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Abstract: Let H be a dense subgroup of a Lie group G with Lie algebra g. We show that
the (diffeological) de Rham cohomology of G/H equals the Lie algebra cohomology of
g/b, where b is the ideal {Z € g : exp(¢Z) € H for all t € R}.
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1. Diffeology

1. Diffeology

Suppose X is a manifold. Write t,, for the Euclidean topology of R™,
and call members of P := UmeN’ Ues,, G (U, X) plots. Then:

(D1) Covering. All constant maps R™ — X are plots, for all m.
(D2) Locality. Let U P Xbea map with U € 1,,. If every u € U has an
open neighborhood V such that P}y is a plot, then P is a plot.

(D3) Smooth compatibility. Let U g vV X be maps with (U, V) €
Tm X Tp. f Qis a plot and ¢ € C*(U, V), then Q o ¢ is a plot.

Definitions (Souriau 1985)
(a) A diffeology on a set X is a subset P of UmeN’UETm Maps (U, X)

satisfying (D1-D3); members of P are called plots.

(b) Amap (X,P) L (Y, Q) between diffeological spaces (: sets with
diffeologies) is called smooth if P € P implies Fo P € Q.

(c) A subset of a diffeological space is D-open, and a member of the
D-topology, if its preimage by every plot is Euclidean open.

@ I1f X, P) i (X, Q) is smooth, i.e. P C Q, we call P finer, Q coarser.
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1. Diffeology

1. Diffeology

Examples

(a)

(b)

(©

By (D1)-(D3), every manifold has a natural manifold diffeology.
We say a diffeological space is a manifold if it can be so obtained.

Let Y be a diffeological space and 7 : X — Y an injection. Then X
has a coarsest diffeology making ¢ smooth, the subset diffeology.
Its plots are the maps P : U — X such that ¢ o P is a plot of Y:

Y L X
iV T P .-~ l
7 P s

p - Q
Uu—— X, velU «—-->V — Y.

Let X be a diffeological space and s : X — Y a surjection. Then Y
has a finest diffeology making s smooth, the quotient diffeology.
Its plots are the maps Q : V — Y that have around each v € Va
‘local lift’: a plot P : U — X with U an open neighborhood of v and

SOP:Q‘U.
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2. Diffeologi-
cal de Rham
complex

2. Diffeological de Rham complex

Let us call ordinary the k-forms on Euclidean open sets and manifolds
and operations on them (exterior derivative d, pull-back ¢*).

Definitions (Souriau 1985)
Let X and Y be diffeological spaces.

(a

(b)

(0

A (diffeological) k-form (3 on Y is a functional which sends each
plot Q : V— Y to an ordinary k-form on V, denoted Q* (note
special x). As compatibility, we require: if ¢ € C>(U,V) (so Qo ¢
is another plot), then

Qo d) B =0¢"Q*B, ¢™ : ordinary pull-back.
Its pull-back F*§ by a smooth map F : X — Y is the k-form on X
defined by: if P is a plot of X (so F o P is a plot of Y), then

P*F*3 = (Fo P)*B3, F* : being defined.

Its exterior derivative df3 is the (k + 1)-form defined by: if Q is a
plot of Y, then Q*df3 = d[Q*B], with ordinary d on the right-hand
side.
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2. Diffeological de Rham complex

2. Diffeologi- e The de Rham complex (2°(Y), d) is the sum over k of the spaces
Ef,f;liham QF(Y) of k-forms on Y, endowed with the differential (c), which

satisfies d? = 0 since the ordinary d does. Its cohomology is the
de Rham cohomology Hy (Y).

® (a,b,c) easily imply, for all k-forms  and smooth maps F, G:
(FoQ)'B=G"F'B, d[F*B] = F*dp. A

e If Y is a Euclidean open set (resp. a manifold) and 3 € QF(Y),
applying (a) to the plot idy (resp. to charts V — Y) easily implies
that there is a unique ordinary k-form b such that Q*§ and Q*df3
are always the ordinary Q*b and Q* db.

® So we may (and will) confuse ordinary k-forms and operations
with diffeological ones. Then we can retire the special %, so that
(a,b,c) become special cases of .
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3. Souriau’s criterion

There is a basic criterion for when a k-form descends to a quotient.
Recall that a subduction between diffeological spaces is a smooth
surjection s : X — Y such that Y has precisely the quotient diffeology.

3. Souriau’s
criterion

Theorem (Souriau’s criterion, 1985)

Let s : X — Y be a subduction, and o € Q*(X). In order that o = s*B for
some B € QF(Y), it is necessary and sufficient that all pairs of plots P, Q
of X satisfy:

soP=s5s0Q = P‘a=Q%u Q

Moreover (3 is then unique, i.e. pull-back s* : QF(Y) — Q*(X) is injective.
Comments on the proof. Necessity is clear: if « = s*(3, we have

P*a = P*s*B = (s o P)*B,
Q*O(:Q*S*B: (SOQ)*B

by definition of s*; © follows. Proving the rest takes about 2 pages. [
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4. Differential
forms on G/H

4. Differential forms on X = G/H

Our goal is:

Theorem

Let H be a dense subgroup of a Lie group G with Lie algebra g. Then
h:={Z € g:exp(tZ) € Hforall t € R} is an ideal in g, and giving
X = G/H the quotient diffeology, we have isomorphisms

(Q*X),d) = (A*(g/H)*,d) and hence HI RX) =H*(g/h).

Here the right-hand sides are the Chevalley-Eilenberg complex of g/h
and its cohomology, whose definitions we will review during the proof.

Sketch of proof. H is canonically a Lie group, with Lie algebra as above:
see Bourbaki, who in effect show (H, subset diffeology) is a manifold
in our sense. Then, as H is dense and normalizers are closed, we have

G normalizesh: g.h.g ' =0h forall geG. %

Deriving this at e one obtains that  is an ideal, i.e. [g, h] C bh.
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4. Differential
forms on G/H

4. Differential forms on X = G/H

The core of the proof is the next proposition, where we will write:
e II: G — X for the natural projection, II(g) = gH,
® L, : G — G for left translation, L,(q) = gg,
® R, : G — G for right translation, R,(q) = qg,
® g.v :=DL;(¢)(v) and v. g := DR,(q) (v), whenever v € T,G.

Proposition

Pull-back via II defines a bijection II* from Q¥ (X) onto the set of those
u € QF(G) that are

(a) right-invariant: Rjp =y for dll g € G;
(b) b-horizontal: u(Z,...,Z;) = O whenever one of the Z; € g is in b.
Proof. Suppose p = IT*a for some o € QF(X). Let us prove (a):

® Il oRy =II implies R;IT*a = IT*a for all h € H.

® As H is dense, the same holds for all g € G; so p is right-invariant.
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4. Differential forms on X = G/H

Now let us prove (b):
e Consider the plots P,Q : g x h — G sending u = (Z, W) to
P(u) = exp(Z), resp. Q(u) = exp(Z) exp(W).

4. Differential . . . .
forms on G/H (To get literal plots, use bases to identify U := g x h with R™.)

® Clearly Il o P =1II 0 Q. So by Souriau’s criterion P*u = Q*p.
e Which when evaluated on vectors (Z;, W;) € T U yields
H(le-'-azk) = H(Zl +W15"'5Zk +Wk)7
whence (b) by choosing W; = —Z;.

Conversely, let u € 0% (G) satisfy (a) and (b), and let P,Q : U — G be
any two plots with I o P = I o Q. We must show that P*u = Q*u:

e Note R(u) := P(u)~'Q(u) defines a plot R : U — H.
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4. Differential forms on X = G/H

Then P x Q x R is an ordinary smooth map sending u € U to
(P(w), Q(w),R(w)) =: (g, gh, h).

4. Differential e [ts derivative at u sends each du € T,U to a tangent vector
forms on G/H

D(P x Q x R)(u)(Bw) =: (8g,05[gh],dh)

in T(g,gh,h) (G x G x H)

Now 8[gh] = 8g. h + g¢.8h. Hence, given 8;u,...,5;u € T, U,

di[ghl. (gh) ™' = [8ig.h + g.0:h]. (gh) !
=3;9.97 4+ g.5h.h7 L. g7, &

e As G normalizes ), the term W, := g.5;h. h~1. g~ ! above is in b.
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4. Differential forms on X = G/H

Thus

Q"wWG1u,...,0ku) =u®ilghl,...,d[gh])
=uGilghl. (gh)7,...,8x[gh]. (gh)™") by (a)

4 Diftrenial =u®1g.97" +Wy,...,0k9.97 +Wi) by
=u®Gig.97% ..., 0%g9.97 D) by (b)
= w(61g,...,0:9) by (a)

= (P*p)(Slu, . ,Sku).

Hence by Souriau’s criterion y is in the image of the injection IT*. O
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5. Passage to
left-invariant
forms

5. Passage to left-invariant forms

¢ Lie algebra cohomology is traditionally defined using left-, not
right-invariant forms. So we need to pass from one to the other.

e For that we simply pull back by the inversion map, inv(g) = g~ '.
Indeed the relation inv o L, = Ry-1 o inv implies that y € OF Q) is
right-invariant iff «» = inv*y is left-invariant. Also inv* preserves
h-horizontality, because g — g~ has derivative Z — —Z at e.
Thus we have:

Corollary

Pull-back via 11 := II o inv defines a bijection IT* = inv*II* from QF (X)
onto the set of those « € Q*(G) that are

(a) left-invariant: Lio=wforadlg e G;

(b) b-horizontal: w(Zi,...,Z;) = 0 whenever one of the Z; € g isin h.
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6. Passage to A°*(g/h)*

Left-invariant forms make a subcomplex (2°(G)¢, d) of (Q2°(G), d)
which depends only on g. Indeed v € Q*(G)C satisfies, for all Z; € g,

i)

ii)

6. Passage to

A®(a/D)*

the defining relation w(g.Z1,...,g9.Zx) = w(Z1,...,Zy), which
characterizes o by its value at the identity, . € A*g*.

the Chevalley-Eilenberg formula
d(;)(Zo, ey Zk) =
Z (71)i+jo~)([ziazj]:20:‘")/Z\i:"‘:/z\j:'"’Zk)
0<i<j<k

which computes (dw). from . alone.

Thus, taking this formula as the definition of a coboundary d on
A®g*, we obtain a complex (A*g*, d) isomorphic to (Q2°(G)%, d)
via © — w,. Its cohomology is by definition the Lie algebra
cohomology H* (g).

We study the subcomplex Q2° (G)g of forms that are also
h-horizontal; or equivalently its image (A*g*)y, defined inside
A®g* by the same property (b).
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6. Passage to A°*(g/h)*

Recall that h is an ideal, and let = : g — g/bh be the natural projection.

Lemma (elementary)

Pull-back via n defines an isomorphism =* from (A®(g/h)*, d) onto the
subcomplex ((A*g*)y, d) of (A°g*, d).

Now, composing the three isomorphisms of complexes we have seen
completes the proof of the theorem:

6. Passage to
A®(a/h) Q.(G)g W = We (/\.9*)!;
Q*X) ——--mmmmm e > /\'(g/f))*~ O
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7. Examples

We shall detail our theorem’s content in the extreme cases where H is
dense and either D-discrete or D-connected, i.e. discrete or connected
in its Lie group topology (= D-topology of its subset diffeology).

Corollary 1

Suppose the dense subgroup H C G is D-discrete (a.k.a. totally arcwise
disconnected: arc components are singletons). Then we have

H3: (G/H) = H*(g).
7.Examples  Moreover every Lie algebra cohomology ring H® (g) occurs in this way.

Proof.

¢ The a.k.a. is because the D-topology’s connected components are
the subset topology’s arc components (Yamabe’s theorem, see e.g.
Hilgert—Neeb 2012).

® The formula is our theorem, since h = {0}.
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7. Examples

¢ The “Moreover” is because a connected Lie group G always has
countable dense subgroups H (Gelander-Le Maitre 2017), and
countable implies D-discrete (Iglesias-Zemmour 2013). O

Remarks:
(a) Thus e.g. H*(s03) = H3; (SO3(R)/S03(Q)).

(b) Uncountable dense D-discrete subgroups also exist, e.g. in any
connected nilpotent Lie group G (de Saxcé 2013). Our formula

still covers those.

. Examples
[ (c) When G = V is the additive group of a vector space and H = A a

dense D-discrete additive subgroup, the Chevalley-Eilenberg
coboundary vanishes and we obtain a full exterior algebra,

Han(V/A) = AV,

as was already proved by Iglesias-Zemmour (2013).
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7. Examples

Corollary 2

Suppose the dense subgroup H C G is D-connected (a.k.a. arcwise
connected). Then g/ is abelian and we have

HER (G/H) = A*(g/h)".

Moreover the resemblance to the last remark is no accident: indeed, we
can always rewrite G/H as a quasitorus V/A, where V= g/h and A is a
countable dense additive subgroup.

7. Examples PrOOf:
® The a.k.a. is again by Yamabe’s theorem.

e Commutativity of g/h is a theorem of van Est (1951), also found
in Bourbaki.

® The formula is our theorem, since the Chevalley-Eilenberg
coboundary vanishes.

® To see “Moreover” we build the following commutative diagram:
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7. Examples

1 1 1
! ol
1—A—T—A—1
L
1 3| G \Y% 1
! Il
1 H G X 1
! ol
1 1 1

7. Examples
® Row 3 defines X as the diffeological quotient G/H; recall that H is
normal by ¢, and G is connected as the closure of H.

e For row 2, let G := universal covering of G, H := its integral
subgroup with Lie algebra by, and V:= G/H.

e Then H is closed, and H and V are simply connected (Bourbaki).
In particular V = g/b, as the unique simply connected Lie group
with that abelian Lie algebra.
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7. Examples

1 1 1
! ol

1—A—T—A—1
L

1 3| G \Y% 1
! Il

1 H G X 1
! ol
1 1 1

7. Examples
e Forrow 1, let I := ker(G — G),A:=T'NH, and A := r'/A.
These are countable (Hilgert-Neeb), and discrete in every sense.

¢ The five sequences — are by construction D-exact: the subgroup
and quotient in each have the subset and quotient diffeology.

¢ Then the Nine Lemma of Souriau (1985) says the diagram has a
unique commutative completion by a sixth D-exact sequence --+:
in other words, X is also the diffeological quotient V/A. [
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7. Examples

7. Examples

Final remark:

Our theorem also admits examples where H is dense but neither
D-discrete nor D-connected. A simple one is, for irrational a, the

subgroup y
_{[¢ 0 ). ot
H—{(O iem).teR}—H UH

of the 2-torus T2. This has two D-components H*, yet is connected
because its already dense subgroup H™ is. Here van Est’s theorem
still gives g/b abelian, so we still have H; (G/H) = A*(g/BH)*.
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End!
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