The de Rham cohomology of a Lie group modulo a dense subgroup*

Brant Clark and François Ziegler University of Georgia / Georgia Southern University

Special Session "Poisson Geometry, Diffeology and Singular Spaces" October 5, 2024

Abstract: Let H be a dense subgroup of a Lie group G with Lie algebra \mathfrak{g} . We show that the (diffeological) de Rham cohomology of G/H equals the Lie algebra cohomology of $\mathfrak{g}/\mathfrak{h}$, where \mathfrak{h} is the ideal { $Z \in \mathfrak{g} : \exp(tZ) \in H$ for all $t \in \mathbf{R}$ }.

^{*}arXiv:2407.07381.

1. Diffeology

1. Diffeology

2. Diffeologi cal de Rham complex

3. Souriau's criterion

4. Differential forms on G/H

5. Passage to left-invarian forms

6. Passage to $\bigwedge^{\bullet} (\mathfrak{g}/\mathfrak{h})^*$

7. Examples

Suppose X is a manifold. Write τ_m for the Euclidean topology of \mathbb{R}^m , and call members of $\mathcal{P} := \bigcup_{m \in \mathbb{N}, U \in \tau_m} \mathbb{C}^\infty(\mathbb{U}, \mathbb{X})$ *plots*. Then:

- (D1) Covering. All constant maps $\mathbf{R}^m \to X$ are plots, for all m.
- (D2) *Locality*. Let $U \xrightarrow{P} X$ be a map with $U \in \tau_m$. If every $u \in U$ has an open neighborhood V such that $P_{|V}$ is a plot, then P is a plot.
- (D3) *Smooth compatibility*. Let $U \xrightarrow{\phi} V \xrightarrow{Q} X$ be maps with $(U, V) \in \tau_m \times \tau_n$. If Q is a plot and $\phi \in C^{\infty}(U, V)$, then $Q \circ \phi$ is a plot.

Definitions (Souriau 1985)

- (a) A *diffeology* on a set X is a subset \mathcal{P} of $\bigcup_{m \in \mathbf{N}, U \in \tau_m} \text{Maps}(U, X)$ satisfying (D1–D3); members of \mathcal{P} are called *plots*.
- (b) A map $(X, \mathcal{P}) \xrightarrow{F} (Y, \mathcal{Q})$ between diffeological spaces (: sets with diffeologies) is called *smooth* if $P \in \mathcal{P}$ implies $F \circ P \in \mathcal{Q}$.
- (c) A subset of a diffeological space is *D-open*, and a member of the *D-topology*, if its preimage by every plot is Euclidean open.
- (d) If $(X, \mathcal{P}) \xrightarrow{id} (X, \mathcal{Q})$ is smooth, i.e. $\mathcal{P} \subset \mathcal{Q}$, we call \mathcal{P} *finer*, \mathcal{Q} *coarser*.

1. Diffeology

1. Diffeology

2. Diffeological de Rham complex

3. Souriau' criterion

4. Differential forms on G/H

5. Passage to left-invariant forms

- 6. Passage t $\bigwedge^{\bullet} (\mathfrak{g}/\mathfrak{h})^*$
- 7. Examples

Examples

- (a) By (D1)–(D3), every manifold has a natural *manifold diffeology*. We say a diffeological space *is a manifold* if it can be so obtained.
- (b) Let Y be a diffeological space and *i* : X → Y an injection. Then X has a coarsest diffeology making *i* smooth, the *subset diffeology*. Its plots are the maps P : U → X such that *i* ∘ P is a plot of Y:

(c) Let X be a diffeological space and $s : X \to Y$ a surjection. Then Y has a finest diffeology making *s* smooth, the *quotient diffeology*. Its plots are the maps $Q : V \to Y$ that have around each $v \in V$ a 'local lift': a plot $P : U \to X$ with U an open neighborhood of *v* and $s \circ P = Q_{|U}$.

2. Diffeological de Rham complex

1. Diffeolog

2. Diffeological de Rham complex

3. Souriau's criterion

4. Differentia forms on G/H

5. Passage to left-invariant forms

6. Passage t $\bigwedge^{\bullet} (\mathfrak{g}/\mathfrak{h})^*$

7. Examples

Let us call *ordinary* the *k*-forms on Euclidean open sets and manifolds and operations on them (exterior derivative *d*, pull-back ϕ^*).

Definitions (Souriau 1985)

Let X and Y be diffeological spaces.

(a) A (diffeological) *k*-*form* β on Y is a functional which sends each plot Q : V \rightarrow Y to an ordinary *k*-form on V, *denoted* Q^{*} β (note special *). As compatibility, we require: if $\phi \in C^{\infty}(U, V)$ (so Q $\circ \phi$ is another plot), then

 $(Q \circ \varphi)^{\star}\beta = \varphi^{\star}Q^{\star}\beta, \qquad \varphi^{\star}: \text{ ordinary pull-back.}$

(b) Its *pull-back* $F^*\beta$ by a smooth map $F : X \to Y$ is the *k*-form on X defined by: if P is a plot of X (so $F \circ P$ is a plot of Y), then

 $P^*F^*\beta = (F \circ P)^*\beta$, F^* : being defined.

(c) Its *exterior derivative* $d\beta$ is the (k + 1)-form defined by: if Q is a plot of Y, then $Q^* d\beta = d[Q^*\beta]$, with ordinary *d* on the right-hand side.

2. Diffeological de Rham complex

1. Diffeology

2. Diffeological de Rham complex

3. Souriau's criterion

4. Differential forms on G/H

5. Passage to left-invariant forms

6. Passage to $\bigwedge^{\bullet} (\mathfrak{g}/\mathfrak{h})^*$

7. Examples

- The *de Rham complex* ($\Omega^{\bullet}(\mathbf{Y})$, *d*) is the sum over *k* of the spaces $\Omega^{k}(\mathbf{Y})$ of *k*-forms on Y, endowed with the differential (c), which satisfies $d^{2} = 0$ since the ordinary *d* does. Its cohomology is the *de Rham cohomology* $H_{dR}^{\bullet}(\mathbf{Y})$.
- (a,b,c) easily imply, for all *k*-forms β and smooth maps F, G:

 $(F \circ G)^*\beta = G^*F^*\beta, \qquad d[F^*\beta] = F^*d\beta.$

- If Y is a Euclidean open set (resp. a manifold) and β ∈ Ω^k(Y), applying (a) to the plot id_Y (resp. to *charts* V → Y) easily implies that there is a unique ordinary *k*-form *b* such that Q^{*}β and Q^{*}dβ are always the ordinary Q^{*}b and Q^{*}db.
- So we may (and will) confuse ordinary *k*-forms and operations with diffeological ones. Then we can retire the special ★, so that (a,b,c) become special cases of ♠.

3. Souriau's criterion

1. Diffeolog

2. Diffeolog cal de Rham complex

3. Souriau's criterion

4. Differentia forms on G/I

5. Passage to left-invarian forms

6. Passage to $\bigwedge^{\bullet} (\mathfrak{g}/\mathfrak{h})^*$

7. Example

There is a basic criterion for when a *k*-form descends to a quotient. Recall that a *subduction* between diffeological spaces is a smooth surjection $s : X \to Y$ such that Y has precisely the quotient diffeology.

Theorem (Souriau's criterion, 1985)

Let $s : X \to Y$ be a subduction, and $\alpha \in \Omega^k(X)$. In order that $\alpha = s^*\beta$ for some $\beta \in \Omega^k(Y)$, it is necessary and sufficient that all pairs of plots P, Q of X satisfy:

$$s \circ \mathbf{P} = s \circ \mathbf{Q} \quad \Rightarrow \quad \mathbf{P}^* \alpha = \mathbf{Q}^* \alpha.$$

Moreover β is then unique, i.e. pull-back $s^* : \Omega^k(Y) \to \Omega^k(X)$ is injective.

Comments on the proof. Necessity is clear: if $\alpha = s^*\beta$, we have

$$\mathrm{P}^* lpha = \mathrm{P}^* s^* eta = (s \circ \mathrm{P})^* eta, \ \mathrm{Q}^* lpha = \mathrm{Q}^* s^* eta = (s \circ \mathrm{Q})^* eta$$

by definition of s^* ; \heartsuit follows. Proving the rest takes about 2 pages. \Box

1. Diffeolog

2. Diffeologi cal de Rham complex

3. Souriau's criterion

4. Differential forms on G/H

5. Passage to left-invariant forms

6. Passage to $\bigwedge^{\bullet} (\mathfrak{g}/\mathfrak{h})^*$

7. Examples

Our goal is:

Theorem

Let H be a dense subgroup of a Lie group G with Lie algebra \mathfrak{g} . Then $\mathfrak{h} := \{Z \in \mathfrak{g} : \exp(tZ) \in H \text{ for all } t \in \mathbf{R}\}$ is an ideal in \mathfrak{g} , and giving X = G/H the quotient diffeology, we have isomorphisms

 $(\Omega^{\bullet}(\mathbf{X}), d) = (\wedge^{\bullet}(\mathfrak{g}/\mathfrak{h})^*, d)$ and hence $\mathrm{H}^{\bullet}_{\mathrm{dR}}(\mathbf{X}) = \mathrm{H}^{\bullet}(\mathfrak{g}/\mathfrak{h}).$

Here the right-hand sides are the Chevalley-Eilenberg complex of $\mathfrak{g}/\mathfrak{h}$ and its cohomology, whose definitions we will review during the proof.

Sketch of proof. H is canonically a Lie group, with Lie algebra as above: see Bourbaki, who in effect show (H, subset diffeology) *is a manifold* in our sense. Then, as H is dense and normalizers are closed, we have

G normalizes \mathfrak{h} : $g.\mathfrak{h}.g^{-1} = \mathfrak{h}$ for all $g \in G$.

Deriving this at *e* one obtains that \mathfrak{h} is an ideal, i.e. $[\mathfrak{g}, \mathfrak{h}] \subset \mathfrak{h}$.

1. Diffeolog

2. Diffeologi cal de Rham complex

3. Souriau's criterion

4. Differential forms on G/H

5. Passage to left-invariant forms

6. Passage to $\bigwedge^{\bullet} (\mathfrak{g}/\mathfrak{h})^*$

7. Examples

The core of the proof is the next proposition, where we will write:

- Π : G \rightarrow X for the natural projection, $\Pi(q) = q$ H,
- $L_g: G \to G$ for left translation, $L_g(q) = gq$,
- $\mathbf{R}_g: \mathbf{G} \to \mathbf{G}$ for right translation, $\mathbf{R}_g(q) = qg$,
- $g.v := DL_g(q)(v)$ and $v.g := DR_g(q)(v)$, whenever $v \in T_qG$.

Proposition

Pull-back via Π defines a bijection Π^* from $\Omega^k(X)$ onto the set of those $\mu \in \Omega^k(G)$ that are

- (a) right-invariant: $R_{g}^{*}\mu = \mu$ for all $g \in G$;
- (b) \mathfrak{h} -horizontal: $\mu(Z_1, \ldots, Z_k) = 0$ whenever one of the $Z_j \in \mathfrak{g}$ is in \mathfrak{h} .

Proof. Suppose $\mu = \Pi^* \alpha$ for some $\alpha \in \Omega^k(X)$. Let us prove (a):

- $\Pi \circ \mathbf{R}_h = \Pi$ implies $\mathbf{R}_h^* \Pi^* \alpha = \Pi^* \alpha$ for all $h \in \mathbf{H}$.
- As H is dense, the same holds for all $g \in G$; so μ is right-invariant.

1. Diffeology

2. Diffeologi cal de Rham complex

3. Souriau's criterion

4. Differential forms on G/H

5. Passage to left-invariant forms

6. Passage to $\bigwedge^{\bullet} (\mathfrak{g}/\mathfrak{h})^*$

7. Examples

Now let us prove (b):

• Consider the plots P, Q : $\mathfrak{g} \times \mathfrak{h} \to G$ sending u = (Z, W) to

 $P(u) = \exp(Z)$, resp. $Q(u) = \exp(Z) \exp(W)$.

(To get *literal* plots, use bases to identify $U := \mathfrak{g} \times \mathfrak{h}$ with \mathbf{R}^m .)

- Clearly $\Pi \circ P = \Pi \circ Q$. So by Souriau's criterion $P^* \mu = Q^* \mu.$
- Which when evaluated on vectors $(Z_i, W_i) \in T_{(0,0)}U$ yields

$$\mu(\mathbf{Z}_1,\ldots,\mathbf{Z}_k)=\mu(\mathbf{Z}_1+\mathbf{W}_1,\ldots,\mathbf{Z}_k+\mathbf{W}_k),$$

whence (b) by choosing $W_j = -Z_j$.

Conversely, let $\mu \in \Omega^k(G)$ satisfy (a) and (b), and let P, Q : U \rightarrow G be any two plots with $\Pi \circ P = \Pi \circ Q$. We must show that $P^*\mu = Q^*\mu$:

• Note $R(u) := P(u)^{-1}Q(u)$ defines a plot $R : U \to H$.

1. Diffeology

2. Diffeologi cal de Rham complex

3. Souriau's criterion

4. Differential forms on G/H

5. Passage to left-invariant forms

6. Passage to $\bigwedge^{\bullet} (\mathfrak{g}/\mathfrak{h})^*$

7. Examples

- Then P × Q × R is an ordinary smooth map sending u ∈ U to
 (P(u), Q(u), R(u)) =: (q, qh, h).
- Its derivative at u sends each $\delta u \in T_u U$ to a tangent vector $D(P \times Q \times R)(u)(\delta u) =: (\delta g, \delta [gh], \delta h)$

in $T_{(g,gh,h)}(G \times G \times H)$.

δ

• Now $\delta[gh] = \delta g.h + g.\delta h$. Hence, given $\delta_1 u, \dots, \delta_k u \in T_u U$,

$$egin{aligned} & {}_i[gh].\,(gh)^{-1} = [\delta_i g.\,h + g.\,\delta_i h].\,(gh)^{-1} \ & = \delta_i g.\,g^{-1} + g.\,\delta_i h.\,h^{-1}.\,g^{-1}. \end{aligned}$$

• As G normalizes \mathfrak{h} , the term $W_i := g. \delta_i h. h^{-1}. g^{-1}$ above is in \mathfrak{h} .

1. Diffeology

Thus

2. Diffeolog cal de Rham complex

3. Souriau' criterion

4. Differential forms on G/H

5. Passage to left-invariant forms

6. Passage to $\bigwedge^{\bullet} (\mathfrak{g}/\mathfrak{h})^*$

7. Examples

$$\begin{aligned} (Q^*\mu)(\delta_1 u, \dots, \delta_k u) &= \mu(\delta_1[gh], \dots, \delta_k[gh]) \\ &= \mu(\delta_1[gh], (gh)^{-1}, \dots, \delta_k[gh], (gh)^{-1}) \quad \text{by (a)} \\ &= \mu(\delta_1 g, g^{-1} + W_1, \dots, \delta_k g, g^{-1} + W_k) \quad \text{by \clubsuit} \\ &= \mu(\delta_1 g, g^{-1}, \dots, \delta_k g, g^{-1}) \qquad \text{by (b)} \\ &= \mu(\delta_1 g, \dots, \delta_k g) \qquad \text{by (a)} \\ &= (P^*\mu)(\delta_1 u, \dots, \delta_k u). \end{aligned}$$

Hence by Souriau's criterion μ is in the image of the injection Π^* . \Box

5. Passage to left-invariant forms

1. Diffeology

2. Diffeological de Rham complex

3. Souriau's criterion

4. Differential forms on G/H

5. Passage to left-invariant forms

6. Passage to $\bigwedge^{\bullet} (\mathfrak{g}/\mathfrak{h})^*$

7. Examples

- Lie algebra cohomology is traditionally defined using *left-*, not right-invariant forms. So we need to pass from one to the other.
- For that we simply pull back by the inversion map, $inv(g) = g^{-1}$. Indeed the relation $inv \circ L_g = R_{g^{-1}} \circ inv$ implies that $\mu \in \Omega^k(G)$ is right-invariant iff $\omega = inv^*\mu$ is left-invariant. Also inv^* preserves \mathfrak{h} -horizontality, because $g \mapsto g^{-1}$ has derivative $Z \mapsto -Z$ at e. Thus we have:

Corollary

Pull-back via $\check{\Pi} := \Pi \circ \text{inv}$ defines a bijection $\check{\Pi}^* = \text{inv}^* \Pi^*$ from $\Omega^k(X)$ onto the set of those $\omega \in \Omega^k(G)$ that are

- (a) left-invariant: $L_q^* \omega = \omega$ for all $g \in G$;
- (b) \mathfrak{h} -horizontal: $\omega(\mathbb{Z}_1, \ldots, \mathbb{Z}_k) = 0$ whenever one of the $\mathbb{Z}_j \in \mathfrak{g}$ is in \mathfrak{h} .

6. Passage to $\wedge^{\bullet}(\mathfrak{g}/\mathfrak{h})^*$

1. Diffeolog

2. Diffeolog cal de Rham complex

3. Souriau's criterion

4. Differential forms on G/H

5. Passage to left-invariant forms

7. Examples

Left-invariant forms make a subcomplex $(\Omega^{\bullet}(G)^{G}, d)$ of $(\Omega^{\bullet}(G), d)$ which depends only on \mathfrak{g} . Indeed $\omega \in \Omega^{k}(G)^{G}$ satisfies, for all $Z_{i} \in \mathfrak{g}$,

- i) the defining relation $\omega(g, Z_1, \dots, g, Z_k) = \omega(Z_1, \dots, Z_k)$, which characterizes ω by its value at the identity, $\omega_e \in \wedge^k \mathfrak{g}^*$.
- ii) the Chevalley-Eilenberg formula

 $d\omega(\mathbf{Z}_0,\ldots,\mathbf{Z}_k) =$

$$\sum_{0 \leq i < j \leq k} (-1)^{i+j} \omega([\mathbf{Z}_i, \mathbf{Z}_j], \mathbf{Z}_0, \dots, \widehat{\mathbf{Z}}_i, \dots, \widehat{\mathbf{Z}}_j, \dots, \mathbf{Z}_k)$$

which computes $(d\omega)_e$ from ω_e alone.

- Thus, taking this formula as the definition of a coboundary *d* on Λ[•]g^{*}, we obtain a complex (Λ[•]g^{*}, *d*) isomorphic to (Ω[•](G)^G, *d*) via ω → ω_e. Its cohomology is by definition the *Lie algebra* cohomology H[•](g).
- We study the subcomplex $\Omega^{\bullet}(G)_{\mathfrak{h}}^{G}$ of forms that are also \mathfrak{h} -horizontal; or equivalently its image $(\wedge^{\bullet}\mathfrak{g}^{*})_{\mathfrak{h}}$ defined inside $\wedge^{\bullet}\mathfrak{g}^{*}$ by the same property (b).

6. Passage to $\wedge^{\bullet}(\mathfrak{g}/\mathfrak{h})^*$

1. Diffeolog

2. Diffeologi cal de Rham complex

3. Souriau's criterion

4. Differential forms on G/H

5. Passage to left-invarian forms

6. Passage to $\bigwedge^{\bullet} (\mathfrak{g}/\mathfrak{h})^*$

7. Examples

Recall that \mathfrak{h} is an ideal, and let $\pi:\mathfrak{g}\to\mathfrak{g}/\mathfrak{h}$ be the natural projection.

Lemma (elementary)

Pull-back via π defines an isomorphism π^* from $(\wedge^{\bullet}(\mathfrak{g}/\mathfrak{h})^*, d)$ onto the subcomplex $((\wedge^{\bullet}\mathfrak{g}^*)_{\mathfrak{h}}, d)$ of $(\wedge^{\bullet}\mathfrak{g}^*, d)$.

Now, composing the three isomorphisms of complexes we have seen completes the proof of the theorem:

7. Examples

1. Diffeolog

2. Diffeologi cal de Rham complex

3. Souriau's criterion

4. Differentia forms on G/H

5. Passage to left-invariant forms

6. Passage to $\bigwedge^{\bullet} (\mathfrak{g}/\mathfrak{h})^*$

7. Examples

We shall detail our theorem's content in the extreme cases where H is dense and either *D*-discrete or *D*-connected, i.e. discrete or connected in its Lie group topology (= D-topology of its subset diffeology).

Corollary 1

Suppose the dense subgroup $H \subset G$ is D-discrete (a.k.a. totally arcwise disconnected: arc components are singletons). Then we have

 $\mathrm{H}^{ullet}_{\mathrm{dR}}(\mathrm{G}/\mathrm{H}) = \mathrm{H}^{ullet}(\mathfrak{g}).$

Moreover every Lie algebra cohomology ring H[•](g) occurs in this way.

Proof.

- The a.k.a. is because the D-topology's connected components are the subset topology's *arc components* (Yamabe's theorem, see e.g. Hilgert–Neeb 2012).
- The formula is our theorem, since $\mathfrak{h} = \{0\}$.

7. Examples

1. Diffeology

2. Diffeological de Rham complex

3. Souriau's criterion

4. Differentia forms on G/H

5. Passage to left-invariant forms

6. Passage to $\bigwedge^{\bullet} (\mathfrak{g}/\mathfrak{h})^*$

7. Examples

• The "Moreover" is because a connected Lie group G always has countable dense subgroups H (Gelander–Le Maître 2017), and countable implies D-discrete (Iglesias-Zemmour 2013). □

Remarks:

(

a) Thus e.g.
$$H^{\bullet}(\mathfrak{so}_3) = H^{\bullet}_{dR}(SO_3(\mathbf{R})/SO_3(\mathbf{Q})).$$

- (b) *Uncountable* dense D-discrete subgroups also exist, e.g. in any connected nilpotent Lie group G (de Saxcé 2013). Our formula still covers those.
- (c) When G = V is the additive group of a vector space and $H = \Lambda$ a dense D-discrete additive subgroup, the Chevalley–Eilenberg coboundary vanishes and we obtain a full exterior algebra,

$$\mathrm{H}^{ullet}_{\mathrm{dR}}(\mathrm{V}/\Lambda) = \wedge^{ullet}\mathrm{V}^*$$
,

as was already proved by Iglesias-Zemmour (2013).

1. Diffeology

2. Diffeologi cal de Rham complex

3. Souriau's criterion

4. Differential forms on G/H

5. Passage to left-invarian forms

6. Passage t $\bigwedge^{\bullet} (\mathfrak{g}/\mathfrak{h})^*$

7. Examples

Corollary 2

Suppose the dense subgroup $H\subset G$ is D-connected (a.k.a. arcwise connected). Then $\mathfrak{g}/\mathfrak{h}$ is abelian and we have

$$\mathrm{H}^{ullet}_{\mathrm{dR}}(\mathrm{G}/\mathrm{H}) = \wedge^{ullet}(\mathfrak{g}/\mathfrak{h})^*.$$

Moreover the resemblance to the last remark is no accident: indeed, we can always rewrite G/H as a **quasitorus** V/ Λ , where V = g/ \mathfrak{h} and Λ is a countable dense additive subgroup.

Proof.

- The a.k.a. is again by Yamabe's theorem.
- Commutativity of $\mathfrak{g}/\mathfrak{h}$ is a theorem of van Est (1951), also found in Bourbaki.
- The formula is our theorem, since the Chevalley–Eilenberg coboundary vanishes.
- To see "Moreover" we build the following commutative diagram:

7. Examples

- 1. Diffeology
- 2. Diffeologi cal de Rham complex
- 3. Souriau's criterion
- 4. Differential forms on G/H
- 5. Passage to left-invariant forms
- 6. Passage to $\bigwedge^{\bullet} (\mathfrak{g}/\mathfrak{h})^*$
- 7. Examples

- Row 3 defines X as the diffeological quotient G/H; recall that H is normal by ◊, and G is connected as the closure of H.
- For row 2, let $\tilde{G} :=$ universal covering of G, $\tilde{H} :=$ its integral subgroup with Lie algebra \mathfrak{h} , and $V := \tilde{G}/\tilde{H}$.
- Then \tilde{H} is closed, and \tilde{H} and V are simply connected (Bourbaki). In particular $V = \mathfrak{g}/\mathfrak{h}$, as the unique simply connected Lie group with that abelian Lie algebra.

7. Examples

- 1. Diffeology
- 2. Diffeologi cal de Rham complex
- 3. Souriau's criterion
- 4. Differential forms on G/H
- 5. Passage to left-invariant forms
- 6. Passage to $\bigwedge^{\bullet} (\mathfrak{g}/\mathfrak{h})^*$
- 7. Examples

- For row 1, let Γ := ker(G̃ → G), Δ := Γ ∩ H̃, and Λ := Γ/Δ.
 These are countable (Hilgert–Neeb), and discrete in every sense.
- The five sequences → are by construction *D*-*exact*: the subgroup and quotient in each have the subset and quotient diffeology.
- Then the Nine Lemma of Souriau (1985) says the diagram has a unique commutative completion by a sixth *D*-exact sequence --→: in other words, X is also the diffeological quotient V/Λ.

1. Diffeolog

2. Diffeologi cal de Rham complex

3. Souriau's criterion

4. Differential forms on G/H

5. Passage to left-invarian forms

6. Passage t $\bigwedge^{\bullet} (\mathfrak{g}/\mathfrak{h})^*$

7. Examples

Final remark:

Our theorem also admits examples where H is dense but neither D-discrete nor D-connected. A simple one is, for irrational α , the subgroup

$$\mathrm{H} = \left\{ egin{pmatrix} \mathrm{e}^{\mathrm{i}t} & 0 \ 0 & \pm \mathrm{e}^{\mathrm{i}lpha t} \end{pmatrix} \colon t \in \mathbf{R}
ight\} = \mathrm{H}^+ \sqcup \mathrm{H}^-$$

of the 2-torus T^2 . This has two D-components H^{\pm} , yet is connected because its already dense subgroup H^+ is. Here van Est's theorem still gives $\mathfrak{g}/\mathfrak{h}$ abelian, so we still have $H^{\bullet}_{dR}(G/H) = \wedge^{\bullet}(\mathfrak{g}/\mathfrak{h})^*$.

1. Diffeology

2. Diffeologi cal de Rham complex

3. Souriau's criterion

4. Differential forms on G/H

5. Passage to left-invariant forms

6. Passage to $\bigwedge^{\bullet} (\mathfrak{g}/\mathfrak{h})^*$

7. Examples

End!