The de Rham cohomology of a Lie group modulo a dense subgroup*

Brant Clark and François Ziegler University of Georgia / Georgia Southern University

Special Session "Poisson Geometry, Diffeology and Singular Spaces" October 5, 2024

Abstract: Let H be a dense subgroup of a Lie group G with Lie algebra g. We show that the (diffeological) de Rham cohomology of G/H equals the Lie algebra cohomology of g/h , where h is the ideal $\{Z \in g : \exp(tZ) \in H \text{ for all } t \in \mathbb{R}\}.$

^{*}[arXiv:2407.07381](https://arxiv.org/abs/2407.07381).

1. Diffeology

[1. Diffeology](#page-1-0)

[2. Diffeologi](#page-3-0)complex

[3. Souriau's](#page-5-0)

[4. Differential](#page-6-0)

 $\bigwedge^{\bullet}(\mathfrak{g}/\mathfrak{h})^*$

[7. Examples](#page-14-0)

Suppose X is a manifold. Write τ_m for the Euclidean topology of \mathbf{R}^m , and call members of $\mathcal{P} := \bigcup_{m \in \mathbb{N}, \, U \in \tau_m} C^{\infty}(U, X)$ *plots*. Then:

- (D1) *Covering*. All constant maps $\mathbb{R}^m \to X$ are plots, for all m.
- (D2) *Locality*. Let $U \stackrel{P}{\rightarrow} X$ be a map with $U \in \tau_m$. If every $u \in U$ has an open neighborhood V such that $P_{|V}$ is a plot, then P is a plot.
- (D3) *Smooth compatibility*. Let $U \stackrel{\phi}{\rightarrow} V \stackrel{Q}{\rightarrow} X$ be maps with $(U, V) \in$ $\tau_m \times \tau_n$. If Q is a plot and $\phi \in C^\infty(U, V)$, then $Q \circ \phi$ is a plot.

Definitions (Souriau [1985\)](http://www.numdam.org/item/AST_1985__S131__341_0/)

- (a) A *diffeology* on a set X is a subset P of $\bigcup_{m \in \mathbb{N}, U \in \tau_m} \text{Maps}(U, X)$ satisfying (D1–D3); members of P are called *plots*.
- (b) A map $(X, \mathcal{P}) \stackrel{F}{\rightarrow} (Y, \mathcal{Q})$ between diffeological spaces (: sets with diffeologies) is called *smooth* if $P \in \mathcal{P}$ implies $F \circ P \in \mathcal{Q}$.
- (c) A subset of a diffeological space is *D-open*, and a member of the *D-topology*, if its preimage by every plot is Euclidean open.
- (d) If $(X, \mathcal{P}) \stackrel{\text{id}}{\rightarrow} (X, \mathcal{Q})$ is smooth, i.e. $\mathcal{P} \subset \mathcal{Q}$, we call \mathcal{P} *finer*, \mathcal{Q} *coarser*.

1. Diffeology

[1. Diffeology](#page-1-0)

[2. Diffeologi](#page-3-0)complex

[3. Souriau's](#page-5-0)

[4. Differential](#page-6-0)

- $\bigwedge^{\bullet}(\mathfrak{g}/\mathfrak{h})^*$
- [7. Examples](#page-14-0)

Examples

- (a) By (D1)–(D3), every manifold has a natural *manifold diffeology*. We say a diffeological space *is a manifold* if it can be so obtained.
- (b) Let Y be a diffeological space and $i: X \rightarrow Y$ an injection. Then X has a coarsest diffeology making i smooth, the *subset diffeology*. Its plots are the maps P : U \rightarrow X such that $i \circ P$ is a plot of Y:

(c) Let X be a diffeological space and $s: X \rightarrow Y$ a surjection. Then Y has a finest diffeology making s smooth, the *quotient diffeology*. Its plots are the maps Q : V \rightarrow Y that have around each $v \in V$ a 'local lift': a plot P : U \rightarrow X with U an open neighborhood of v and $s \circ P = Q_{\text{IU}}$.

2. Diffeological de Rham complex

[1. Diffeology](#page-1-0)

[2. Diffeologi](#page-3-0)cal de Rham complex

[3. Souriau's](#page-5-0)

[4. Differential](#page-6-0) forms on G/H

 $\bigwedge^{\bullet}(\mathfrak{g}/\mathfrak{h})^*$

[7. Examples](#page-14-0)

Let us call *ordinary* the k-forms on Euclidean open sets and manifolds and operations on them (exterior derivative *d*, pull-back φ[∗]).

Definitions (Souriau [1985\)](http://www.numdam.org/item/AST_1985__S131__341_0/)

Let X and Y be diffeological spaces.

(a) A (diffeological) k*-form* β on Y is a functional which sends each plot Q : V → Y to an ordinary k-form on V, *denoted* Q^{*}β (note special ^{*}). As compatibility, we require: if $\phi \in C^{\infty}(U, V)$ (so Q ∘ ϕ is another plot), then

 $(Q \circ \phi)^{\star} \beta = \phi^{\star} Q^{\star} \beta, \qquad \phi^{\star}$: ordinary pull-back.

(b) Its *pull-back* $F^*\beta$ by a smooth map $F: X \to Y$ is the k-form on X defined by: if P is a plot of X (so $F \circ P$ is a plot of Y), then

 $P^*F^*\beta = (F \circ P)^*\beta$, F^* : being defined.

(c) Its *exterior derivative* $d\beta$ is the $(k + 1)$ -form defined by: if Q is a plot of Y, then Q^{*} $d\beta = d[Q^{\star}\beta]$, with ordinary d on the right-hand side.

2. Diffeological de Rham complex

[1. Diffeology](#page-1-0)

- [2. Diffeologi](#page-3-0)cal de Rham complex
-
- [4. Differential](#page-6-0)
-
- $\bigwedge^{\bullet}(\mathfrak{g}/\mathfrak{h})^*$
- [7. Examples](#page-14-0)
- The *de Rham complex* $(\Omega^{\bullet}(Y), d)$ is the sum over k of the spaces $\Omega^k(Y)$ of k-forms on Y, endowed with the differential [\(c\)](#page-3-1), which satisfies $d^2=0$ since the ordinary d does. Its cohomology is the de Rham cohomology $\mathrm{H}^\bullet_{\mathrm{dR}}(\mathrm{Y}).$
- [\(a](#page-3-2)[,b](#page-3-3)[,c\)](#page-3-1) easily imply, for all k-forms β and smooth maps F, G:

$$
(\mathrm{F} \circ \mathrm{G})^* \beta = \mathrm{G}^* \mathrm{F}^* \beta, \qquad d[\mathrm{F}^* \beta] = \mathrm{F}^* d \beta.
$$

- If Y is a Euclidean open set (resp. a manifold) and $\beta \in \Omega^k(Y)$, applying [\(a\)](#page-3-2) to the plot id_y (resp. to *charts* $V \rightarrow Y$) easily implies that there is a unique ordinary k-form b such that $Q^* \beta$ and $Q^* d\beta$ are always the ordinary Q^*b and Q^*db .
- So we may (and will) confuse ordinary k -forms and operations with diffeological ones. Then we can retire the special \star , so that (a,b,c) (a,b,c) (a,b,c) become special cases of \spadesuit .

3. Souriau's criterion

[1. Diffeology](#page-1-0)

[2. Diffeologi-](#page-3-0)

[3. Souriau's](#page-5-0) criterion

[4. Differential](#page-6-0) forms on G/H

 $\bigwedge^{\bullet}(\mathfrak{g}/\mathfrak{h})^*$

[7. Examples](#page-14-0)

There is a basic criterion for when a k-form descends to a quotient. Recall that a *subduction* between diffeological spaces is a smooth surjection $s: X \rightarrow Y$ such that Y has precisely the quotient diffeology.

Theorem (Souriau's criterion, [1985\)](http://www.numdam.org/item/AST_1985__S131__341_0/)

Let s : X → Y *be a subduction*, *and* α ∈ Ω k (X)*. In order that* α = s [∗]β *for* \mathfrak{s} ome $\beta \in \Omega^k(\rm Y),$ it is necessary and sufficient that all pairs of plots $\rm P, Q$ *of* X *satisfy*:

$$
s \circ P = s \circ Q \quad \Rightarrow \quad P^* \alpha = Q^* \alpha.
$$

 $\emph{Moreover}$ β is then unique, i.e. pull-back $s^*: \Omega^k(\text{Y}) \rightarrow \Omega^k(\text{X})$ is injective.

Comments on the proof. Necessity is clear: if $\alpha = s^* \beta$, we have

$$
\begin{aligned} P^*\alpha &= P^*s^*\beta = (s\circ P)^*\beta, \\ Q^*\alpha &= Q^*s^*\beta = (s\circ Q)^*\beta \end{aligned}
$$

by definition of s^* ; \heartsuit follows. Proving the rest takes about 2 pages.

[1. Diffeology](#page-1-0)

[2. Diffeologi](#page-3-0)complex

[3. Souriau's](#page-5-0)

[4. Differential](#page-6-0) forms on G/H

 $\bigwedge^{\bullet}(\mathfrak{g}/\mathfrak{h})^*$

[7. Examples](#page-14-0)

Our goal is:

Theorem

Let H *be a dense subgroup of a Lie group* G *with Lie algebra* g*. Then* h := {Z ∈ g : exp(tZ) ∈ H *for all* t ∈ **R**} *is an ideal in* g, *and giving* X = G/H *the quotient diffeology*, *we have isomorphisms*

 $(\Omega^{\bullet}(\mathbf{X}), d) = (\wedge^{\bullet}(\mathfrak{g}/\mathfrak{h})^*, d)$ *and hence* $H^{\bullet}_{dR}(\mathbf{X}) = H^{\bullet}(\mathfrak{g}/\mathfrak{h})$.

Here the right-hand sides are the Chevalley-Eilenberg complex of g/h and its cohomology, whose definitions we will review during the proof.

Sketch of proof. H is canonically a Lie group, with Lie algebra as above: see Bourbaki, who in effect show (H, subset diffeology) *is a manifold* in our sense. Then, as H is dense and normalizers are closed, we have

G normalizes $\mathfrak{h}: g.\mathfrak{h}.g^{-1}=\mathfrak{h} \quad \text{ for all } g\in \mathrm{G}. \qquad \qquad \diamondsuit$

Deriving this at e one obtains that h is an ideal, i.e. [q, h] \subset h.

[1. Diffeology](#page-1-0)

[2. Diffeologi-](#page-3-0)

[3. Souriau's](#page-5-0)

[4. Differential](#page-6-0) forms on G/H

 $\bigwedge^{\bullet}(\mathfrak{g}/\mathfrak{h})^*$

[7. Examples](#page-14-0)

The core of the proof is the next proposition, where we will write:

- $\Pi: G \to X$ for the natural projection, $\Pi(q) = qH$,
- L_g : $G \rightarrow G$ for left translation, L_g(q) = gq,
- R_q : $G \rightarrow G$ for right translation, $R_q(q) = qq$,
- $g. v := DL_q(q)(v)$ and $v. g := DR_q(q)(v)$, whenever $v \in T_qG$.

Proposition

Pull-back via Π *defines a bijection* Π[∗] *from* Ω k (X) *onto the set of those* $\mu\in\Omega^k(\mathsf{G})$ that are

- (a) right-invariant: $R_g^* \mu = \mu$ *for all* $g \in G$;
- (b) *h*-horizontal: μ (Z_1, \ldots, Z_k) = 0 *whenever one of the* $Z_i \in \mathfrak{g}$ *is in h.*

Proof. Suppose $\mu = \Pi^* \alpha$ for some $\alpha \in \Omega^k(X)$. Let us prove [\(a\)](#page-7-0):

- $\Pi \circ \mathbf{R}_h = \Pi$ implies $\mathbf{R}_h^* \Pi^* \alpha = \Pi^* \alpha$ for all $h \in \mathbf{H}$.
- As H is dense, the same holds for all $q \in G$; so μ is right-invariant.

[1. Diffeology](#page-1-0)

[2. Diffeologi](#page-3-0)complex

[4. Differential](#page-6-0) forms on G/H

[6. Passage to](#page-12-0) $\bigwedge^{\bullet}(\mathfrak{g}/\mathfrak{h})^*$

[7. Examples](#page-14-0)

Now let us prove [\(b\)](#page-7-1):

• Consider the plots P, Q : $\mathfrak{g} \times \mathfrak{h} \to G$ sending $u = (Z, W)$ to

 $P(u) = exp(Z)$, resp. $Q(u) = exp(Z) exp(W)$.

(To get *literal* plots, use bases to identify $U := g \times h$ with \mathbb{R}^m .)

- Clearly $\Pi \circ P = \Pi \circ Q$. So by Souriau's criterion $P^*u = Q^*u$.
- Which when evaluated on vectors $(Z_i, W_i) \in T_{(0,0)}$ U yields

$$
\mu(Z_1,\ldots,Z_k)=\mu(Z_1+W_1,\ldots,Z_k+W_k),
$$

whence [\(b\)](#page-7-1) by choosing $W_j = -Z_j$.

Conversely, let $\mu \in \Omega^k(G)$ satisfy [\(a\)](#page-7-0) and [\(b\)](#page-7-1), and let P, $Q: U \to G$ be any two plots with $\Pi \circ P = \Pi \circ Q$. We must show that $P^* \mu = Q^* \mu$:

• Note $R(u) := P(u)^{-1}Q(u)$ defines a plot $R: U \to H$.

[1. Diffeology](#page-1-0)

[2. Diffeologi](#page-3-0)complex

[3. Souriau's](#page-5-0)

[4. Differential](#page-6-0) forms on G/H

 $\bigwedge^{\bullet}(\mathfrak{g}/\mathfrak{h})^*$

[7. Examples](#page-14-0)

- Then $P \times Q \times R$ is an ordinary smooth map sending $u \in U$ to $(P(u), O(u), R(u)) =: (q, qh, h).$
- Its derivative at u sends each $\delta u \in T_u U$ to a tangent vector $D(P \times Q \times R)(u)(\delta u) =: (\delta q, \delta q h], \delta h)$

in $T_{(q,qh,h)}(G \times G \times H)$.

• Now $\delta[gh] = \delta q \cdot h + q \cdot \delta h$. Hence, given $\delta_1 u, \ldots, \delta_k u \in T_u U$,

$$
\delta_i[gh].(gh)^{-1} = [\delta_i g. h + g. \delta_i h].(gh)^{-1}
$$

= $\delta_i g. g^{-1} + g. \delta_i h. h^{-1}.g^{-1}.$

• As G normalizes \mathfrak{h} , the term $W_i := g \, \delta_i h \, h^{-1} \, g^{-1}$ above is in \mathfrak{h} .

Thus

[2. Diffeologi](#page-3-0)complex

[4. Differential](#page-6-0) forms on G/H

[6. Passage to](#page-12-0) $\bigwedge^{\bullet}(\mathfrak{g}/\mathfrak{h})^*$

[7. Examples](#page-14-0)

$$
(Q^*\mu)(\delta_1 u, ..., \delta_k u) = \mu(\delta_1[gh], ..., \delta_k[gh])
$$

= $\mu(\delta_1[gh], (gh)^{-1}, ..., \delta_k[gh], (gh)^{-1})$ by (a)
= $\mu(\delta_1 g, g^{-1} + W_1, ..., \delta_k g, g^{-1} + W_k)$ by
= $\mu(\delta_1 g, g^{-1}, ..., \delta_k g, g^{-1})$ by (b)
= $\mu(\delta_1 g, ..., \delta_k g)$ by (a)
= $(P^*\mu)(\delta_1 u, ..., \delta_k u)$.

Hence by Souriau's criterion μ is in the image of the injection $\Pi^*.$ $\mathbf{1}$

5. Passage to left-invariant forms

[1. Diffeology](#page-1-0)

- [2. Diffeologi](#page-3-0)complex
- [3. Souriau's](#page-5-0)

[4. Differential](#page-6-0)

5. Passage to [left-invariant](#page-11-0) forms

 $\bigwedge^{\bullet}(\mathfrak{g}/\mathfrak{h})^*$

[7. Examples](#page-14-0)

- • Lie algebra cohomology is traditionally defined using *left*-, not right-invariant forms. So we need to pass from one to the other.
- For that we simply pull back by the inversion map, $inv(g) = g^{-1}$. Indeed the relation inv \circ L $_{g} = \mathsf{R}_{g^{-1}} \circ$ inv implies that $\mu \in \Omega^{k}(G)$ is right-invariant iff $\omega = inv^*\mu$ is left-invariant. Also inv * preserves ${\mathfrak h}$ -horizontality, because $g\mapsto g^{-1}$ has derivative Z $\mapsto -{\mathrm Z}$ at $e.$ Thus we have:

Corollary

Pull-back via $\check{\Pi} := \Pi \circ \text{inv}$ *defines a bijection* $\check{\Pi}^* = \text{inv}^* \Pi^*$ *from* $\Omega^k(\mathrm{X})$ $\emph{onto the set of those} \; \omega \in \Omega^k(\mathsf{G}) \; \emph{that are}$

- (a) left-invariant: $L_g^* \omega = \omega$ *for all* $g \in G$;
- (b) h-horizontal: $\omega(Z_1, \ldots, Z_k) = 0$ *whenever one of the* $Z_i \in \mathfrak{g}$ *is in* h.

6. Passage to $\Lambda^{\bullet}(\mathfrak{g}/\mathfrak{h})^*$

[1. Diffeology](#page-1-0)

[2. Diffeologi](#page-3-0)complex

[3. Souriau's](#page-5-0)

[4. Differential](#page-6-0)

[6. Passage to](#page-12-0) $\bigwedge^{\bullet} (g/\mathfrak{h})^*$

[7. Examples](#page-14-0)

Left-invariant forms make a subcomplex $(\Omega^{\bullet}(G)^G, d)$ of $(\Omega^{\bullet}(G), d)$ which depends only on \mathfrak{g} . Indeed $\omega \in \Omega^k(G)^G$ satisfies, for all $\mathsf{Z}_i \in \mathfrak{g}$,

- i) the defining relation $\omega(g, Z_1, \ldots, g, Z_k) = \omega(Z_1, \ldots, Z_k)$, which characterizes ω by its value at the identity, $\omega_e \in \wedge^k \mathfrak{g}^*.$
- ii) the *Chevalley-Eilenberg formula*

 $d\omega(Z_0,\ldots,Z_k)=$

$$
\sum_{0\leqslant i
$$

which computes $(d\omega)_e$ from ω_e alone.

- Thus, taking this formula as the definition of a coboundary d on $\wedge^\bullet \mathfrak{g}^*,$ we obtain a complex $(\wedge^\bullet \mathfrak{g}^*,d)$ isomorphic to $(\Omega^\bullet(\mathrm{G})^\mathrm{G},d)$ via $\omega \mapsto \omega_e$. Its cohomology is by definition the *Lie algebra cohomology* H• (g).
- We study the subcomplex $\Omega^{\bullet}(G)^G_{\mathfrak{h}}$ of forms that are also h-horizontal; or equivalently its image (\wedge^{\bullet} g^{*})_h defined inside Λ^{\bullet} g* by the same property [\(b\)](#page-7-1).

6. Passage to $\Lambda^{\bullet}(\mathfrak{g}/\mathfrak{h})^*$

[2. Diffeologi](#page-3-0)cal de Rham complex

[4. Differential](#page-6-0) forms on G/H

[6. Passage to](#page-12-0) $\bigwedge^{\bullet} (g/\mathfrak{h})^*$

[7. Examples](#page-14-0)

Recall that h is an ideal, and let $\pi : \mathfrak{g} \to \mathfrak{g}/\mathfrak{h}$ be the natural projection.

Lemma (elementary)

Pull-back via π *defines an isomorphism* π* from (∧*(g/ḫ)*, *d*) onto the $subcomplex ((\wedge^{\bullet} g^*)_{{\mathfrak h}}, d)$ *of* $(\wedge^{\bullet} g^*, d)$ *.*

Now, composing the three isomorphisms of complexes we have seen completes the proof of the theorem:

7. Examples

[1. Diffeology](#page-1-0)

[2. Diffeologi](#page-3-0)complex

[3. Souriau's](#page-5-0)

[4. Differential](#page-6-0)

 $\bigwedge^{\bullet}(\mathfrak{g}/\mathfrak{h})^*$

[7. Examples](#page-14-0)

We shall detail our theorem's content in the extreme cases where H is dense and either *D-discrete* or *D-connected*, i.e. discrete or connected in its Lie group topology (= D-topology of its subset diffeology).

Corollary 1

Suppose the dense subgroup H ⊂ G *is D-discrete* (*a.k.a. totally arcwise disconnected*: *arc components are singletons*)*. Then we have*

 $H_{dR}^{\bullet}(G/H) = H^{\bullet}(\mathfrak{g}).$

Moreover every Lie algebra cohomology ring H• (g) *occurs in this way.*

Proof.

- The a.k.a. is because the D-topology's connected components are the subset topology's *arc components* (Yamabe's theorem, see e.g. Hilgert–Neeb [2012\)](https://zbmath.org/1229.22008).
- The formula is our theorem, since $h = \{0\}$.

7. Examples

[1. Diffeology](#page-1-0)

- [2. Diffeologi](#page-3-0)complex
- [3. Souriau's](#page-5-0)
- [4. Differential](#page-6-0)
-
- $\bigwedge^{\bullet}(\mathfrak{g}/\mathfrak{h})^*$
- [7. Examples](#page-14-0)

• The "Moreover" is because a connected Lie group G always has countable dense subgroups H (Gelander–Le Maître [2017\)](https://zbmath.org/1377.22002), and countable implies D-discrete (Iglesias-Zemmour [2013\)](https://doi.org/10.1090/surv/185). \Box

Remarks:

(a) Thus e.g.
$$
H^{\bullet}(\mathfrak{so}_3) = H^{\bullet}_{dR}(SO_3(R)/SO_3(Q)).
$$

- (b) *Uncountable* dense D-discrete subgroups also exist, e.g. in any connected nilpotent Lie group G (de Saxcé [2013\)](https://zbmath.org/1272.22006). Our formula still covers those.
- (c) When G = V is the additive group of a vector space and H = Λ a dense D-discrete additive subgroup, the Chevalley–Eilenberg coboundary vanishes and we obtain a full exterior algebra,

$$
H_{dR}^\bullet(V/\Lambda)=\wedge^\bullet V^*,
$$

as was already proved by Iglesias-Zemmour [\(2013\)](https://doi.org/10.1090/surv/185).

[1. Diffeology](#page-1-0)

[2. Diffeologi](#page-3-0)complex

[3. Souriau's](#page-5-0)

[4. Differential](#page-6-0)

 $\bigwedge^{\bullet}(\mathfrak{g}/\mathfrak{h})^*$

[7. Examples](#page-14-0)

Corollary 2

Suppose the dense subgroup H ⊂ G *is D-connected* (*a.k.a. arcwise connected*)*. Then* g/h *is abelian and we have*

$$
H_{dR}^\bullet(G/H)=\wedge^\bullet(\mathfrak{g}/\mathfrak{h})^*.
$$

Moreover the resemblance to the last remark is no accident: *indeed*, *we can always rewrite* G/H *as a quasitorus* V/Λ , *where* $V = \frac{g}{h}$ *and* $Λ$ *is a countable dense additive subgroup.*

Proof.

- The a.k.a. is again by Yamabe's theorem.
- Commutativity of g/h is a theorem of van Est [\(1951\)](https://doi.org/10.1016/S1385-7258(51)50046-X), also found in Bourbaki.
- The formula is our theorem, since the Chevalley–Eilenberg coboundary vanishes.
- To see "Moreover" we build the following commutative diagram:

7. Examples

- [1. Diffeology](#page-1-0)
- [2. Diffeologi](#page-3-0)complex
- [3. Souriau's](#page-5-0)
- [4. Differential](#page-6-0)
-
- $\bigwedge^{\bullet}(\mathfrak{g}/\mathfrak{h})^*$
- [7. Examples](#page-14-0)

- Row 3 defines X as the diffeological quotient G/H ; recall that H is normal by \Diamond , and G is connected as the closure of H.
- For row 2, let $\tilde{G} :=$ universal covering of G, $\tilde{H} :=$ its integral subgroup with Lie algebra h, and $V := \tilde{G}/\tilde{H}$.
- Then \tilde{H} is closed, and \tilde{H} and V are simply connected (Bourbaki). In particular $V = g/h$, as the unique simply connected Lie group with that abelian Lie algebra.

7. Examples

- [1. Diffeology](#page-1-0)
- [2. Diffeologi](#page-3-0)complex
-
- [4. Differential](#page-6-0)
-
- $\bigwedge^{\bullet}(\mathfrak{g}/\mathfrak{h})^*$
- [7. Examples](#page-14-0)

- For row 1, let $\Gamma := \text{ker}(\tilde{G} \to G), \Delta := \Gamma \cap \tilde{H}$, and $\Lambda := \Gamma/\Delta$. These are countable (Hilgert–Neeb), and discrete in every sense.
- The five sequences \rightarrow are by construction *D-exact*: the subgroup and quotient in each have the subset and quotient diffeology.
- Then the Nine Lemma of Souriau [\(1985\)](http://www.numdam.org/item/AST_1985__S131__341_0/) says the diagram has a unique commutative completion by a sixth *D-exact* sequence \rightarrow : in other words, X is also the diffeological quotient V/Λ .

[1. Diffeology](#page-1-0)

[2. Diffeologi](#page-3-0)complex

[3. Souriau's](#page-5-0)

[4. Differential](#page-6-0)

[6. Passage to](#page-12-0) $\bigwedge^{\bullet}(\mathfrak{g}/\mathfrak{h})^*$

[7. Examples](#page-14-0)

Final remark:

Our theorem also admits examples where H is dense but neither D-discrete nor D-connected. A simple one is, for irrational α , the subgroup

$$
H = \left\{ \begin{pmatrix} e^{it} & 0 \\ 0 & \pm e^{i\alpha t} \end{pmatrix} : t \in \mathbf{R} \right\} = H^+ \sqcup H^-
$$

of the 2-torus $\textbf{T}^2.$ This has two D-components H^\pm , yet is connected because its already dense subgroup H^+ is. Here van Est's theorem still gives $\mathfrak{g}/\mathfrak{h}$ abelian, so we still have $H_{dR}^{\bullet}(G/H) = \wedge^{\bullet}(\mathfrak{g}/\mathfrak{h})^*$.

[2. Diffeologi](#page-3-0)cal de Rham complex

criterion

[4. Differential](#page-6-0) forms on G / H

5. Passage to

[6. Passage to](#page-12-0) $\Lambda^{\bullet}(\mathfrak{g}/\mathfrak{h})^*$

[7. Examples](#page-14-0)

End!