, it is therefore enough to show that

(27) ι∗nΠn∗[ψ
k1
1 · · ·ψ

k2g+3

2g+3 ΨC ] = 0 ∈ CHc+n−g−2(Mg,n)

for any collection of integers k1, . . . , k2g+3 satisfying (26) and any ψ-
monomial ΨC of degree c ≥ 2g+2−n that is a multiple of ψn+1 · · ·ψ2g+2.
We prove (27) from the relations (24) by an argument essentially

identical to the proof of Lemma 11, via descending induction on k2g+3.
First, we prove (27) for the case (k1, . . . , k2g+3) = (0, . . . , 0, g+1), which
satisfies (26) because n ≤ g. In this case we have

ι∗nΠn∗[ψ
g+1
2g+3ΨC ] = 0,

since (2g+2)!ι∗nΠn∗[ψ
g+1
2g+3ΨC ] is the coefficient of an+1 · · · a2g+2 in (24).

Now let 1 ≤ k ≤ g+1, and assume that we have shown that equation
(27) holds for any (k1, . . . , k2g+3) satisfying condition (26) and such that
k2g+3 ≥ k. Let K = (k1, . . . , k2g+2) be a collection of integers such that
(k1, . . . , k2g+2, k − 1) satisfies (26), and denote

ΨK := ψk11 · · ·ψ
k2g+2

2g+2 .

We need to show that ι∗nΠn∗[ΨKψ
k−1
2g+3ΨC ] = 0.

Let j be the 2(k − 1)-st element, in increasing numerical order, in
the set

IK := {i | ki = 0} ⊂ {1, . . . , 2g + 2}.

Note that by assumption (26), we have j ≥ n. For 1 ≤ i ≤ 2g + 2,
define mi by

mi :=






2ki, i /∈ IK ,

1, i ∈ IK and i ≤ j,

0, i ∈ IK and i > j.

Since k1+ . . .+ k2g+2 = g+1− (k− 1), we see that m1+ . . .+m2g+2 =
2g + 2. Furthermore, mi > 0 if i ≤ n. Therefore, the monomial
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am1−1
1 · · · amn−1

n a
mn+1

n+1 · · · a
m2g+2

2g+2 occurs in equation (24). A careful in-
spection shows that its coefficient is equal to

CKι
∗
nΠn∗[ΨKψ

k−1
2g+3ΨC ] + ι∗nΠn∗[a multiple of ψk2g+3ΨC ] = 0,

where CK is a nonzero coefficient, and each ψ-monomial that occurs in
the second summand satisfies condition (26). By induction, all these
summands vanish, hence ι∗nΠn∗[ΨKψ

k−1
2g+3ΨC ] = 0. �

In fact, relations (25) imply the vanishing of all tautological classes
of degree g on Mg,n. To see this, recall that the tautological ring of
Mg is generated by the κ-classes, while the tautological ring of Mg,n

is generated by the κ- and the ψ-classes. We define the length of a
monomial κb1 · · ·κbl in the κ-classes to be l.

Claim 3. Let g ≥ 1. Then any codimension-k monomial in the κ-
classes vanishes on Mg,1 for any k ≥ g.

Proof of Claim 3. The claim is proved by induction on the length. The
only length one monomials are κk, and using (25) and (10), we see that

ι∗1Π1∗[ψ
k+1
2 ψ3 · · ·ψ2g+2ψ2g+3] = C · κk = 0 on Mg,1,

where C is a nonzero constant. Hence, κk vanishes on Mg,1.
Now, suppose that the claim has been proven for all κ-monomials

of length less than l. Let b1, . . . , bl be positive integers. If l > 2g + 2,
then the monomial κb1 · · ·κbl−1

has degree at least 2g + 2 and length
l − 1, and thus vanishes by the induction assumption, hence κb1 · · ·κbl
vanishes as well. If l ≤ 2g + 2, then using (25), (10), and (11), we see
that

ι∗1Π1∗[ψ
b1+1
2 · · ·ψbl+1

l+1 ψl+2 · · ·ψ2g+3] = C · κb1 · · ·κbl+

+ (κ-monomials of length less than l) = 0 on Mg,1,

where C is a nonzero constant. Hence, κb1 · · ·κbl vanishes on Mg,1 by
induction. �

Claim 4. Any codimension-k monomial in the ψ- and κ-classes that
is a multiple of ψ1 · · ·ψn vanishes on Mg,n for any k ≥ g.

Proof of Claim 4. First, assume that n ≤ g. The monomials in ques-
tion have the form

ψd11 · · ·ψdnn κb1 · · ·κbl ,

where bi and di are positive integers. We denote m := b1 + . . . + bl so
that d1 + . . .+ dn = k−m. With m fixed, we proceed by induction on
the length l of the κ-monomial.
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The only degree-m monomial in the κ classes of length one is κm,
and using (25) and (10), we see that

ι∗nΠn∗[ψ
d1
1 · · ·ψdnn ψn+1 · · ·ψ2g+2ψ

m+1
2g+3] = C · ψd11 · · ·ψdnn κm = 0 on Mg,n,

where C is a nonzero constant, so ψd11 · · ·ψdnn κm vanishes on Mg,n. The
above formula also holds when m = 0 and κ0 = 2g − 2 + n, showing
that every monomial in only the ψ-classes vanishes.
Now suppose that we have shown the claim for every monomial of

codimension m and length less than l. Then

ι∗nΠn∗[ψ
d1
1 · · ·ψdnn ψ

b1+1
n+1 · · ·ψbl+1

n+l ψn+l+1 · · ·ψ2g+3] =

= Cψd11 · · ·ψdnn ·[κb1 · · ·κbl + (κ-monomials of length less than l)] = 0

on Mg,n, where C is a nonzero constant. Hence, ψd11 · · ·ψdnn κb1 · · ·κbl
vanishes on Mg,n by induction.
Finally, let n > g. If g = 0, then the claim is clearly true for

dimension reasons. For n > g, the above shows that ψ1 · · ·ψg vanishes
on Mg,g, so by (9) it vanishes on Mg,n. It follows that ψ1 · · ·ψn and
any multiple of it vanishes as well. �

We are now ready to prove the main theorem: that any degree-k
monomial in the ψ- and κ-classes vanishes on Mg,n for k ≥ g, and
additionally, for k = g − 1 and n = 0.
For n = 1, this is immediate from the above: if the monomial con-

tains ψ1, then it vanishes by Claim 4, and if not, it vanishes by Claim 3.
To prove the claim for n = 0, note that the forgetful map π : Mg,1 →

Mg is proper. Since ψ
k
1 vanishes on Mg,1 for k > g, we have

κk = π∗ψ
k+1
1 = 0 on Mg for k ≥ g − 1.

More generally, suppose that we have shown that any κ-monomial of
degree k ≥ g − 1 and length less than l vanishes on Mg. Let b1, . . . , bl
be positive integers such that b1 + . . . + bl = k ≥ g − 1. By equation
(9), we have

κb1 · · ·κblψ1 = (π∗κb1 + ψb11 ) · · · (π∗κbl + ψbl1 )ψ1

on Mg,1. The left-hand side has degree at least g, hence it vanishes on
Mg,1 by Claim 4. Pushing forward the right-hand side under π, we get
a multiple of κb1 · · ·κbl and a sum of κ-monomials of lengths less than
l. Hence, κb1 · · ·κbl vanishes on Mg, proving the claim for n = 0.
These cases provide the base for an induction on n, assuming g > 0;

for g = 0, the obvious vanishing of the classes ψi and κi on M0,3 can
be used as the base. Now, suppose that we have proven the claim for
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Mg,n, and consider a monomial Ξ = κb1 · · ·κblψ
d1
1 · · ·ψ

dn+1

n+1 on Mg,n+1

of degree
b1 + . . .+ bl + d1 + . . .+ dn+1 = k ≥ g.

Proceed by descending induction on the number D of positive di. If
D = n + 1, then all of the di are positive, and Ξ vanishes by Claim 4.
If not, then without loss of generality we can assume that dn+1 = 0.
Using equation (9), we see that

π∗
n+1[κb1 · · ·κblψ

d1
1 · · ·ψdnn ] = (κb1 − ψb1n+1) · · · (κbl − ψbln+1)ψ

d1
1 · · ·ψdnn .

The left-hand side is the pullback of a class from Mg,n, which is zero
by induction on n, and the expansion of the right-hand side is the sum
of Ξ and a collection of classes that vanish by induction on D. Hence,
Ξ vanishes on Mg,n+1. This completes the proof of the theorem. �

Remark 13. We have shown that the Θ-relations imply the vanishing
of the tautological ring of Mg,n in degrees g−δ0n and above. Just as in
Remark 12, however, by upgrading the Θ-relations to Pixton’s double
ramification cycle relations in the form (8), and by keeping track of the
boundary terms throughout the above computations, the same proof
produces expressions for these classes as tautological classes supported
on the boundary.

Thus, we have the following corollary of the proof of Theorem 4.

Corollary 14. Any polynomial of degree k in the κ- and ψ-classes on
Mg,n is equivalent to an algorithmically computable tautological class
supported on the boundary of Mg,n, where k ≥ g or n = 0 and k = g−1.

3.5. Proof of Theorem ⋆ from Pixton’s double ramification cy-

cle relations. We are now ready to give a constructive proof of The-
orem ⋆, thus completing the proof of Theorem 5.

Proof of Theorem 5. Let Γ be a stable graph of genus g with n legs.
Let γ be a basic class on MΓ of the form (17), and let ξΓ∗(γ) be
the corresponding tautological class on Mg,n, where ξΓ is the gluing
map (16).
We apply Corollary 14 to every γv. If d(γv) ≥ g(v), then we can

express γv as a boundary class using Pixton’s double ramification cycle
relations and the algorithm of Theorem 4. (If g(v) = 0 or g(v) = 1, we
can alternatively use the divisorial relations (13) and (14).)
Therefore, possibly after replacing Γ by a graph representing a deeper

boundary stratum, we can assume that

d(γv) ≤ g(v)− 1 if g(v) > 0, d(γv) = 0 if g(v) = 0.
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Let g0 := #{v ∈ V | g(v) = 0} denote the number of genus-zero
vertices. Using (15), we see that

deg ξΓ∗(γ) =
∑

v∈V

d(γv) + #E ≤
∑

v∈V,g(v)>0

(g(v)− 1) + #E

= g(Γ)− h1(Γ0) + g0 −#V +#E = g(Γ) + g0 − 1.

Hence, g0 ≥ deg ξΓ∗(γ)− g(Γ) + 1, proving the theorem. �

Remark 15. The proofs of Theorem 4 and Theorem 5 together provide
an explicit algorithm for expressing any tautological class of codimen-
sion k ≥ g on Mg,n as a boundary class having k − g + 1 rational
components. We provide an outline for this algorithm.
In the notation of Section 3.2, let (Γ, γ) be a marked stable graph

defining a tautological class ξΓ∗(γ) ∈ Rk(Mg,n) with a basic class γv at
each vertex v ∈ V . We say that ξΓ∗(γ) has property ⋆ if

deg(γv) ≤ max(g(v)− 1, 0) for every v ∈ V.

By the proof of Theorem 5, this implies that Γ has at least k − g + 1
rational components. Our goal is to obtain an expression for every
tautological class in R∗(Mg,n) as a linear combination of classes having
property ⋆. We obtain such expressions by induction on the genus and
the degree. Assume that we have already constructed such formulas
for all classes in R∗(Mg′,n) with g

′ < g and all n, and for all classes in
Rk′(Mg,n) with k

′ < k and all n.
Then for each v ∈ V such that g(v) < g and deg(γv) ≥ g(v), we

use our database to express γv as a linear combination of classes hav-
ing property ⋆. In addition, there may be at most one vertex u such
that g(u) = g and deg γu ≥ g. In this case, we use the algorithm of
Theorem 4 to express γu as a linear combination of non-trivial bound-
ary classes. The highest possible degree of a basic class on any such
boundary class is k − 1, and by induction, our database expresses all
such classes as linear combinations of classes having property ⋆. Hence,
we obtain such an expression for γu as well. Gluing together these for-
mulas, we obtain an expression for ξΓ∗(γ) in terms of classes having
property ⋆. In this way, we obtain an expression for any given tauto-
logical class in terms of classes having property ⋆ in a finite number of
steps.

4. Example

In this section, we exemplify our methods by reproving the divisorial
formulas (13) expressing ψ1 and κ1 in terms of the boundary divisor δirr
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on M1,1; note that this is not a circular argument, as these formulas
were not used in the derivation of the main theorem
Before we begin, we note that the genus-zero divisorial formulas (14)

follow from the pullback formulas (9) and from the relation ψ1 = 0 on
M0,3, which can be formally obtained from relation (7) by substituting
a3 = −a1 − a2 and taking the coefficient of a1a2.

4.1. Pixton’s class. We first recall the definition of Pixton’s class
Ωg,A.
Define auxiliary classes Ωrg,A depending on an additional integer pa-

rameter r > 0 as follows. Let Γ = (V,H, g, p, ι) be a stable graph
of genus g with n legs (following the notation of Section 3.1), and let
A = (a1, . . . , an) ∈ Zn. A weighting modulo r on Γ is a map

w : H → {0, . . . , r − 1}

satisfying three properties:

(1) For any i ∈ {1, . . . , n} corresponding to a leg ℓi of Γ, we have
w(ℓi) ≡ ai (mod r).

(2) For any edge e ∈ E corresponding to two half-edges h, h′ ∈ H ,
we have w(h) + w(h′) ≡ 0 (mod r).

(3) For any vertex v ∈ V , we have
∑

h∈p−1(v) w(h) ≡ 0 (mod r).

(Cf. the discussion of weights in Section 2.1.) Define Ωrg,A to be the
class
(28)

∑

Γ,w

1

#Aut(Γ)

1

rh1(Γ)
ξΓ∗




n∏

i=1

e
1
2
a2iψi

∏

(h,h′)∈E

1− e−
1
2
w(h)w(h′)(ψh+ψh′ )

ψh + ψh′


 ,

where the sum is over all isomorphism classes of stable graphs Γ to-
gether with a weighting w modulo r. Pixton has proven that the class
Ωrg,A is a polynomial in r for r ≫ 0 (see [JPPZ16, Appendix]). The
class Ωg,A is then defined as the constant term of this polynomial in r.
All stable graphs Γ corresponding to curves of compact type are trees.

When Γ is a tree, then there exists a unique weighting modulo r, and
when r > 1

2
|
∑n

i=1 ai|, formula (28) is essentially obtained by expanding
the formula for exp([s∗AΘ]) and performing repeated intersections of
divisors on Mct

g,n.

4.2. Computing κ1. Equipped with Pixton’s formula for Ωg,A, we
proceed with the computation of κ1 by computing the coefficient of
a1a2a3a4 in

(29) 2Π1∗(ψ2ψ3ψ4[Ω1,A]2) = 0,
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where the map Π1 : M1,5 → M1,1 forgets all but the first marking.
Let us first consider the simpler question of computing κ1 on Mct

1,1.

In this case, we can replace 2[Ω1,A]2 by [s∗AΘ]2. Since Mrt
1,n = Mct

1,n,

we can use (21) to compute [s∗AΘ]2.
We claim that the coefficient of a1a2a3a4 in ψ2ψ3ψ4[s

∗
AΘ]2 is equal to

(30)
1

4
· 24ψ2ψ3ψ4ψ

2
5.

To see this, first notice that we can remove the summands a2iψi for
i ∈ {1, 2, 3, 4} from (21), since they will not give a multiple of a1a2a3a4.
Next, recall that multiplying with the class ψ2ψ3ψ4 kills all boundary
divisor classes δI0 for I ⊂ {1, . . . , 5} except when {1, 5} ⊂ I. Thus the
coefficient of a1a2a3a4 in ψ2ψ3ψ4[s

∗
AΘ]2 equals the coefficient of a1a2a3a4

in

1

4
· ψ2ψ3ψ4


(a1 + a2 + a3 + a4)

2ψ5 −
∑

I⊂{1,2,3,4},1∈I

(
∑

i/∈I

ai

)2

δ
I∪{5}
0




2

.

It remains to show that only the multiple of ψ2
5 contributes. This is

true since, on the one hand, ψ2ψ3ψ4ψ5 kills any of the boundary divisors
by Lemma 10, and on the other hand, in the square of the boundary
terms the variable a1 does not appear. Since the coefficient of a1a2a3a4
in (a1 + a2 + a3 + a4)

2 is 24, we obtain formula (30).
Thus, the coefficient of a1a2a3a4 in 2Π1∗(ψ2ψ3ψ4[Ω1,A]2) is equal to

(31)
1

4
· 242κ1 + Cδirr

for a constant C that we now need to determine.
To compute C, we only need to consider stable graphs Γ with h1(Γ) =

1. We claim that there is only one such dual graph with non-zero
coefficient of a1a2a3a4 .
To see why this is the case, let us first look at the stable graph Γ

with exactly one vertex and a loop e = (h, h′). There exist r weightings
modulo r on Γ, which can be distinguished by the value of w(h) ∈
{0, . . . , r − 1}. Since we only need the degree-2 part of Pixton’s class
for (29), and since the edge term in (28) for Γ does not depend on the
ai, the summand in (28) for Γ is a non-homogeneous polynomial in the
ai of degree 2. Thus, it gives a zero coefficient of a1a2a3a4.
By similar arguments as in the compact-type case, the only remain-

ing stable graphs Γ whose contribution will not be killed by ψ2ψ3ψ4

have two vertices v1, v2 connected by a pair of edges e1, e2 such that
the leg ℓ5 associated to the fifth marked point lies on v1 and the leg ℓ1
associated to the first marked point lies on v2. Let us write ei = (hi, h

′
i),
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where hi is the half-edge at vertex v1 and h
′
i is the half-edge at v2. There

are again r choices of weightings modulo r, indexed by w(h1). The lo-
cus in M1,5 corresponding to Γ is of codimension 2, and therefore we
need to take the constant term in the factors corresponding to the legs
in (28). Notice that

w(h′1) ≡ −w(h1), w(h2) ≡ x− w(h1), w(h′2) ≡ w(h1)− x,

where

x =
∑

i at v2

ai,

and therefore the contribution of Γ to [Ω1,A]2 depends on the ai only
in the quantity x. Thus, we can only have a non-zero coefficient of
a1a2a3a4 when ℓ1, ℓ2, ℓ3, ℓ4 are on v2; this is the unique stable graph Γ
that contributes.
We now compute the contribution of Γ. As we have seen, it depends

on the ai only in the form x = a1 + a2 + a3 + a4. For the computation
we can assume that x is positive. Let us also write a := w(hi). Since
the edge term corresponding to e1 in (28) vanishes when a = 0, we can
assume that a ∈ {1, . . . , r − 1}. In the case that a ≤ x, we can write

w(h1) = a, w(h′1) = r − a, w(h2) = x− a, w(h′2) = r + a− x.

Otherwise,

w(h1) = a, w(h′1) = r − a, w(h2) = r + x− a, w(h′2) = a− x.

By inclusion-exclusion, the contribution of Γ is therefore given by

1

4

1

r

(
r−1∑

a=1

a(r − a)(r + x− a)(a− x)

+

x∑

a=1

a(r − a)((x− a)(r + a− x)− (r + x− a)(a− x))

)
.

The first sum gives only a polynomial of degree 2 in x and will therefore
not lead to a coefficient of a1a2a3a4. From the remaining summand we
obtain

1

4

x∑

a=1

a(r − a)(2(x− a)) ≡ −
1

4
· 2

x∑

a=1

a2(x− a) (mod r),

which, by computing the power sum, equals

1

4

(
−
1

6
x4 −

2

3
x3 +

7

6
x2 −

1

3
x

)
.
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The total contribution of Γ to the coefficient of a1a2a3a4 in (29) is
therefore

−2 ·
1

4
·
24

6

1

#Aut(Γ)
Π1∗(ψ2ψ3ψ4ξΓ∗[1]) = −

1

4
· 48δirr.

Plugging in this value of C into equation (31), we conclude the well-
known formula

κ1 =
1

12
δirr ∈ CH∗(M1,1).

4.3. Computing ψ1. For the computation of ψ1 in terms of κ1 and
δirr, we now consider the coefficient of a21a2a3 in (29).
Similarly to the computation for κ1, only the multiples of ψ2

5 and
ψ1ψ5 give coefficients that are divisible by a1 and are not killed by
the multiplication with ψ2ψ3ψ4. Hence, the coefficient of a21a2a3 in
2Π1∗(ψ2ψ3ψ4[Ω1,A]2) is equal to

0 =
1

4
· 12 · 24κ1 +

1

4
· 4 · 24ψ1 + C ′δirr

for some constant C ′.
Similarly to the computation for κ1, the only dual graphs Γ that can

contribute to C ′ must have two vertices v1, v2 connected by a pair of
edges e1, e2 with ℓ5 on v1 and ℓ1 on v2. Let us write ei = (hi, h

′
i), where

hi is the half-edge at vertex v1 and h′i is the half-edge at v2. Unlike
for κ1, not only the dual graph Γ for which ℓ1, ℓ2, ℓ3, ℓ4 are all on v2
contributes to C ′, but also the dual graph Γ′ whose set of legs at v2 is
{ℓ1, ℓ2, ℓ3}.
The computation of the contribution of Γ to C ′ is essentially the

same as for κ1. The result is

−2 ·
1

4
·
12

6

1

#Aut(Γ)
Π1∗(ψ2ψ3ψ4ξΓ∗[1]) = −

1

4
· 24δirr.

The computation for Γ′ is also very similar. The main difference is that
we should define x := a1 + a2 + a3. We find that the contribution of Γ′

to C ′ is

−2 ·
1

4
·
12

6

1

#Aut(Γ′)
Π1∗(ψ2ψ3ψ4ξΓ′∗[1]) = −

1

4
· 8δirr.

Combining the contributions, we obtain the relation

9κ1 + 3ψ1 = δirr ∈ CH∗(M1,1),

and thus

κ1 = ψ1 =
1

12
δirr ∈ CH∗(M1,1).
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