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Abstract: Let H be a dense subgroup of a Lie group G with Lie algebra g. We show that
the (diffeological) de Rham cohomology of G/H equals the Lie algebra cohomology of
g/h, where h is the ideal {Z ∈ g : exp(tZ) ∈ H for all t ∈ R}.
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1. Diffeology

Suppose X is a manifold. Write τm for the Euclidean topology of Rm ,
and call members of P :=

⋃
m∈N, U∈τm C∞(U, X) plots. Then:

(D1) Covering. All constant maps Rm → X are plots, for all m .
(D2) Locality. Let U P→ X be a map with U ∈ τm . If every u ∈ U has an

open neighborhood V such that P|V is a plot, then P is a plot.

(D3) Smooth compatibility. Let U
φ→ V Q→ X be maps with (U, V) ∈

τm × τn . If Q is a plot and φ ∈ C∞(U, V), then Q ◦ φ is a plot.

Definitions (Souriau 1985)
(a) A diffeology on a set X is a subset P of

⋃
m∈N, U∈τm Maps(U, X)

satisfying (D1–D3); members of P are called plots.
(b) A map (X,P) F→ (Y,Q) between diffeological spaces (: sets with

diffeologies) is called smooth if P ∈ P implies F ◦ P ∈ Q.
(c) A subset of a diffeological space is D-open, and a member of the

D-topology, if its preimage by every plot is Euclidean open.
(d) If (X,P) id→ (X,Q) is smooth, i.e. P ⊂ Q, we call P finer, Q coarser.
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1. Diffeology

Examples

(a) By (D1)–(D3), every manifold has a natural manifold diffeology.
We say a diffeological space is a manifold if it can be so obtained.

(b) Let Y be a diffeological space and i : X → Y an injection. Then X
has a coarsest diffeology making i smooth, the subset diffeology.
Its plots are the maps P : U → X such that i ◦ P is a plot of Y:

Y

U X,P

i ◦ P i

X

v ∈ U V Y.

s
P

Q

(c) Let X be a diffeological space and s : X → Y a surjection. Then Y
has a finest diffeology making s smooth, the quotient diffeology.
Its plots are the maps Q : V → Y that have around each v ∈ V a
‘local lift’: a plot P : U → X with U an open neighborhood of v and
s ◦ P = Q|U.
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2. Diffeological de Rham complex

Let us call ordinary the k -forms on Euclidean open sets and manifolds
and operations on them (exterior derivative d , pull-back φ∗).

Definitions (Souriau 1985)
Let X and Y be diffeological spaces.

(a) A (diffeological) k-form β on Y is a functional which sends each
plot Q : V → Y to an ordinary k -form on V, denoted Q⋆

β (note
special ⋆). As compatibility, we require: if φ ∈ C∞(U, V) (so Q ◦ φ
is another plot), then

(Q ◦ φ)⋆β = φ∗Q⋆
β, φ∗ : ordinary pull-back.

(b) Its pull-back F∗
β by a smooth map F : X → Y is the k -form on X

defined by: if P is a plot of X (so F ◦ P is a plot of Y), then

P⋆F∗
β = (F ◦ P)⋆β, F∗ : being defined.

(c) Its exterior derivative dβ is the (k + 1)-form defined by: if Q is a
plot of Y, then Q⋆dβ = d[Q⋆

β], with ordinary d on the right-hand
side.
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2. Diffeological de Rham complex

• The de Rham complex (Ω•(Y), d) is the sum over k of the spaces
Ω

k (Y) of k -forms on Y, endowed with the differential (c), which
satisfies d2

= 0 since the ordinary d does. Its cohomology is the
de Rham cohomology H•

dR(Y).

• (a,b,c) easily imply, for all k -forms β and smooth maps F, G:

(F ◦ G)∗β = G∗F∗
β, d[F∗

β] = F∗dβ. ♠

• If Y is a Euclidean open set (resp. a manifold) and β ∈ Ωk (Y),
applying (a) to the plot idY (resp. to charts V → Y) easily implies
that there is a unique ordinary k -form b such that Q⋆

β and Q⋆dβ
are always the ordinary Q∗b and Q∗db.

• So we may (and will) confuse ordinary k -forms and operations
with diffeological ones. Then we can retire the special ⋆, so that
(a,b,c) become special cases of ♠.
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3. Souriau’s criterion

There is a basic criterion for when a k -form descends to a quotient.
Recall that a subduction between diffeological spaces is a smooth
surjection s : X → Y such that Y has precisely the quotient diffeology.

Theorem (Souriau’s criterion, 1985)
Let s : X → Y be a subduction, and α ∈ Ωk (X). In order that α = s∗β for
some β ∈ Ωk (Y), it is necessary and sufficient that all pairs of plots P, Q
of X satisfy:

s ◦ P = s ◦ Q ⇒ P∗
α = Q∗

α. ♡

Moreover β is then unique, i.e. pull-back s∗ : Ωk (Y) → Ωk (X) is injective.

Comments on the proof. Necessity is clear: if α = s∗β, we have

P∗
α = P∗s∗β = (s ◦ P)∗β,

Q∗
α = Q∗s∗β = (s ◦ Q)∗β

by definition of s∗; ♡ follows. Proving the rest takes about 2 pages.
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4. Differential forms on X = G/H

Our goal is:

Theorem
Let H be a dense subgroup of a Lie group G with Lie algebra g. Then
h := {Z ∈ g : exp(tZ) ∈ H for all t ∈ R} is an ideal in g, and giving
X = G/H the quotient diffeology, we have isomorphisms

(Ω•(X), d) = (
∧•(g/h)∗, d) and hence H•

dR(X) = H•(g/h).

Here the right-hand sides are the Chevalley-Eilenberg complex of g/h
and its cohomology, whose definitions we will review during the proof.

Sketch of proof. H is canonically a Lie group, with Lie algebra as above:
see Bourbaki, who in effect show (H, subset diffeology) is a manifold
in our sense. Then, as H is dense and normalizers are closed, we have

G normalizes h : g . h. g−1
= h for all g ∈ G. ♢

Deriving this at e one obtains that h is an ideal, i.e. [g, h] ⊂ h.
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4. Differential forms on X = G/H

The core of the proof is the next proposition, where we will write:

• Π : G → X for the natural projection, Π(q) = qH,

• Lg : G → G for left translation, Lg(q) = gq ,

• Rg : G → G for right translation, Rg(q) = qg ,

• g . v := DLg(q)(v) and v . g := DRg(q)(v), whenever v ∈ TqG.

Proposition

Pull-back via Π defines a bijection Π∗ from Ωk (X) onto the set of those
μ ∈ Ωk (G) that are
(a) right-invariant: R∗

gμ = μ for all g ∈ G;

(b) h-horizontal: μ(Z1, . . . , Zk ) = 0 whenever one of the Zj ∈ g is in h.

Proof. Suppose μ = Π∗
α for some α ∈ Ωk (X). Let us prove (a):

• Π ◦ Rh = Π implies R∗
hΠ

∗
α = Π

∗
α for all h ∈ H.

• As H is dense, the same holds for all g ∈ G; so μ is right-invariant.
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4. Differential forms on X = G/H

Now let us prove (b):

• Consider the plots P, Q : g× h → G sending u = (Z, W) to

P(u) = exp(Z), resp. Q(u) = exp(Z) exp(W).

(To get literal plots, use bases to identify U := g× h with Rm .)

• Clearly Π ◦ P = Π ◦ Q. So by Souriau’s criterion P∗
μ = Q∗

μ.

• Which when evaluated on vectors (Zi , Wi) ∈ T(0,0)U yields

μ(Z1, . . . , Zk ) = μ(Z1 +W1, . . . , Zk +Wk ),

whence (b) by choosing Wj = −Zj .

Conversely, let μ ∈ Ωk (G) satisfy (a) and (b), and let P, Q : U → G be
any two plots with Π ◦ P = Π ◦ Q. We must show that P∗

μ = Q∗
μ:

• Note R(u) := P(u)−1Q(u) defines a plot R : U → H.
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4. Differential forms on X = G/H

• Then P × Q × R is an ordinary smooth map sending u ∈ U to

(P(u), Q(u), R(u)) =: (g , gh , h).

• Its derivative at u sends each δu ∈ TuU to a tangent vector

D(P × Q × R)(u)(δu) =: (δg , δ[gh], δh)

in T(g ,gh ,h)(G × G × H).

• Now δ[gh] = δg . h + g . δh . Hence, given δ1u , . . . , δku ∈ TuU,

δi[gh]. (gh)−1
= [δig . h + g . δih]. (gh)−1

= δig . g−1
+ g . δih . h−1. g−1. ♣

• As G normalizes h, the term Wi := g . δih . h−1. g−1 above is in h.
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4. Differential forms on X = G/H

Thus

(Q∗
μ)(δ1u , . . . , δku) = μ(δ1[gh], . . . , δk [gh])

= μ(δ1[gh]. (gh)−1, . . . , δk [gh]. (gh)−1) by (a)

= μ(δ1g . g−1
+W1, . . . , δkg . g−1

+Wk ) by ♣
= μ(δ1g . g−1, . . . , δkg . g−1) by (b)

= μ(δ1g , . . . , δkg) by (a)

= (P∗
μ)(δ1u , . . . , δku).

Hence by Souriau’s criterion μ is in the image of the injection Π∗.
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5. Passage to left-invariant forms

• Lie algebra cohomology is traditionally defined using left-, not
right-invariant forms. So we need to pass from one to the other.

• For that we simply pull back by the inversion map, inv(g) = g−1.
Indeed the relation inv ◦ Lg = Rg−1 ◦ inv implies that μ ∈ Ωk (G) is
right-invariant iff ω = inv∗μ is left-invariant. Also inv∗ preserves
h-horizontality, because g 7→ g−1 has derivative Z 7→ −Z at e .
Thus we have:

Corollary

Pull-back via Π̌ := Π ◦ inv defines a bijection Π̌∗
= inv∗Π∗ from Ωk (X)

onto the set of those ω ∈ Ωk (G) that are

(a) left-invariant: L∗
gω = ω for all g ∈ G;

(b) h-horizontal: ω(Z1, . . . , Zk ) = 0 whenever one of the Zj ∈ g is in h.
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6. Passage to
∧•(g/h)∗

Left-invariant forms make a subcomplex (Ω•(G)G, d) of (Ω•(G), d)
which depends only on g. Indeed ω ∈ Ωk (G)G satisfies, for all Zi ∈ g,

i) the defining relation ω(g . Z1, . . . , g . Zk ) = ω(Z1, . . . , Zk ), which
characterizes ω by its value at the identity, ωe ∈

∧kg∗.

ii) the Chevalley-Eilenberg formula
dω(Z0, . . . , Zk ) =∑

0⩽i<j⩽k

(−1)i+j
ω([Zi , Zj ], Z0, . . . , Ẑi , . . . , Ẑj , . . . , Zk )

which computes (dω)e from ωe alone.

• Thus, taking this formula as the definition of a coboundary d on∧•g∗, we obtain a complex (
∧•g∗, d) isomorphic to (Ω•(G)G, d)

via ω 7→ ωe . Its cohomology is by definition the Lie algebra
cohomology H•(g).

• We study the subcomplex Ω•(G)G
h of forms that are also

h-horizontal; or equivalently its image (
∧•g∗)h defined inside∧•g∗ by the same property (b).
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6. Passage to
∧•(g/h)∗

Recall that h is an ideal, and let π : g → g/h be the natural projection.

Lemma (elementary)

Pull-back via π defines an isomorphism π∗ from (
∧•(g/h)∗, d) onto the

subcomplex ((
∧•g∗)h, d) of (

∧•g∗, d).

Now, composing the three isomorphisms of complexes we have seen
completes the proof of the theorem:

Ω
•(G)G

h (
∧•g∗)h

Ω
•(X)

∧•(g/h)∗.

ω 7→ ωe

Π̌
∗ π

∗
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We shall detail our theorem’s content in the extreme cases where H is
dense and either D-discrete or D-connected, i.e. discrete or connected
in its Lie group topology (= D-topology of its subset diffeology).

Corollary 1

Suppose the dense subgroup H ⊂ G is D-discrete (a.k.a. totally arcwise
disconnected: arc components are singletons). Then we have

H•
dR(G/H) = H•(g).

Moreover every Lie algebra cohomology ring H•(g) occurs in this way.

Proof.

• The a.k.a. is because the D-topology’s connected components are
the subset topology’s arc components (Yamabe’s theorem, see e.g.
Hilgert–Neeb 2012).

• The formula is our theorem, since h = {0}.
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• The “Moreover” is because a connected Lie group G always has
countable dense subgroups H (Gelander–Le Maître 2017), and
countable implies D-discrete (Iglesias-Zemmour 2013).

Remarks:

(a) Thus e.g. H•(so3) = H•
dR(SO3(R)/SO3(Q)).

(b) Uncountable dense D-discrete subgroups also exist, e.g. in any
connected nilpotent Lie group G (de Saxcé 2013). Our formula
still covers those.

(c) When G = V is the additive group of a vector space and H = Λ a
dense D-discrete additive subgroup, the Chevalley–Eilenberg
coboundary vanishes and we obtain a full exterior algebra,

H•
dR(V/Λ) =

∧•V∗,

as was already proved by Iglesias-Zemmour (2013).
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Corollary 2

Suppose the dense subgroup H ⊂ G is D-connected (a.k.a. arcwise
connected). Then g/h is abelian and we have

H•
dR(G/H) =

∧•(g/h)∗.

Moreover the resemblance to the last remark is no accident: indeed, we
can always rewrite G/H as a quasitorus V/Λ, where V = g/h and Λ is a
countable dense additive subgroup.

Proof.
• The a.k.a. is again by Yamabe’s theorem.
• Commutativity of g/h is a theorem of van Est (1951), also found

in Bourbaki.
• The formula is our theorem, since the Chevalley–Eilenberg

coboundary vanishes.
• To see “Moreover” we build the following commutative diagram:
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1 1 1

1 Δ Γ Λ 1

1 H̃ G̃ V 1

1 H G X 1

1 1 1

• Row 3 defines X as the diffeological quotient G/H; recall that H is
normal by ♢, and G is connected as the closure of H.

• For row 2, let G̃ := universal covering of G, H̃ := its integral
subgroup with Lie algebra h, and V := G̃/H̃.

• Then H̃ is closed, and H̃ and V are simply connected (Bourbaki).
In particular V = g/h, as the unique simply connected Lie group
with that abelian Lie algebra.
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1 1 1

1 Δ Γ Λ 1

1 H̃ G̃ V 1

1 H G X 1

1 1 1

• For row 1, let Γ := ker(G̃ → G),Δ := Γ ∩ H̃, and Λ := Γ/Δ.
These are countable (Hilgert–Neeb), and discrete in every sense.

• The five sequences → are by construction D-exact: the subgroup
and quotient in each have the subset and quotient diffeology.

• Then the Nine Lemma of Souriau (1985) says the diagram has a
unique commutative completion by a sixth D-exact sequence 99K:
in other words, X is also the diffeological quotient V/Λ.

18 / 20

http://www.numdam.org/item/AST_1985__S131__341_0/


1. Diffeology

2. Diffeologi-
cal de Rham
complex

3. Souriau’s
criterion

4. Differential
forms on G/H

5. Passage to
left-invariant
forms

6. Passage to∧•(g/h)∗

7. Examples

7. Examples

Final remark:

Our theorem also admits examples where H is dense but neither
D-discrete nor D-connected. A simple one is, for irrational α, the
subgroup

H =
n

�

e it 0
0 ±e iαt

�

: t ∈ R
o

= H+ ⊔ H−

of the 2-torus T2. This has two D-components H±, yet is connected
because its already dense subgroup H+ is. Here van Est’s theorem
still gives g/h abelian, so we still have H•

dR(G/H) =
∧•(g/h)∗.
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End!
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