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Real linear symplectic quotients

Real symplectic quotients

Let K be a compact Lie group and V ∼= Cn a finite-dimensional unitary K -module.

Let ρ : V → k∗ denote the homogeneous quadratic moment map

(ρ(v), ξ) :=

√
−1

2
〈v , ξ.v〉, v ∈ V , ξ ∈ k.

Let Z := ρ−1(0), the real shell, a K -invariant subset of V .

Note that 0 is (usually) a singular value of ρ so that Z is a singular real algebraic
K -variety.

The real linear symplectic quotient is Z/K . �
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Real linear symplectic quotients

Structures of a real linear symplectic quotient

Differentiable space: C∞(Z/K ) := C∞(V )K/IKZ where IZ is the vanishing ideal
of Z and IKZ := IZ ∩ C∞(V )K .

Graded algebra of real regular functions: R[Z/K ] := R[V ]K/IKZ where

IZ = R
√

(ρ) is the vanishing ideal of Z in R[V ] and IKZ := IZ ∩ R[V ]K .

Poisson bracket on smooth and regular functions.

Stratified symplectic space (Sjamaar–Lerman, 1991): The stratification of V /K
by isotropy types restricts to a stratification of Z/K into smooth symplectic
manifolds.

Choosing a generating set of R[V ]K (a Hilbert basis) yields an embedding
V /K → Rk , the Hilbert embedding. This realizes Z/K as a semialgebraic set.

(Schwarz 1976, Mather 1977) The smooth structure above coincides with the
induced smooth structure as a subset of Rk . �
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Real linear symplectic quotients

When K is finite: Linear symplectic orbifolds

When K is a finite group, Z/K is a linear symplectic orbifold.

The moment map is J = 0.

Z = J−1(0) = V .

C∞(V0) = C∞(V )K .

R[V0] = R[V ]K . �
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Real linear symplectic quotients

When K is finite: Linear symplectic orbifolds

Example

Let K = {±1} act on C by multiplication.

Using coordinates (z , z) for C, the real invariants R[V ]K of the action are
generated by

u = z2, v = z2, w = zz .

They satisfy the relation: w2 − uv = 0.

R[V0] = R[V ]K ∼= R[u, v ,w ]/〈w2 − uv〉, with w ≥ 0. �
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Real linear symplectic quotients

K = T`

When K = T` is a torus, the action is described by a weight matrix
A = (ai,j) ∈ Z`×n in coordinates (z1, . . . , zn) for V ∼= Cn:

(t1, . . . , t`) · (z1, . . . , zn) = (t
a1,1
1 · · · ta`,1` z1, . . . , t

a1,n
1 · · · ta`,n` zn).

Identifying g∗ with R`, the moment map is given by

ρi (z1, . . . , zn) = −1

2

n∑
j=1

ai,j |zi |2, i = 1, . . . , `.

Then Z = {(z1, . . . , zn) ∈ V |
n∑

j=1

ai,j |zi |2 = 0 ∀i}.

If R
√

(ρ) = (ρ) then IT
`

Z = IZ so that R[Z/T`] = R[V ]T
`

/IZ . �
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Real linear symplectic quotients

Example: K = T1

Example

Let K = T1 act on C2 with weight matrix (−1, 1),

t(z1, z2) = (t−1z1, tz2).

Then Z = {(z1, z2) : |z1|2 = |z2|2} is homeomorphic to the cone on T2.

The real invariants of the action are generated by

p1 = z1z1, p2 = z2z2, p3 = z1z2, p4 = z1 z2.

(in real coordinates (z1, z2, z1, z2), the weight matrix is (−1, 1, 1,−1)).

The ideal IT
1

Z = 〈p1 − p2〉 , so R[Z/T1] = R[V ]T
1

/IT
1

Z is generated by the
quadratics p1, p3, p4 with relation p21 − p3p4 .

The only inequality is p1 ≥ 0. �
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Real linear symplectic quotients

Example: K = T1 (cont.)

Example

Let K = T1 act on C2 with weight matrix (−1, 1),

t(z1, z2) = (t−1z1, tz2).

p1 = z1z1, p2 = z2z2, p3 = z1z2, p4 = z1 z2.

R[Z/T1] = R[V ]T
1

/IT
1

Z = 〈p1, p3, p4 : p21 − p3p4〉, p1 ≥ 0.

{·, ·} p1 p3 p4
p1 0 c p3 −c p4
p3 0 −2c p1
p4 0,

c = 2
√
−1.

(Lerman-Montgomery-Sjamaar, 1993) The resulting symplectic quotient is the
same as the orbifold C/± 1:

R[C/± 1] = R[C]±1 = 〈z2, z2, zz〉 ∼= R[u, v ,w ]/〈w2 − uv〉, w ≥ 0. �

C. Seaton (Skidmore College) Isomorphisms of linear symplectic torus quotients 2024 AMS Sectional, Georgia Southern 8 / 34



Real linear symplectic quotients

Example: K = T2

Example

Let K = T2 act on C4 with weight matrix

(
−1 0 1 1
0 −1 2 2

)
.

Z = {(z1, z2, z3, z4) : |z1|2 = |z3|2 + |z4|2, |z2|2 = 2|z3|2 + 2|z4|2}.
The real invariants of the action are generated by

m1 = z1z1, m2 = z2z2, m3 = z3z3, m4 = z4z4, p1 = z3z4, p2 = z4z3,

p3 = z1z
2
2 z3, p4 = z1z2

2z3, p5 = z1z
2
2 z4, p6 = z1z2

2z4.

On Z , m1 = m3 + m4 and m2 = 2m3 + 2m4, and the remaining relations are

m3m4 − p1p2, p1p4 − m3p6, m4p4 − p2p6, p2p3 − m3p5, m4p3 − p1p5,

4m3
3p2 + 4m3

4p2 + 12m3p1p
2
2 + 12m4p1p

2
2 − p4p5, 4m3

3p1 + 4m3
4p1 + 12m3p

2
1p2 + 12m4p

2
1p2 − p3p6,

4m4
4 + 4m2

3p1p2 + 12m2
4p1p2 + 12p2

1p
2
2 − p5p6, 4m4

3 + 12m2
3p1p2 + 4m2

4p1p2 + 12p2
1p

2
2 − p3p4

The resulting symplectic quotient is the same as the symplectic quotient
corresponding to the T1-action with weight matrix (−1, 3, 3). ��
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Motivating question
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C. Seaton (Skidmore College) Isomorphisms of linear symplectic torus quotients 2024 AMS Sectional, Georgia Southern 9 / 34



Motivating question

Motivating question

For i = 1, 2:

Ki a compact Lie group,

Vi a unitary Ki -module,

Zi the real shell in Vi ,

Zi/Ki the real symplectic quotient.

A diffeomorphism Φ: Z1/K1 → Z2/K2 is a homeomorphism such that
Φ∗ : C∞(Z2/K2)→ C∞(Z1/K1) is an isomorphism.

A symplectomorphism Φ: Z1/K1 → Z2/K2 is a diffeomorphism such that
Φ∗ : C∞(Z2/K2)→ C∞(Z1/K1) is a Poisson isomorphism.

A diffeo/symplectomorphism is regular if Φ∗ restricts to an isomorphism
R[Z2/K2]→ R[Z1/K1] and graded regular if this isomorphism preserves the
grading.

The above two examples are graded regular symplectomorphisms.

Question: When are two real linear symplectic quotients (graded) regularly
symplectomorphic? �
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Motivating question

(Graded) regular symplectomorphisms with orbifolds are
rare

Theorem (Herbig-Schwarz-S., 2015)

Let T1 act on V = Cn such that the corresponding symplectic quotient has real
dimension greater than 2. Then there does not exist a regular diffeomorphism
between the corresponding symplectic quotient and a linear symplectic orbifold.

For weight matrices of the form (−a1, a2) with ai > 0, the symplectic quotient is
graded regularly symplectomorphic to the linear symplectic orbifold
C/
(
Z/〈a1 + a2〉

)
.

For any weight matrix (±a1, . . . ,±an), ai > 0, containing positive and negative
weights with n > 2, there is no graded regular symplectomorphism with a linear
symplectic orbifold.

�
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Motivating question

There are lots of graded regular symplectomorphisms

(Herbig-Lawler-S., 2020) Let T` act on C`+k with weight matrix

A =
(
D | c1n c2n · · · ckn

)
.

D = diag(−a1, . . . ,−a`) with each ai > 0,

n = (n1, . . . , n`)
T with each ni > 0,

each cj > 0.

Define

α(A) = lcm(a1, . . . , a`), mi (A) =
niα(A)

ai
, i = 1, . . . , `, β(A) =

∑̀
i=1

mi (A).

The real symplectic quotient associated to A is graded regularly symplectomorphic
to the real symplectic quotient associated to the T1-representation on Ck+1 with
weight matrix (

−α(A) c1β(A) c2β(A) · · · ckβ(A)
)
. �

C. Seaton (Skidmore College) Isomorphisms of linear symplectic torus quotients 2024 AMS Sectional, Georgia Southern 12 / 34



Motivating question

Examples of graded regular symplectomorphisms

Example

The real symplectic quotients associated to the T2 action with weight matrix(
−1 0 1 1 1 1
0 −1 2 2 2 2

)
and the T1-action (−1, 3, 3, 3, 3) are graded

regularly symplectomorphic.

The real symplectic quotients associated to the T2 action with weight matrix(
−1 0 1 3 5 7
0 −1 2 6 10 14

)
and the T1-action (−1, 3, 9, 15, 21) are graded

regularly symplectomorphic.

The real symplectic quotients associated to the T3 action with weight matrix−1 0 0 3 6 9
0 −2 0 1 2 3
0 0 −3 2 4 6

 and the T1-action (−6, 25, 50, 75) are graded

regularly symplectomorphic. ��
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Complex linear symplectic quotients

Complex linear symplectic quotients
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Complex linear symplectic quotients

Complex symplectic quotients

Let G = KC denote the complexification of K .

The action of K on V extends to an action of G on V .

(Kempf-Ness, 1979) The inclusion of Z into V induces a homeomorphism between
the symplectic quotient Z/K and the categorical quotient V //G := SpecC[V ]G .

The complex moment map is µ = ρ⊗R C : V ⊕ V ∗ → g∗.

The complex shell N := µ−1(0) is the subscheme of V ⊕ V ∗ associated to (µ).

The complex linear symplectic quotient is Spec
(
C[V ⊕ V ∗]G/(µ)G

)
.

If R
√

(ρ) = (ρ), the complex symplectic quotient is equal to N//G , the affine GIT
quotient parameterizing the closed G -orbits in N, and

Spec
(
C[V ⊕ V ∗]G/(µ)G

)
= Spec(R[Z/K ]⊗R C).

In general,

R[Z/K ]⊗R C = C(V ⊕ V ∗)G/
(

R
√

(ρ)⊗R C
)G
.

Question: When are two (nice enough) complex linear symplectic quotients
isomorphic as complex Poisson varieties? �

C. Seaton (Skidmore College) Isomorphisms of linear symplectic torus quotients 2024 AMS Sectional, Georgia Southern 14 / 34



Complex linear symplectic quotients

Stable G -modules

Definition

The G -representation V is stable if V contains an open dense subset consisting
of closed orbits.

Example

K = T1, so G = KC = C×.

Let K act on V = C with weight matrix (1):

tz = z (t ∈ K , z ∈ C),

extends to an action of C×.

Two orbits: C× ⊂ C and {0}. Only {0} is closed.

V is not stable as a C×-module.

There are no nonconstant invariant polynomials: C[V ]G = C.

The quotient V //G is a point. �
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Complex linear symplectic quotients

Stable G -modules

Definition

The G -representation V is stable if V contains an open dense subset consisting
of closed orbits.

Example

K = T1, so G = KC = C×.

Let K act on V = C with weight matrix (1,−1):

t(z1, z2) = (t−1z1, tz2) (t ∈ K , (z1, z2) ∈ V ),

extends to an action of C×.

The orbit of (z1, z2) ∈ C is closed unless z1 = 0 xor z2 = 0.

V is stable as a C×-module.

C[V ]K = C[z1z2].

The quotient V //G ' C. �

C. Seaton (Skidmore College) Isomorphisms of linear symplectic torus quotients 2024 AMS Sectional, Georgia Southern 16 / 34



Complex linear symplectic quotients

FPIG and TPIG

Let π : V → V //G denote the orbit map.

The variety V //G is stratified by orbit types of closed orbits.

There is a unique open stratum (V //G )pr, the principal orbit type.

Stable is equivalent to Vpr := π−1
(
(V //G )pr

)
consisting of closed orbits.

Definition

(V ,G ) has FPIG if closed orbits in π−1
(
(V //G )pr

)
have finite isotropy and TPIG

if they have trivial isotropy.

Example

For the K = T1-action on V = C with weight matrix (1),
tz = z , V does not have FPIG.

Vpr = C and the closed orbit {0} has isotropy T1.

For the K = T1-action on V = C with weight matrix (1,−1),
t(z1, z2) = (t−1z1, tz2), V has TPIG.

Vpr = {(z1, z2) ∈ C2 : z1, z2 6= 0} has trivial isotropy. �
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Complex linear symplectic quotients

k-principal G -modules

Definition

(V ,G ) is k-principal if codimV r Vpr ≥ k .

Example

For the K = T1-action on V = C with weight matrix (1),
tz = z , V is k-principal for all k .

Vpr = V .

For the K = T1-action on V = C with weight matrix (1,−1),
t(z1, z2) = (t−1z1, tz2), V is 1-principal but not 2-principal.

V r Vpr contains C× {0} and {0} × C. �
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Complex linear symplectic quotients

k-modular G -modules

For r = 0, 1, . . . , dimG , let

V(r) = {x ∈ V : dimGx = r}.
The irreducible components of the V(r) are called sheets.

Definition

(V ,G ) is k-modular if codimV(r) ≥ r + k for r = 1, 2, . . . , dimG .

Example

For the K = T1-action on V = C with weight matrix (1),
tz = z , V is 0-modular but not 1-modular.

V(1) = {0}.
For the K = T1-action on V = C with weight matrix (1,−1),
t(z1, z2) = (t−1z1, tz2), V is 1-modular but not 2-modular.

V(1) = {(0, 0)}. �
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Complex linear symplectic quotients

k-large G -modules

Definition

(V ,G ) is k-large if it has FPIG, is k-principal, and is k-modular.

Example

The C×-representation with weights (1, 1) does not have FPIG so is not
k-large for any k .

The C×-representation with weights (1,−1) has TPIG, is 1-principal but not
2-principal, and is 1-modular but not 2-modular; hence it is 1-large but not
2-large. �
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Complex linear symplectic quotients

k-large G -modules

“Most” representations are k-large.

(Schwarz, 1995; Herbig-Schwarz-S., 2020)

1 If G is connected and simple, for any k , all but finitely many G -modules with
V G = {0} are k-large.

2 If G is connected and semisimple, all but finitely many G -modules with
V G = {0} whose irreducible subrepresentations have finite kernels are
k-large. �
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Complex linear symplectic quotients

k-large (C×)`-modules

Theorem (Herbig-Schwarz, 2013)

Let G = (C×)` and V be a faithful G -module. Then V is stable if and only if it is
1-large.

Theorem (Wehlau, 1992)

If V is a G = (C×)`-module, then there is a subtorus G ′ and stable G ′-submodule
V ′ such that C[V ′]G

′
= C[V ]G .

Restricting to the stable sub-G ′-module V ′ does not change the real symplectic
quotient (but can change the complex symplectic quotient). �
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Complex linear symplectic quotients

k-large (C×)`-modules

Theorem

If V is a 1-modular and faithful G = (C×)`-module, then there is a Lagrangian
submodule V ′ of V ⊕ V ∗ such that V ′ is stable. The complex symplectic
quotients of V and V ′ coincide.

Example

The C×-representation V with weight matrix (1, 1) is not stable but is 1-modular.
The weight matrix of V ⊕ V ∗ is (1, 1,−1,−1), so we can replace V by V ′ with
weights (1,−1).

If G◦ = (C×)` and V is a faithful G -module of dimension n, then V is k-modular
if and only if every `× (n − k) submatrix of the weight matrix has rank `.

Hence k-modularity is generic among (C×)`-representations of dimension at least
`+ k . �
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Complex linear symplectic quotients

Large G -modules have good shells

(Herbig-Schwarz, 2013)

N is a complete intersection, i.e. the µi form a regular sequence, if and only
if V is 0-modular.

If V is 0-modular, then N is reduced and irreducible if and only if V is
1-modular.

If V is 2-modular, then N is normal.

If V is 1-large, then the ideal (ρ) ⊂ R[V ] of the real moment map ρ is a real
ideal:

(ρ) = R
√

(ρ).

In particular, if (V ,G ) is 1-large, then the complex symplectic quotient is

N//G = Spec(R[Z/K ]⊗R C). �
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Isomorphisms of linear symplectic torus quotients
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Isomorphisms of linear symplectic torus quotients

Minimal representations

K a compact Lie group with K◦ = T`, G = KC.
V a faithful 1-modular G -module.
N = µ−1(0) the complex shell and Nsing the set of singular points in N.
A the weight matrix for the K◦-action on V .

Theorem

codimN Nsing ≥ 3 with equality if and only if there is an r with 1 ≤ r ≤ ` and
n − r − 1 columns of A of rank `− r .

Definition

The G -module V (or the shell N) is minimal if codimN Nsing ≥ 4.

Example(
−1 0 1 1
0 −1 1 1

)
is not minimal; removing the first 2 columns yields rank 1.(

−1 0 1 1
0 −1 1 2

)
is minimal; removing any 2 columns does not reduce the rank.

�
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Isomorphisms of linear symplectic torus quotients

Replacing V with a minimal representation

Every complex symplectic torus quotient is the symplectic quotient of a minimal
representation.

Theorem

V a faithful 1-modular G -module as above.
There is a linear subspace V ′ ⊂ V such that, if G ′ ≤ G is the stabilizer of V ′:

(1) V ′ is a 1-modular faithful G ′-module.

(2) There is a G ′-equivariant inclusion NV ′ → N inducing a Poisson isomorphism
N ′//G ′ ' N//G .

(3) N ′ is minimal.

If V is a stable G -module, then V ′ is a stable G ′-module. �
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Isomorphisms of linear symplectic torus quotients

Replacing V with a minimal representation

Example

Let G = (C×)2 act on V = C4 with weight matrix(
−a b 0 0
0 0 −c d

)
, a, b, c , d > 0, gcd(a, b) = gcd(c , d) = 1.

V is not minimal. Removing the first two columns reduces the rank by r = 1.

Let
V ′ = span(

√
be1 +

√
ae2,
√
de3 +

√
ce4)

and
G ′ = Z/〈a + b〉 × Z/〈c + d〉 ≤ G .

Then V ′ is minimal and N//G ' N ′//G ′ = C2/
(
Z/〈a + b〉 × Z/〈c + d〉

)
. �
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Isomorphisms of linear symplectic torus quotients

Replacing V with a minimal representation

Example

Let G = (C×)2 act on V = C4 with weight matrix(
3 0 −4 6
1 −3 0 0

)
.

V is not minimal.

Let
V ′ = span(

√
3e1 + e2, e3, e4)

and
G ′ = {(t4, t−3) : t ∈ C×}.

Then V ′ is minimal and N ′//G ′ ' N//G .

V ′ is isomorphic to the circle-representation with weights (9,−16, 24). �
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Isomorphisms of linear symplectic torus quotients

Classifying complex linear symplectic quotients

Minimal representations classify complex symplectic quotients up to changing the
Lagrangian submodule.

Theorem

For i = 1, 2, assume:

Ki a compact Lie group with K◦i a torus, Gi = (Ki )C,

Vi a faithful 1-modular Gi -module,

Ni = µ−1(0) the complex shell.

If
N1//G1 ' N2//G2

as affine varieties, then there is a linear isomorphism

Γ: V1 ⊕ V ∗1
'−→ V2 ⊕ V ∗2

inducing isomorphisms N1 ' N2 and G1 ' G2. ��
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Isomorphisms of linear symplectic torus quotients

Real linear symplectic quotients

Example (Herbig-Lawler-S., 2020)

K = S1

V1 = C3 with weight vector (−2, 3, 6)

V2 = C3 with weight vector (−3, 2, 6)

As G = C×-modules, V1 ⊕ V ∗1 ' V2 ⊕ V ∗2 so the corresponding complex
symplectic quotients are isomorphic as Poisson varieties.

If Zi , i = 1, 2, denote the real shells, then there are isomorphisms

R[Z1]K ' R[Z2]K .

These are isomorphisms of the Zariski closures of Z1/K and Z2/K as real
algebraic varieties.

However, no such isomorphism preserves the inequalities defining Z1/K and Z2/K .

The real symplectic quotients are not regularly diffeomorphic. �
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Isomorphisms of linear symplectic torus quotients

Replacing V with a minimal representation

Definition

The unitary K -module V is minimal if V is minimal as a G = KC-module.

Theorem

K a compact Lie group with K◦ a torus, G = KC,

V a faithful unitary K -module that is stable as a G -module,

Z = ρ−1(0) the real shell and N = µ−1(0) the complex shell.

There is a complex linear subspace V ′ ⊂ V such that, if K ′ ≤ K is the stabilizer
of V ′ and Z ′ is the real shell of V ′:

(1) V ′ is a stable faithful G ′-module.

(2) There is a K ′-equivariant inclusion Z ′ → Z inducing a graded regular
symplectomorphism Z ′/K ′ ' Z/K .

(3) V ′ is minimal. �

C. Seaton (Skidmore College) Isomorphisms of linear symplectic torus quotients 2024 AMS Sectional, Georgia Southern 31 / 34



Isomorphisms of linear symplectic torus quotients

Classifying real linear symplectic quotients

Theorem

For i = 1, 2, Ki a compact Lie group with K◦i a torus, Gi = (Ki )C,

Vi a faithful unitary Ki -module that is stable as a Gi -module,

Zi = ρ−1(0) the real shells and Ni = µ−1(0) the complex shell.

The following are equivalent:

(1) There is a regular isomorphism ϕ : Z1/K1 → Z2/K2.

(2) There is a real isomorphism Φ: N1//G1 → N2//G2

(3) There is a real linear isomorphism

Γ: V1 ⊕ V ∗1
'−→ V2 ⊕ V ∗2

inducing (necessarily real) isomorphisms N1 ' N2 and G1 ' G2.

(4) There is a linear isomorphism

Γ′ : V1 → V2

inducing isomorphisms Z1 ' Z2 and K1 ' K2. �
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Isomorphisms of linear symplectic torus quotients

Classifying real linear symplectic quotients

Corollary

For i = 1, 2, assume:

Ki a compact Lie group with K◦i a torus, Gi = (Ki )C,

Vi a faithful unitary Ki -module that is stable as a Gi -module,

Zi = ρ−1(0) the real shells and Ni = µ−1(0) the complex shell.

If there is a regular isomorphism Z1/K1 → Z2/K2, then there is a graded regular
symplectomorphism Z1/K1 → Z2/K2. � � �
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Isomorphisms of linear symplectic torus quotients

Thank you!
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