Isomorphisms of linear symplectic torus quotients

Christopher Seaton Joint work with Hans-Christian Herbig and Gerald Schwarz

arXiv:2306.17349 [math.SG]

Skidmore College
Supported by an AMS-Simons Research Enhancement Grant for Primarily Undergraduate Institution (PUI) Faculty

October 6, 2024 2024 Fall Southeastern Sectional Meeting of the AMS Georgia Southern University Real linear symplectic quotients

- Motivating question
- Complex linear symplectic quotients
- Isomorphisms of linear symplectic torus quotients

Real linear symplectic quotients

Real symplectic quotients

Let K be a compact Lie group and $V \cong \mathbb{C}^n$ a finite-dimensional unitary K-module.

Let $ho\colon\thinspace V o \mathfrak{k}^*$ denote the homogeneous quadratic moment map

$$(\rho(v),\xi):=\frac{\sqrt{-1}}{2}\langle v,\xi.v\rangle,\quad v\in V,\xi\in\mathfrak{k}.$$

Let $Z := \rho^{-1}(0)$, the **real shell**, a K-invariant subset of V.

Note that 0 is (usually) a singular value of ρ so that Z is a singular real algebraic K-variety.

The **real linear symplectic quotient** is Z/K.

Structures of a real linear symplectic quotient

Differentiable space: $C^{\infty}(Z/K) := C^{\infty}(V)^K/\mathcal{I}_Z^K$ where \mathcal{I}_Z is the vanishing ideal of Z and $\mathcal{I}_Z^K := \mathcal{I}_Z \cap C^{\infty}(V)^K$.

Graded algebra of real regular functions: $\mathbb{R}[Z/K] := \mathbb{R}[V]^K/I_Z^K$ where $I_Z = \sqrt[R]{(\rho)}$ is the vanishing ideal of Z in $\mathbb{R}[V]$ and $I_Z^K := I_Z \cap \mathbb{R}[V]^K$.

Poisson bracket on smooth and regular functions.

Stratified symplectic space (Sjamaar–Lerman, 1991): The stratification of V/K by isotropy types restricts to a stratification of Z/K into smooth symplectic manifolds.

Choosing a generating set of $\mathbb{R}[V]^K$ (a **Hilbert basis**) yields an embedding $V/K \to \mathbb{R}^k$, the **Hilbert embedding**. This realizes Z/K as a semialgebraic set.

(Schwarz 1976, Mather 1977) The smooth structure above coincides with the induced smooth structure as a subset of \mathbb{R}^k .

When K is finite: Linear symplectic orbifolds

When K is a finite group, Z/K is a **linear symplectic orbifold**.

- The moment map is J = 0.
- $Z = J^{-1}(0) = V$.
- $\bullet \ \mathcal{C}^{\infty}(V_0) = \mathcal{C}^{\infty}(V)^K.$
- $\bullet \ \mathbb{R}[V_0] = \mathbb{R}[V]^K.$

When K is finite: Linear symplectic orbifolds

Example

Let $K = \{\pm 1\}$ act on $\mathbb C$ by multiplication.

Using coordinates (z, \overline{z}) for \mathbb{C} , the real invariants $\mathbb{R}[V]^K$ of the action are generated by

$$u = z^2$$
, $v = \overline{z}^2$, $w = z\overline{z}$.

They satisfy the relation:

$$w^2 - uv = 0.$$

$$\mathbb{R}[V_0] = \mathbb{R}[V]^K \cong \mathbb{R}[u, v, w]/\langle w^2 - uv \rangle, \quad \text{with } w \geq 0.$$

$$K = \mathbb{T}^{\ell}$$

When $K = \mathbb{T}^{\ell}$ is a torus, the action is described by a weight matrix $A = (a_{i,j}) \in \mathbb{Z}^{\ell \times n}$ in coordinates (z_1, \ldots, z_n) for $V \cong \mathbb{C}^n$:

$$(t_1,\ldots,t_\ell)\cdot(z_1,\ldots,z_n)=(t_1^{a_{1,1}}\cdots t_\ell^{a_{\ell,1}}z_1,\ldots,t_1^{a_{1,n}}\cdots t_\ell^{a_{\ell,n}}z_n).$$

Identifying \mathfrak{g}^* with \mathbb{R}^ℓ , the moment map is given by

$$\rho_i(z_1,\ldots,z_n) = -\frac{1}{2}\sum_{i=1}^n a_{i,j}|z_i|^2, \qquad i=1,\ldots,\ell.$$

Then
$$Z = \{(z_1, \dots, z_n) \in V \mid \sum_{j=1}^n a_{i,j} |z_i|^2 = 0 \quad \forall i\}.$$

If $\sqrt[R]{(\rho)}=(\rho)$ then $I_Z^{\mathbb{T}^\ell}=I_Z$ so that $\mathbb{R}[Z/\mathbb{T}^\ell]=\mathbb{R}[V]^{\mathbb{T}^\ell}/I_Z$.

Example: $K = \mathbb{T}^1$

Example

Let $K=\mathbb{T}^1$ act on \mathbb{C}^2 with weight matrix (-1,1),

$$t(z_1, z_2) = (t^{-1}z_1, tz_2).$$

Then $Z = \{(z_1, z_2) : |z_1|^2 = |z_2|^2\}$ is homeomorphic to the cone on \mathbb{T}^2 .

The real invariants of the action are generated by

$$p_1 = z_1\overline{z_1}, \ p_2 = z_2\overline{z_2}, \ p_3 = z_1z_2, \ p_4 = \overline{z_1}\,\overline{z_2}.$$

(in real coordinates $(z_1, z_2, \overline{z_1}, \overline{z_2})$, the weight matrix is (-1, 1, 1, -1)).

The ideal $I_Z^{\mathbb{T}^1}=\langle p_1-p_2\rangle$, so $\mathbb{R}[Z/\mathbb{T}^1]=\mathbb{R}[V]^{\mathbb{T}^1}/I_Z^{\mathbb{T}^1}$ is generated by the quadratics p_1,p_3,p_4 with relation $p_1^2-p_3p_4$.

The only inequality is $p_1 \geq 0$.

Example: $K = \mathbb{T}^1$ (cont.)

 p_{4}

Example

Let $K = \mathbb{T}^1$ act on \mathbb{C}^2 with weight matrix (-1,1),

$$t(z_{1}, z_{2}) = (t^{-1}z_{1}, tz_{2}).$$

$$p_{1} = z_{1}\overline{z_{1}}, \quad p_{2} = z_{2}\overline{z_{2}}, \quad p_{3} = z_{1}z_{2}, \quad p_{4} = \overline{z_{1}}\overline{z_{2}}.$$

$$\mathbb{R}[Z/\mathbb{T}^{1}] = \mathbb{R}[V]^{\mathbb{T}^{1}}/I_{Z}^{\mathbb{T}^{1}} = \langle p_{1}, p_{3}, p_{4} : p_{1}^{2} - p_{3}p_{4} \rangle, \qquad p_{1} \geq 0.$$

$$\frac{\{\cdot, \cdot\}}{p_{1}} \begin{vmatrix} p_{1} & p_{3} & p_{4} \\ 0 & c p_{3} & -c p_{4} \\ p_{3} & 0 & -2c p_{1} \\ 0 & 0 & 0 \end{vmatrix}$$

$$c = 2\sqrt{-1}.$$

(Lerman-Montgomery-Sjamaar, 1993) The resulting symplectic quotient is the same as the orbifold $\mathbb{C}/\pm 1$:

$$\mathbb{R}[\mathbb{C}/\pm 1] = \mathbb{R}[\mathbb{C}]^{\pm 1} = \langle z^2, \overline{z}^2, z\overline{z} \rangle \cong \mathbb{R}[u, v, w]/\langle w^2 - uv \rangle, \quad w \ge 0.$$

Example: $K = \mathbb{T}^2$

Example

Let
$$K = \mathbb{T}^2$$
 act on \mathbb{C}^4 with weight matrix $\begin{pmatrix} -1 & 0 & 1 & 1 \\ 0 & -1 & 2 & 2 \end{pmatrix}$.

$$Z = \{(z_1, z_2, z_3, z_4) : |z_1|^2 = |z_3|^2 + |z_4|^2, \quad |z_2|^2 = 2|z_3|^2 + 2|z_4|^2\}.$$

The real invariants of the action are generated by

$$m_1 = z_1\overline{z_1}, \quad m_2 = z_2\overline{z_2}, \quad m_3 = z_3\overline{z_3}, \quad m_4 = z_4\overline{z_4}, \quad p_1 = z_3\overline{z_4}, \quad p_2 = z_4\overline{z_3},$$

 $p_3 = z_1z_2^2z_3, \quad p_4 = \overline{z_1z_2}^2\overline{z_3}, \quad p_5 = z_1z_2^2z_4, \quad p_6 = \overline{z_1z_2}^2\overline{z_4}.$

On Z, $m_1 = m_3 + m_4$ and $m_2 = 2m_3 + 2m_4$, and the remaining relations are

$$m_3m_4 - p_1p_2, \ p_1p_4 - m_3p_6, \ m_4p_4 - p_2p_6, \ p_2p_3 - m_3p_5, \ m_4p_3 - p_1p_5,$$

$$4m_3^3p_2 + 4m_4^3p_2 + 12m_3p_1p_2^2 + 12m_4p_1p_2^2 - p_4p_5, \ 4m_3^3p_1 + 4m_4^3p_1 + 12m_3p_1^2p_2 + 12m_4p_1^2p_2 - p_3p_6,$$

$$4m_4^4 + 4m_3^2p_1p_2 + 12m_4^2p_1p_2 + 12p_1^2p_2^2 - p_5p_6, \ 4m_4^4 + 12m_3^2p_1p_2 + 4m_4^2p_1p_2 + 12p_1^2p_2^2 - p_3p_4$$

The resulting symplectic quotient is the same as the symplectic quotient corresponding to the \mathbb{T}^1 -action with weight matrix (-1,3,3).

Motivating question

Motivating question

For i = 1, 2:

- K_i a compact Lie group,
- V_i a unitary K_i -module.
- Z_i the real shell in V_i .
- Z_i/K_i the real symplectic quotient.

A **diffeomorphism** $\Phi: Z_1/K_1 \to Z_2/K_2$ is a homeomorphism such that $\Phi^* : \mathcal{C}^{\infty}(Z_2/K_2) \to \mathcal{C}^{\infty}(Z_1/K_1)$ is an isomorphism.

A symplectomorphism $\Phi: Z_1/K_1 \to Z_2/K_2$ is a diffeomorphism such that $\Phi^* : \mathcal{C}^{\infty}(Z_2/K_2) \to \mathcal{C}^{\infty}(Z_1/K_1)$ is a Poisson isomorphism.

A diffeo/symplectomorphism is **regular** if Φ^* restricts to an isomorphism $\mathbb{R}[Z_2/K_2] \to \mathbb{R}[Z_1/K_1]$ and **graded regular** if this isomorphism preserves the grading.

The above two examples are graded regular symplectomorphisms.

Question: When are two real linear symplectic quotients (graded) regularly symplectomorphic?

(Graded) regular symplectomorphisms with orbifolds are rare

Theorem (Herbig-Schwarz-S., 2015)

Let \mathbb{T}^1 act on $V = \mathbb{C}^n$ such that the corresponding symplectic quotient has real dimension greater than 2. Then there does not exist a regular diffeomorphism between the corresponding symplectic quotient and a linear symplectic orbifold.

For weight matrices of the form $(-a_1, a_2)$ with $a_i > 0$, the symplectic quotient is graded regularly symplectomorphic to the linear symplectic orbifold $\mathbb{C}/(\mathbb{Z}/\langle a_1+a_2\rangle).$

For any weight matrix $(\pm a_1, \dots, \pm a_n)$, $a_i > 0$, containing positive and negative weights with n > 2, there is no graded regular symplectomorphism with a linear symplectic orbifold.

There are lots of graded regular symplectomorphisms

(Herbig-Lawler-S., 2020) Let \mathbb{T}^{ℓ} act on $\mathbb{C}^{\ell+k}$ with weight matrix

$$A = \begin{pmatrix} \mathbf{D} & | & c_1 \mathbf{n} & c_2 \mathbf{n} & \cdots & c_k \mathbf{n} \end{pmatrix}.$$

- $\mathbf{D} = \text{diag}(-a_1, \dots, -a_\ell)$ with each $a_i > 0$,
- $\mathbf{n} = (n_1, \dots, n_\ell)^T$ with each $n_i > 0$,
- each $c_i > 0$.

Define

$$\alpha(A) = \operatorname{lcm}(a_1, \ldots, a_\ell), \qquad m_i(A) = \frac{n_i \alpha(A)}{a_i}, \ i = 1, \ldots, \ell, \qquad \beta(A) = \sum_{i=1}^{\ell} m_i(A).$$

The real symplectic quotient associated to A is graded regularly symplectomorphic to the real symplectic quotient associated to the \mathbb{T}^1 -representation on \mathbb{C}^{k+1} with weight matrix

$$(-\alpha(A) \quad c_1\beta(A) \quad c_2\beta(A) \quad \cdots \quad c_k\beta(A)).$$

Examples of graded regular symplectomorphisms

- The real symplectic quotients associated to the \mathbb{T}^2 action with weight matrix $\begin{pmatrix} -1 & 0 & 1 & 1 & 1 & 1 \\ 0 & -1 & 2 & 2 & 2 & 2 \end{pmatrix}$ and the \mathbb{T}^1 -action (-1,3,3,3,3) are graded regularly symplectomorphic.
- The real symplectic quotients associated to the \mathbb{T}^2 action with weight matrix $\begin{pmatrix} -1 & 0 & 1 & 3 & 5 & 7 \\ 0 & -1 & 2 & 6 & 10 & 14 \end{pmatrix} \text{ and the } \mathbb{T}^1\text{-action } (-1,3,9,15,21) \text{ are graded}$ regularly symplectomorphic.
- ullet The real symplectic quotients associated to the \mathbb{T}^3 action with weight matrix $\begin{pmatrix} -1 & 0 & 0 & 3 & 0 & 9 \\ 0 & -2 & 0 & 1 & 2 & 3 \\ 0 & 0 & -3 & 2 & 4 & 6 \end{pmatrix}$ and the \mathbb{T}^1 -action (-6, 25, 50, 75) are graded regularly symplectomorphic.

Complex linear symplectic quotients

Complex symplectic quotients

Let $G = K_{\mathbb{C}}$ denote the complexification of K.

The action of K on V extends to an action of G on V.

(Kempf-Ness, 1979) The inclusion of Z into V induces a homeomorphism between the symplectic quotient Z/K and the categorical quotient $V/\!\!/G := \operatorname{Spec} \mathbb{C}[V]^G$.

The complex moment map is $\mu = \rho \otimes_{\mathbb{R}} \mathbb{C} \colon V \oplus V^* \to \mathfrak{g}^*$.

The **complex shell** $N := \mu^{-1}(0)$ is the subscheme of $V \oplus V^*$ associated to (μ) .

The complex linear symplectic quotient is Spec ($\mathbb{C}[V \oplus V^*]^G/(\mu)^G$).

If $\sqrt[R]{(\rho)} = (\rho)$, the complex symplectic quotient is equal to $N/\!\!/ G$, the affine GIT quotient parameterizing the closed G-orbits in N, and

$$\operatorname{\mathsf{Spec}}\left(\mathbb{C}[V\oplus V^*]^G/(\mu)^G\right)=\operatorname{\mathsf{Spec}}(\mathbb{R}[Z/K]\otimes_{\mathbb{R}}\mathbb{C}).$$

In general,

$$\mathbb{R}[Z/K] \otimes_{\mathbb{R}} \mathbb{C} = \mathbb{C}(V \oplus V^*)^G / (\sqrt[R]{(\rho)} \otimes_{\mathbb{R}} \mathbb{C})^G.$$

Question: When are two (nice enough) complex linear symplectic quotients isomorphic as complex Poisson varieties?

Stable G-modules

Definition

The G-representation V is **stable** if V contains an open dense subset consisting of closed orbits.

Example

$$K=\mathbb{T}^1$$
, so $G=K_{\mathbb{C}}=\mathbb{C}^{\times}$.

Let K act on $V = \mathbb{C}$ with weight matrix (1):

$$tz = z$$
 $(t \in K, z \in \mathbb{C}),$

extends to an action of \mathbb{C}^{\times} .

Two orbits: $\mathbb{C}^{\times} \subset \mathbb{C}$ and $\{0\}$. Only $\{0\}$ is closed.

V is not stable as a \mathbb{C}^{\times} -module.

 $\mathbb{C}[V]^G = \mathbb{C}$. There are no nonconstant invariant polynomials:

The quotient $V/\!\!/ G$ is a point.

Stable G-modules

Definition

The G-representation V is **stable** if V contains an open dense subset consisting of closed orbits.

Example

$$K=\mathbb{T}^1$$
, so $G=K_{\mathbb{C}}=\mathbb{C}^{\times}$.

Let K act on $V = \mathbb{C}$ with weight matrix (1, -1):

$$t(z_1, z_2) = (t^{-1}z_1, tz_2)$$
 $(t \in K, (z_1, z_2) \in V),$

extends to an action of \mathbb{C}^{\times} .

The orbit of $(z_1, z_2) \in \mathbb{C}$ is closed unless $z_1 = 0$ xor $z_2 = 0$.

V is stable as a \mathbb{C}^{\times} -module.

$$\mathbb{C}[V]^K = \mathbb{C}[z_1z_2].$$

The quotient $V /\!\!/ G \simeq \mathbb{C}$.

FPIG and TPIG

Let $\pi \colon V \to V /\!\!/ G$ denote the orbit map.

The variety $V/\!\!/ G$ is stratified by orbit types of closed orbits.

There is a unique open stratum $(V/\!\!/ G)_{DP}$, the **principal orbit type**.

Stable is equivalent to $V_{\rm pr} := \pi^{-1}((V/\!\!/ G)_{\rm pr})$ consisting of closed orbits.

Definition

(V,G) has **FPIG** if closed orbits in $\pi^{-1}((V/\!\!/G)_{\rm pr})$ have finite isotropy and **TPIG** if they have trivial isotropy.

- For the $K = \mathbb{T}^1$ -action on $V = \mathbb{C}$ with weight matrix (1), tz = z, V does not have FPIG. $V_{
 m pr}=\mathbb{C}$ and the closed orbit $\{0\}$ has isotropy \mathbb{T}^1 .
- For the $K = \mathbb{T}^1$ -action on $V = \mathbb{C}$ with weight matrix (1, -1), $t(z_1, z_2) = (t^{-1}z_1, tz_2), V \text{ has TPIG.}$ $V_{\rm pr} = \{(z_1, z_2) \in \mathbb{C}^2 : z_1, z_2 \neq 0\}$ has trivial isotropy.

k-principal G-modules

Definition

(V,G) is k-principal if codim $V \setminus V_{\text{pr}} \geq k$.

- For the $K = \mathbb{T}^1$ -action on $V = \mathbb{C}$ with weight matrix (1), tz = z, V is k-principal for all k. $V_{\rm pr} = V$.
- For the $K = \mathbb{T}^1$ -action on $V = \mathbb{C}$ with weight matrix (1, -1), $t(z_1, z_2) = (t^{-1}z_1, tz_2), V$ is 1-principal but not 2-principal. $V \setminus V_{\mathrm{pr}}$ contains $\mathbb{C} \times \{0\}$ and $\{0\} \times \mathbb{C}$.

k-modular G-modules

For $r = 0, 1, \ldots, \dim G$, let

$$V_{(r)} = \{x \in V : \dim G_x = r\}.$$

The irreducible components of the $V_{(r)}$ are called **sheets**.

Definition

(V, G) is k-modular if codim $V_{(r)} \ge r + k$ for $r = 1, 2, ..., \dim G$.

- For the $K = \mathbb{T}^1$ -action on $V = \mathbb{C}$ with weight matrix (1), tz = z, V is 0-modular but not 1-modular. $V_{(1)} = \{0\}.$
- For the $K = \mathbb{T}^1$ -action on $V = \mathbb{C}$ with weight matrix (1, -1), $t(z_1, z_2) = (t^{-1}z_1, tz_2), V$ is 1-modular but not 2-modular. $V_{(1)} = \{(0,0)\}.$

k-large G-modules

Definition

(V,G) is k-large if it has FPIG, is k-principal, and is k-modular.

- The \mathbb{C}^{\times} -representation with weights (1,1) does not have FPIG so is not k-large for any k.
- The \mathbb{C}^{\times} -representation with weights (1,-1) has TPIG, is 1-principal but not 2-principal, and is 1-modular but not 2-modular; hence it is 1-large but not 2-large.

k-large G-modules

"Most" representations are k-large.

(Schwarz, 1995; Herbig-Schwarz-S., 2020)

- \bullet If G is connected and simple, for any k, all but finitely many G-modules with $V^G = \{0\}$ are k-large.
- ② If G is connected and semisimple, all but finitely many G-modules with $V^G = \{0\}$ whose irreducible subrepresentations have finite kernels are k-large.

k-large $(\mathbb{C}^{\times})^{\ell}$ -modules

Theorem (Herbig-Schwarz, 2013)

Let $G = (\mathbb{C}^{\times})^{\ell}$ and V be a faithful G-module. Then V is stable if and only if it is 1-large.

Theorem (Wehlau, 1992)

If V is a $G = (\mathbb{C}^{\times})^{\ell}$ -module, then there is a subtorus G' and stable G'-submodule V' such that $\mathbb{C}[V']^{G'} = \mathbb{C}[V]^G$.

Restricting to the stable sub-G'-module V' does not change the real symplectic quotient (but can change the complex symplectic quotient).

k-large $(\mathbb{C}^{\times})^{\ell}$ -modules

Theorem

If V is a 1-modular and faithful $G = (\mathbb{C}^{\times})^{\ell}$ -module, then there is a Lagrangian submodule V' of $V \oplus V^*$ such that V' is stable. The complex symplectic quotients of V and V' coincide.

Example

The \mathbb{C}^{\times} -representation V with weight matrix (1,1) is not stable but is 1-modular. The weight matrix of $V \oplus V^*$ is (1,1,-1,-1), so we can replace V by V' with weights (1, -1).

If $G^{\circ} = (\mathbb{C}^{\times})^{\ell}$ and V is a faithful G-module of dimension n, then V is k-modular if and only if every $\ell \times (n-k)$ submatrix of the weight matrix has rank ℓ .

Hence k-modularity is generic among $(\mathbb{C}^{\times})^{\ell}$ -representations of dimension at least $\ell + k$.

Large G-modules have good shells

(Herbig-Schwarz, 2013)

- N is a complete intersection, i.e. the μ_i form a regular sequence, if and only if V is 0-modular.
- If V is 0-modular, then N is reduced and irreducible if and only if V is 1-modular.
- If V is 2-modular, then N is normal.
- If V is 1-large, then the ideal $(\rho) \subset \mathbb{R}[V]$ of the real moment map ρ is a real ideal:

$$(\rho) = \sqrt[\mathbb{R}]{(\rho)}.$$

In particular, if (V, G) is 1-large, then the complex symplectic quotient is $N/\!\!/G = \operatorname{Spec}(\mathbb{R}[Z/K] \otimes_{\mathbb{R}} \mathbb{C}).$

Isomorphisms of linear symplectic torus quotients

Minimal representations

- K a compact Lie group with $K^{\circ} = \mathbb{T}^{\ell}$, $G = K_{\mathbb{C}}$.
- V a faithful 1-modular G-module.
- $N = \mu^{-1}(0)$ the complex shell and $N_{\rm sing}$ the set of singular points in N.
- A the weight matrix for the K° -action on V.

Theorem

 $\operatorname{codim}_N N_{\operatorname{sing}} \geq 3$ with equality if and only if there is an r with $1 \leq r \leq \ell$ and n-r-1 columns of A of rank $\ell-r$.

Definition

The *G*-module *V* (or the shell *N*) is **minimal** if $\operatorname{codim}_N N_{\operatorname{sing}} \geq 4$.

$$\begin{pmatrix} -1 & 0 & 1 & 1 \\ 0 & -1 & 1 & 1 \end{pmatrix} \text{ is not minimal; removing the first 2 columns yields rank 1.}$$

$$\begin{pmatrix} -1 & 0 & 1 & 1 \\ 0 & -1 & 1 & 2 \end{pmatrix} \text{ is minimal; removing any 2 columns does not reduce the rank.}$$

$$\begin{pmatrix} -1 & 0 & 1 & 1 \ 0 & -1 & 1 & 2 \end{pmatrix}$$
 is minimal; removing any 2 columns does not reduce the rank

Every complex symplectic torus quotient is the symplectic quotient of a minimal representation.

Theorem

V a faithful 1-modular G-module as above.

There is a linear subspace $V' \subset V$ such that, if G' < G is the stabilizer of V':

- (1) V' is a 1-modular faithful G'-module.
- There is a G'-equivariant inclusion $N_{V'} \to N$ inducing a Poisson isomorphism $N'/\!\!/ G' \simeq N/\!\!/ G$.
- (3) N' is minimal.

If V is a stable G-module, then V' is a stable G'-module.

Example

Let $G = (\mathbb{C}^{\times})^2$ act on $V = \mathbb{C}^4$ with weight matrix

$$\begin{pmatrix} -a & b & 0 & 0 \\ 0 & 0 & -c & d \end{pmatrix}, \qquad a, b, c, d > 0, \quad \gcd(a, b) = \gcd(c, d) = 1.$$

V is not minimal. Removing the first two columns reduces the rank by r=1.

Let

$$V' = \mathsf{span}(\sqrt{b}e_1 + \sqrt{a}e_2, \sqrt{d}e_3 + \sqrt{c}e_4)$$

and

$$G' = \mathbb{Z}/\langle a+b\rangle \times \mathbb{Z}/\langle c+d\rangle \leq G.$$

Then V' is minimal and $N/\!\!/G \simeq N'/\!\!/G' = \mathbb{C}^2/(\mathbb{Z}/\langle a+b\rangle \times \mathbb{Z}/\langle c+d\rangle)$.

Example

Let $G = (\mathbb{C}^{\times})^2$ act on $V = \mathbb{C}^4$ with weight matrix

$$\begin{pmatrix} 3 & 0 & -4 & 6 \\ 1 & -3 & 0 & 0 \end{pmatrix}.$$

V is not minimal.

Let

$$V'=\mathsf{span}(\sqrt{3}e_1+e_2,e_3,e_4)$$

and

$$G' = \{(t^4, t^{-3}) : t \in \mathbb{C}^{\times}\}.$$

Then V' is minimal and $N'/\!\!/ G' \simeq N/\!\!/ G$.

V' is isomorphic to the circle-representation with weights (9, -16, 24).

Classifying complex linear symplectic quotients

Minimal representations classify complex symplectic quotients up to changing the Lagrangian submodule.

Theorem

For i = 1, 2, assume:

- K_i a compact Lie group with K_i° a torus, $G_i = (K_i)_{\mathbb{C}}$,
- V; a faithful 1-modular G;-module.
- $N_i = \mu^{-1}(0)$ the complex shell.

lf

$$N_1/\!\!/ G_1 \simeq N_2/\!\!/ G_2$$

as affine varieties, then there is a linear isomorphism

$$\Gamma \colon V_1 \oplus V_1^* \stackrel{\simeq}{\longrightarrow} V_2 \oplus V_2^*$$

inducing isomorphisms $N_1 \simeq N_2$ and $G_1 \simeq G_2$.

Real linear symplectic quotients

Example (Herbig-Lawler-S., 2020)

- \bullet $K = \mathbb{S}^1$
- $V_1 = \mathbb{C}^3$ with weight vector (-2, 3, 6)
- $V_2 = \mathbb{C}^3$ with weight vector (-3, 2, 6)

As $G = \mathbb{C}^{\times}$ -modules, $V_1 \oplus V_1^* \simeq V_2 \oplus V_2^*$ so the corresponding complex symplectic quotients are isomorphic as Poisson varieties.

If Z_i , i = 1, 2, denote the real shells, then there are isomorphisms

$$\mathbb{R}[Z_1]^K \simeq \mathbb{R}[Z_2]^K$$
.

These are isomorphisms of the Zariski closures of Z_1/K and Z_2/K as real algebraic varieties.

However, no such isomorphism preserves the inequalities defining Z_1/K and Z_2/K .

The real symplectic quotients are not regularly diffeomorphic.

Definition

The unitary K-module V is **minimal** if V is minimal as a $G = K_{\mathbb{C}}$ -module.

Theorem

- K a compact Lie group with K° a torus, $G = K_{\mathbb{C}}$,
- V a faithful unitary K-module that is stable as a G-module,
- $Z = \rho^{-1}(0)$ the real shell and $N = \mu^{-1}(0)$ the complex shell.

There is a complex linear subspace $V' \subset V$ such that, if K' < K is the stabilizer of V' and Z' is the real shell of V':

- (1) V' is a stable faithful G'-module.
- (2) There is a K'-equivariant inclusion $Z' \to Z$ inducing a graded regular symplectomorphism $Z'/K' \simeq Z/K$.
- (3) V' is minimal.

Classifying real linear symplectic quotients

Theorem

- For i = 1, 2, K_i a compact Lie group with K_i° a torus, $G_i = (K_i)_{\mathbb{C}}$,
- V_i a faithful unitary K_i -module that is stable as a G_i -module.
- $Z_i = \rho^{-1}(0)$ the real shells and $N_i = \mu^{-1}(0)$ the complex shell.

The following are equivalent:

- (1) There is a regular isomorphism $\varphi: Z_1/K_1 \to Z_2/K_2$.
- There is a real isomorphism $\Phi: N_1/\!\!/ G_1 \to N_2/\!\!/ G_2$
- (3) There is a real linear isomorphism

$$\Gamma\colon V_1\oplus V_1^*\stackrel{\simeq}{\longrightarrow} V_2\oplus V_2^*$$

inducing (necessarily real) isomorphisms $N_1 \simeq N_2$ and $G_1 \simeq G_2$.

(4) There is a linear isomorphism

$$\Gamma' \colon V_1 \to V_2$$

inducing isomorphisms $Z_1 \simeq Z_2$ and $K_1 \simeq K_2$.

Classifying real linear symplectic quotients

Corollary

For i = 1, 2, assume:

- K_i a compact Lie group with K_i° a torus, $G_i = (K_i)_{\mathbb{C}}$,
- V_i a faithful unitary K_i -module that is stable as a G_i -module,
- $Z_i = \rho^{-1}(0)$ the real shells and $N_i = \mu^{-1}(0)$ the complex shell.

If there is a regular isomorphism $Z_1/K_1 \to Z_2/K_2$, then there is a graded regular symplectomorphism $Z_1/K_1 \rightarrow Z_2/K_2$.

Thank you!