About linearization of Poisson-Nambu structures

AMS Sectional Meeting

Florian Zeiser

Univeristy of Illinois Urbana-Champaign

October 5, 2024

2 Nambu structures and the question of linearization

1 Poisson structures and the question of linearization

2 Nambu structures and the question of linearization

3 A linearization result

Definition

A **Poisson bracket** on a smooth manifold M is a bilinear map

$$\{\cdot,\cdot\}: \ C^{\infty}(M) \times C^{\infty}(M) \to C^{\infty}(M)$$

which is skew-symmetric and satisfies

$$\{f, g_1g_2\} = \{f, g_1\}g_2 + g_1\{f, g_2\}$$
$$\{f, \{g_1, g_2\}\} = \{\{f, g_1\}, g_2\} + \{g_1, \{f, g_2\}\}$$

Equivalently, $\pi \in \mathfrak{X}^2(M)$ is a **Poisson bivector** if: $[\pi, \pi]_{SN} = 0$ or $\forall f \in C^{\infty}(M)$: $\mathcal{L}_{X_f} \pi = 0$ Let (M,π) be a Poisson manifold. Then (M,π) admits

▶ a foliation *F* via

$$T\mathcal{F} = \mathsf{Im}(\pi^{\sharp}: T^*M \to TM)$$

Leaves are even dimensional and symplectic

► a Lie algebroid structure $T^*_{\pi}M := (T^*M, [\cdot, \cdot]_{\pi}, \pi^{\sharp})$ where $[\alpha, \beta]_{\pi} := \mathcal{L}_{\pi^{\sharp}\alpha}\beta - \mathcal{L}_{\pi^{\sharp}\beta}\alpha - d\pi(\alpha, \beta)$

Poisson cohomology via

$$d_{\pi} := [\pi, \cdot] : \mathfrak{X}^{\star}(M) \to \mathfrak{X}^{\star+1}(M)$$

- **0**. **trivial**: $\pi = 0$
- 1. symplectic: $(\pi^{\sharp})^{-1} = \omega^{\flat} : TM \to T^*M$
- 2. linear: On a finite dimensional vector space \mathfrak{g} :

$$\begin{cases} \text{Lie algebra structures} \\ [\cdot, \cdot] \text{ on } \mathfrak{g} \end{cases} \xrightarrow{1:1} \begin{cases} \text{linear Poisson structures} \\ \pi_{\mathfrak{g}} \text{ on } \mathfrak{g}^* \end{cases} \\ \end{cases}$$
The correspondence is given by:
$$\pi_{\mathfrak{g}}(\xi)(X_1, X_2) = \langle \xi, [X_1, X_2] \rangle \qquad \text{where } \xi \in \mathfrak{g}^*, X_1, X_2 \in \mathfrak{g} \end{cases}$$

Weinstein splitting theorem ('83)

Locally around $p \in M$:

 $(M,\pi,p) = (S,\pi_S = \omega_s^{-1}, p_S) \times (T,\pi_T, p_T) \quad \text{with} \quad \pi_T(p_T) = 0$

Let $p \in M$ with $\pi(p) = 0$

$$[\mathrm{d}_{\rho}\,f_1,\mathrm{d}_{\rho}\,f_2]:=\mathrm{d}_{\rho}\,\pi(\mathrm{d}\,f_1,\mathrm{d}\,f_2)\quad\text{ for }\ f_1,f_2\in C^\infty(M)$$

Definition

 $(\mathfrak{g}_p^* = T_p M, \pi_{\mathfrak{g}_p})$ is the **linear approximation** of π at p

Question

Is π linearizable at $p \in M$, i.e. does there exist a local isomorphism

$$\Phi: (M, \pi, p) \rightarrow (T_p M, \pi_{\mathfrak{g}_p}, 0)?$$

Definition

- ► A Lie algebra g is called Poisson non-degenerate, if the answer is yes whenever g_x ≃ g
- otherwise g is called Poisson degenerate

Theorem (Weinstein '83):

Any semisimple Lie algebra g is formally Poisson non-degenerate.

Theorem (Conn '84):

Any semisimple Lie algebra $\mathfrak g$ is analytically Poisson non-degenerate.

Let \mathfrak{g} be a semisimple Lie algebra \rightsquigarrow lwasawa decomposition of \mathfrak{g} :

 $\mathfrak{g}=\mathfrak{k}\oplus\mathfrak{a}\oplus\mathfrak{n}$

Lie algebra \mathfrak{g}	dim a		
$\mathfrak{sl}(2,\mathbb{R})\simeq\mathfrak{su}(1,1)$	1	X	Weinstein '83
$\mathfrak{g} = \mathfrak{k}, \text{ e.g. } \mathfrak{so}(n), \mathfrak{su}(n)$	0	<	Conn '85 , Crainic & Fernandes '11
$\begin{array}{c c} 2 \leq \dim \mathfrak{a}, \\ \text{e.g. } \mathfrak{so}(p,q) \text{ with } 2 \leq q \leq p \end{array}$	q	×	Weinstein '87
$dim\mathfrak{a} = 1 \ \& \ \mathfrak{k} \ not \ semisimple \\ e.g. \ \mathfrak{su}(n,1)$	1	×	Monnier & Zung '05
$\mathfrak{so}(3,1)\simeq\mathfrak{sl}(2,\mathbb{C})$	1	 Image: A second s	Marcut & Z. '21
$\begin{array}{c} \dim \mathfrak{a} = 1 \ \& \ \mathfrak{k} \ \text{semisimple} \\ \text{e.g. } \mathfrak{so}(p,1) \ \text{with} \ 4 \leq p \end{array}$	1	?	

Poisson degeneracy for $\mathfrak{sl}_2(\mathbb{R})$

For $\mathfrak{g} = \mathfrak{sl}_2(\mathbb{R})$:

$$\pi_{\mathfrak{sl}_2(\mathbb{R})} = -x_3 \partial_{x_1} \wedge \partial_{x_2} + x_1 \partial_{x_2} \wedge \partial_{x_3} + x_2 \partial_{x_3} \wedge \partial_{x_1}$$

The associated foliation is described by

$$f(x_1, x_2, x_3) := \frac{1}{2} (x_1^2 + x_2^2 - x_3^2)$$

The level sets of f

Weinstein '83

$$\pi = \pi_{\mathfrak{sl}_2(\mathbb{R})} + \frac{\mathsf{g}(f)}{r^2} \partial_r \wedge \partial_{\mathsf{x}_3}$$

is not linearizable for
$$g \in C^{\infty}(\mathbb{R})$$
:
 $g(x) \begin{cases} > 0 & \text{if } x > 0 \\ = 0 & \text{else.} \end{cases}$

else.

Poisson structures and the question of linearization

2 Nambu structures and the question of linearization

Definition

A Nambu bracket of order q on a smooth manifold M is a q-linear map

$$\{\cdot,\ldots,\cdot\}:\ C^\infty(M) imes\cdots imes C^\infty(M) o C^\infty(M)$$

which is skew-symmetric and satisfies

$$\{f_1, \dots, f_{q-1}, g_1g_2\} = \{f_1, \dots, f_{q-1}, g_1\}g_2 + g_1\{f_1, \dots, f_{q-1}, g_2\}$$
$$\{f_1, \dots, f_{q-1}, \{g_1, \dots, g_q\}\} = \sum_{i=1}^q \{g_1, \dots, \{f_1, \dots, f_{q-1}, g_i\}, \dots, g_q\}$$

Equivalently, $\Pi \in \mathfrak{X}^q(M)$ is a **Nambu vector** if:

$$\forall f_1,\ldots,f_{q-1}\in C^\infty(M): \ \mathcal{L}_{X_{f_1,\ldots,f_{q-1}}}\Pi=0$$

Let $\Pi \in \mathfrak{X}^q(M)$ be a Nambu structure. Then (M, Π) admits

 \blacktriangleright a foliation ${\cal F}$ via

$$T\mathcal{F} = \operatorname{Im}(\Pi^{\sharp} : \wedge^{q-1}T^*M \to TM)$$

Leaves are zero or q dimensional

- ► a Leibniz algebroid structure $(\wedge^{q-1}T^*M, [\cdot, \cdot]_{\Pi}, \Pi^{\sharp})$ where $[\alpha, \beta]_{\Pi} := \mathcal{L}_{\pi^{\sharp}\alpha}\beta + (-1)^n \iota_{\Pi}(\mathrm{d}\,\alpha)\beta$
- Leibniz cohomology

- **0.** trivial: $\Pi = 0$
- 1. orientation: $0 \neq \Pi \in \mathfrak{X}^m(M)$

2. **linear**: On a finite dimensional vector space \mathfrak{F} :

$$\begin{cases} \text{Filipov algebra structure} \\ [\cdot, \dots, \cdot] \text{ on } \mathfrak{F} \end{cases} \longleftrightarrow \begin{cases} \text{linear Nambu structures} \\ \Pi_{\mathfrak{F}} \text{ on } \mathfrak{F}^* \end{cases} \end{cases}$$
given by:
$$\Pi(\mathcal{E})(X_1, \dots, X_n) = \langle \mathcal{E} [X_1, \dots, X_n] \rangle$$

$$\mathsf{T}(\xi)(X_1,\ldots,X_q) = \langle \xi, [X_1,\ldots,X_q] \rangle$$

where $\xi \in \mathfrak{F}^*$ and $X_1, \ldots, X_q \in \mathfrak{F}$.

The question of local normal forms

Alekseevsky & Guha '96, Gautheron '96, Nakanishi '98

For $q \ge 3$, $\Pi \in \mathfrak{X}^q(M)$ is Nambu iff for all $p \in M$ with $\Pi(p) \ne 0$ there are coordinates (x_1, \ldots, x_m) such that

$$\Pi = \partial_{x_1} \wedge \cdots \wedge \partial_{x_q}$$

Let $p \in M$ with $\Pi(p) = 0$

$$[\mathrm{d}_p f_1, \ldots, \mathrm{d}_p f_q] := \mathrm{d}_p \, \Pi(\mathrm{d} f_1, \ldots, \mathrm{d} f_q) \quad \text{ for } f_1, \ldots, f_q \in C^\infty(M)$$

Definition

 $(\mathfrak{F}_p^* = T_p M, \Pi_{\mathfrak{F}_p})$ is the **linear approximation** of Π at p

Question

Is Π linearizable at $p \in M$, i.e. does there exist a local isomorphism

$$\Phi: (M,\Pi,p) \to (T_pM,\Pi_{\mathfrak{F}_p},0)?$$

Dufour & Zung '99

Let (M^m, Ω) be an oriented manifold. Then $\Pi \in \mathfrak{X}^q(M)$ is Nambu iff $\omega := \iota_{\Pi}\Omega$ satisfies for all $P \in \mathfrak{X}^{m-q-1}(M)$:

 $\iota_P \omega \wedge \omega = 0$ and $\iota_P \omega \wedge \mathrm{d}\,\omega = 0$

(1)

Definition

We call $\omega \in \Omega^k(M)$ an integrable differential form (IDF) if (1) holds.

Remark

IDFs induce a singular foliation.

 IDFs have been extensively studied in the literature (Reeb '52, Kupka '64, Medeiros '77, Moussu '76 & '83, ..)

Dufour & Zung '99, Medeiros '00

Let V^m be a vector space and $\omega \in \Omega^p(V)$ a linear IDF. Then there are linear coordinates on V such that ω is of one of the following two types:

Type 1:

$$\omega = \mathrm{d} x_1 \wedge \cdots \wedge \mathrm{d} x_{p-1} \wedge \mathrm{d} \left(\sum_{j=p}^{p+r} \pm x_j^2 + \sum_{i=1}^{s} x_i x_{p+r+i} \right)$$

with $-1 \leq r \leq m-p$ and $0 \leq s \leq m-p-r$;

Type 2:

$$\omega = \sum_{i=1}^{p+1} a_i \, \mathrm{d} \, x_1 \wedge \dots \wedge \widehat{\mathrm{d} \, x_i} \wedge \dots \wedge \mathrm{d} \, x_{p+1} \quad \text{where } a_i = \sum_{j=1}^{p+1} a_j^j x_j$$

and (a_i^j) in Jordan normal form.

Linearization

Dufour & Zung '99

Type 2 singularities are linearizable under a non-resonancy condition.

Definition

We call $p \in M$ with $\Pi(p) = 0$ a **nondegenerate** singularity if an associated linear IDF is of Type 1 with quadratic function

$$f=\sum_{j=p}^m\pm x_j^2.$$

Dufour & Zung '99, Zung '13

Let $p \in M^m$ be a nondegenerate singularity of $\Pi \in \mathfrak{X}^q(M)$, then:

- Π is formally linearizable at p.
- Π is smoothly linearizable at p if the signature of f is not (2, *) or (*, 2).

Moussu '76

Let f be the Morse function on \mathbb{R}^m given by

$$f = x_1^2 + x_2^2 - \sum_{i=3}^m x_i^2.$$

Then the integrable differential form

$$\alpha := \mathrm{d}f + \frac{g(f)}{x_1^2 + x_2^2} (x_2 \mathrm{d}x_1 - x_1 \mathrm{d}x_2)$$

is not linearizable for $g\in C^\infty(\mathbb{R})$ with

$$g(x) \begin{cases} > 0 & \text{if } x > 0 \\ = 0 & \text{else.} \end{cases}$$

Poisson structures and the question of linearization

2 Nambu structures and the question of linearization

3 A linearization result

Theorem (Z.)

Let Π be a Nambu structure on M^m of order m-1 with $m \ge 3$ and $p \in M$ such that $\Pi(p) = 0$. Assume p is nondegenerate and there exists a volume form Ω around $p \in M$ such that

C

$$l\iota_{\Pi}\Omega=0.$$

Then Π is linearizable at p.

Corollary

Let π be Poisson structure on M^3 which is unimodular locally around a zero $p \in M$ with $\mathfrak{g}_p \simeq \mathfrak{sl}_2(\mathbb{R})$. Then π is linearizable around p.

(2)

The proof

Colin de Verdiere & Vey '79

Let Ω be a volume form on \mathbb{R}^m . Given a smooth function g and a Morse function f on \mathbb{R}^m with

$$j_0^2g=j_0^2f,$$

there exists a smooth function h and a diffeomorphism ϕ locally around 0:

$$(f, h(f)\Omega_{std}) = \phi^*(g, \Omega).$$

Strategy of the proof:

1. By (2) there exists g smooth with

$$\mathrm{d} g = \iota_{\Pi} \Omega$$

2. Applying the result above implies

$$\Pi = \widetilde{h}(f)\Pi_{\mathfrak{F}}.$$

Thus we can use a Moser argument.

- Can we obtain similar results for singularities of Nambu structures on M^m of order different from m - 1?
- Can we find similar results for linear Poisson structures of semisimple Lie algebras with real rank 1 and non-semisimple compact part?

Thank you for your attention!