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prequantization of symplectic manifolds
(M, ω) — symplectic manifold: ω ∈ Ω2(M) closed and non-degenerate

Recall
A prequantization of (M, ω) consists of a principal S1-bundle P → M with
connection γ ∈ Ω1(P) whose curvature is ω. (i.e., π∗ω = dγ)

Note: need ω to be integral.

Theorem (Kostant)
There is a Lie algebra isomorphism C∞(M) −→ Q(P, γ), given by

f 7−→ Horγ(Xf ) + (π∗f )
∂

∂θ

Here: Q(P, γ) = {Y ∈ X(P)
∣∣ LY γ = 0}, sometimes called infinitesimal

quantomorphisms.
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The closed 2-form ω gives rise to another Lie algebra, (Atiyah Lie algebra)

A(M, ω) = X(M)⊕ C∞(M)

with bracket

[(X , f ), (Y , g)] = ([X ,Y ], LXg − LY f − ω(X ,Y )).

Theorem

There is a Lie algebra isomorphism A(M, ω) −→ X(P)S
1
, given by

(X , f ) 7−→ Horγ(X ) + (π∗f )
∂

∂θ

and when ω is symplectic, a commutative diagram

C∞(M)

��

// A(M, ω)

��

Q(P, γ) // X(P)S
1
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Lie 2-algebras and 2-plectic manifolds
(M, ω) — 2-plectic manifold: ω ∈ Ω3(M) closed and non-degenerate

Examples
3-manifolds with volume form, semi-simple Lie groups, Λ2T ∗N, . . .

In this setting, we consider Hamiltonian 1-forms,

β ∈ Ω1
Ham(M)⇐⇒ ∃X ∈ X(M) s.t. ιXω = −dβ

These form (part of) a Lie 2-algebra (Rogers).

Derek Krepski (U. Manitoba) symmetries of S1-gerbes Savannah, GA – Oct 2024 5 / 28



Lie 2-algebras and 2-plectic manifolds
(M, ω) — 2-plectic manifold: ω ∈ Ω3(M) closed and non-degenerate

Examples
3-manifolds with volume form, semi-simple Lie groups, Λ2T ∗N, . . .

In this setting, we consider Hamiltonian 1-forms,

β ∈ Ω1
Ham(M)⇐⇒ ∃X ∈ X(M) s.t. ιXω = −dβ

These form (part of) a Lie 2-algebra (Rogers).

Derek Krepski (U. Manitoba) symmetries of S1-gerbes Savannah, GA – Oct 2024 5 / 28



Lie 2-algebras and 2-plectic manifolds
(M, ω) — 2-plectic manifold: ω ∈ Ω3(M) closed and non-degenerate

Examples
3-manifolds with volume form, semi-simple Lie groups, Λ2T ∗N, . . .

In this setting, we consider Hamiltonian 1-forms,

β ∈ Ω1
Ham(M)⇐⇒ ∃X ∈ X(M) s.t. ιXω = −dβ

These form (part of) a Lie 2-algebra (Rogers).

Derek Krepski (U. Manitoba) symmetries of S1-gerbes Savannah, GA – Oct 2024 5 / 28



Lie 2-algebras and 2-plectic manifolds
(M, ω) — 2-plectic manifold: ω ∈ Ω3(M) closed and non-degenerate

Examples
3-manifolds with volume form, semi-simple Lie groups, Λ2T ∗N, . . .

In this setting, we consider Hamiltonian 1-forms,

β ∈ Ω1
Ham(M)⇐⇒ ∃X ∈ X(M) s.t. ιXω = −dβ

These form (part of) a Lie 2-algebra (Rogers).

Derek Krepski (U. Manitoba) symmetries of S1-gerbes Savannah, GA – Oct 2024 5 / 28



Lie 2-algebras and 2-plectic manifolds
(M, ω) — 2-plectic manifold: ω ∈ Ω3(M) closed and non-degenerate

Examples
3-manifolds with volume form, semi-simple Lie groups, Λ2T ∗N, . . .

In this setting, we consider Hamiltonian 1-forms,

β ∈ Ω1
Ham(M)⇐⇒ ∃X ∈ X(M) s.t. ιXω = −dβ

These form (part of) a Lie 2-algebra (Rogers).

Derek Krepski (U. Manitoba) symmetries of S1-gerbes Savannah, GA – Oct 2024 5 / 28



Lie 2-algebras and 2-plectic manifolds

Definition

A Lie 2-algebra is a 2-term chain complex V1
d−→ V0 equipped with a

skew-symmetric chain map [−,−] : V• ⊗ V• → V•

and a skew symmetric
chain homotopy J : V•

⊗3 → V•, called the Jacobiator, from the chain map

V•
⊗3 → V•, x ⊗ y ⊗ z 7→ [x , [y , z ]],

to the chain map

V•
⊗3 → V•, x ⊗ y ⊗ z 7→ [[x , y ], z ] + [y , [x , z ]],

satisfying a coherence condition on V•
⊗4.
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Example: Poisson Lie 2-algebra of observables (Rogers)
Let (M, ω) be a 2-plectic manifold. Let L•(M, ω) be

C∞(M) −→ Ω1
Ham(M), f 7→ df ,

with non-zero bracket
[β1, β2] = ιX2ιX1ω

where ιXi
ω = −dβi . The Jacobiator is given by

J(β1, β2, β3) = −ιX3ιX2ιX1ω.

Note: Can drop non-degeneracy condition, and use pairs instead:

C∞(M)→ {(X , β) ∈ Γ(TM ⊕ T ∗M)
∣∣ ιXω = −dβ}
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Example: Atiyah Lie 2-algebra (Fiorenza-Rogers-Schreiber)

Let ω ∈ Ω3(M) be closed. Let A•(M, ω) be

C∞(M)
0−→ Γ(TM)

with bracket given by Lie derivative/brackets. The Jacobiator is given by

J(X1,X2,X3) = −ιX3ιX2ιX1ω.
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Example: Courant Lie 2-algebra (Roytenberg-Weinstein)

Let ω ∈ Ω3(M) be closed. Let C•(M, ω) be

C∞(M)→ Γ(TM ⊕ T ∗M), f 7→ (0, df )

with bracket in degree 0 given by the ω-twisted Courant bracket,

[(u, α), (v , β)] = ([u, v ], Luβ − Lvα−
1
2
d(ιuβ − ιvα)− ιv ιuω)

and in mixed degree by

[(u, α), f ] = −[f , (u, α)] = 1
2
ιudf .

The Jacobiator is

J(u1, α1; u2, α2; u3, α3) = −
1
6
(
⟨[(u1, α1), (u2, α2)], (u3, α3)⟩+ + c. p.

)
.

where ⟨−,−⟩+ is the standard symmetric pairing on TM ⊕ T ∗M.
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multiplicative vector fields on Lie groupoids
Infinitesimal symmetries of groupoids = multiplicative vector fields

TG0 TG1

G0 G1

A multiplicative vector field is a functor X = (X0,X1) : G→ TG such that
πG ◦ X = idG.

Theorem (Berwick-Evans – Lerman, Ortiz – Waldron)
Multiplicative vector fields X(G1 ⇒ G0) form part of a strict Lie 2-algebra,

Γ(AG )→ X(G ), a 7→ (dt(a),−→a +←−a ).

The bracket in degree 0 is Lie bracket, while in mixed degree it is

[(X0,X1), a] = [X1,
−→a ]

∣∣
G0
.
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bundle gerbes / prequantization

Example: bundle gerbes from Čech data (Hitchin)
Let {Ui} be good open cover of M.

⊔ Ui ∩ Uj × S1

⊔ Ui ⊔ Ui ∩ Uj

M

Groupoid multiplication: (xij , ζ)(xjk , η) = (xik , gijk(x)ζη), where
gijk : Ui ∩ Uj ∩ Uk → S1.

Associativity ⇔ g is a 2-cocycle, hence [g ] ∈ H2(M; S1) ∼= H3(M;Z)

.
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Associativity ⇔ g is a 2-cocycle, hence [g ] ∈ H2(M; S1) ∼= H3(M;Z)
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bundle gerbes / prequantization
An S1-bundle gerbe over M consists of:

P

X X ×M X

M

π : X → M, surjective submersion,
an S1-bundle P → X ×M X ,
a Lie groupoid structure on P covering the one on X ×M X ,
S1-action on P is compatible: (p · ζ)q = p(q · ζ) = (pq) · ζ for all
ζ ∈ S1 and p, q ∈ P that make sense.
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Example
Let P → X ×M X ⇒ X be a bundle gerbe. Then

Γ(AP)→ X(P)

is a Lie 2-algebra.

Remark (cf. Herrera-Carmona – Ortiz)

Can view P ⇒ X as a 2-group bundle for S1 ⇒ ∗ and mimic the Atiyah
algebroid construction:

TX TP/S1

X P/S1 X ×M X

Get LA-groupoid, whose Lie 2-algebra of multiplicative sections is X(P).
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connection data on bundle gerbes
Let P → X ×M X ⇒ X

π→ M be a bundle gerbe over M.

Definition
A connection is a multiplicative connection form γ ∈ Ω1(P),
i.e., mult∗Pγ = pr∗1γ + pr∗2γ.

A curving for γ is a 2-form B ∈ Ω2(X ) such that s∗B − t∗B = dγ.
Given (γ,B), ∃!ω ∈ Ω3(M) such that π∗ω = dB . Call ω the 3-curvature
of the connection data (γ,B).
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Can be helpful to view connection data (γ,B) in terms of the
Bott-Shulman-Stasheff complex associated to P ⇒ X .

...
...

...

Ω2(X ) //

OO

Ω2(P) //

OO

Ω2(P ×X P) //

OO

· · ·

B •

Ω1(X ) //

OO

Ω1(P) //

OO

Ω1(P ×X P) //

OO

· · ·±d

OO

γ 0

Ω0(X ) //

OO

Ω0(P) //

OO

Ω0(P ×X P) //

OO

· · ·
∂ //

with ∂ =
∑
±∂∗

i .
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Let P → X ×M X ⇒ X
π→ M be a bundle gerbe over M, with connection

data (γ,B) and 3-curvature ω.

A multiplicative vector field (U,V ) on P ⇒ X (weakly) preserves (γ,B) if
∃α ∈ Ω1(X ) with

LUB = dα, and LV γ = s∗α− t∗α.

Note: U descends to a vector field u on M, and Luω = 0.
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(Motivation) Say (U,V ) is multiplicative vector field, and that Luω = 0.

0

...
...

...

Ω2(X ) //

OO

Ω2(P) //

OO

Ω2(P ×X P) //

OO

· · ·

LUB •

Ω1(X ) //

OO

Ω1(P) //

OO

Ω1(P ×X P) //

OO

· · ·±d

OO

α LV γ 0

Ω0(X ) //

OO

Ω0(P) //

OO

Ω0(P ×X P) //

OO

· · ·
∂ //
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i.e., D(LUB + LV γ) = 0, where D = ∂ ± d is total differential.
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i.e., D(LUB + LV γ) = 0, where D = ∂ ± d is total differential.
⇒ (U,V ) weakly preserves (B, γ) whenever LUB + LV γ is exact.
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Let P → X ×M X ⇒ X
π→ M be a bundle gerbe over M, with connection

data (γ,B).

Definition/Proposition [K-Vaughan]
Connection preserving multiplicative vector fields on P form a Lie 2-algebra,

Γ(AP) −→ {(U,V , α) ∈ X(P)× Ω1(X )
∣∣ LUB = dα, LV γ = ∂α},

with differential a 7→ (dt(a),−→a +←−a , ιdt(a)B − dϵ∗γ(−→a )) and bracket

[(U,V , α), (U ′,V ′, α′)] = ([U,U ′], [V ,V ′], LUα
′ − LU′α).

Denote this Lie 2-algebra by Q•(P; γ,B).
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Example: the trivial gerbe with curving B ∈ Ω2(M)

Let X = M
id−→ M and P = M × S1. Let B ∈ Ω2(M), viewed as the

curving of the trivial connection.

A multiplicative vector field on M × S1 ⇒ M is simply a vector field u on
M, and u preserves the connection data when LuB = dA for some
A ∈ Ω1(M). Therefore, Q• is

C∞(M)→ {(u,A) ∈ Γ(TM ⊕ T ∗M) | LuB = dA}, f 7→ (0,−df )

and bracket given by

[(u,A), (u′,A′)] = ([u, u′], LuA
′ − Lu′A), and [(u,A), f ] = u(f ).

Note: if (u,A) ∈ Q0, then d(ιuB − A) = dιuB − LuB = −ιudB . Hence
(u,A) 7→ (u, ιuB − A) defines an isomorphism of Lie 2-algebras
Q• → L•(M, dB).
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About morphisms of Lie 2-algebras
A morphism of Lie 2-algebras F : V• →W• consists of a chain map
F• : V• →W• together with a chain homotopy φ : V• ⊗ V• →W•, from
the chain map

V• ⊗ V• →W• x ⊗ y 7→ F([x , y ])

to the chain map

V• ⊗ V• →W• x ⊗ y 7→ [F(x),F(y)],

satisfying

F1(J(x , y , z))− J(F0(x),F0(y),F0(z)) = φ(x , [y , z ]) + [F0(x), φ(y , z)]

+ cyc. perm.

(There are also 2-morphisms, so Lie 2-algebras form a 2-category.)
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Example: Horizontal lift and 3-curvature
Let P → X ×M X ⇒ X

π→ M be a bundle gerbe over M, with connection
data (γ,B) and 3-curvature ω.

The connection γ induces a linear map

F : X(X ×M X ⇒ X )→ X(P ⇒ X ), U 7→ (U,Horγ(U,U))

and the curving B induces a chain homotopy,

φB : X(X ×M X ⇒ X )⊗2 → Γ(AP), (U,V ) 7→ (ιV ιUB)
∂

∂θ

∣∣∣
X
,

measuring failure to preserve brackets. But φB doesn’t satisfy the
compatibility condition for F to be a Lie 2-algebra morphism, unless:

Proposition
The map F defined above is a Lie 2-algebra morphism if and only if the
3-curvature ω vanishes.
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Generalized morphisms of Lie 2-algebras
We localize the 2-category of Lie 2-algebras with respect to
quasi-isomorphisms, using Noohi’s ‘butterflies.’

A butterfly E : V• 99K W• of Lie 2-algebras is a vector space E equipped
with a skew-symmetric bracket [−,−], together with a commutative
diagram

V1

��

κ

%%

W1

��

E

ρ %%
V0 W0

such that:

ρ ◦ κ = 0 and 0→W1 → E → V0 → 0 is short exact;
ρ, σ, κ, λ compatible with brackets;
for every a, b, c ∈ E ,

λJ(ρ(a), ρ(b), ρ(c)) + κJ(σ(a), σ(b), σ(c)) = [a, [b, c]] + cyc. perm.
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Generalized morphisms of Lie 2-algebras
Let E be a butterfly.

V1

��

κ

%%

W1

��

λ

yy
E

σyy ρ %%
V0 W0

E is invertible if the other diagonal sequence 0→ V1 → E →W0 → 0 is
short exact. The inverse is obtained by switching the wings.
There are 2-morphisms of butterflies, and we can compose butterflies,
obtaining a 2-category.
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Let P → X ×M X ⇒ X
π→ M be a bundle gerbe over M, with connection

data (γ,B) and 3-curvature ω.

Theorem (K-Vaughan, Djounvouna-K)
There are invertible butterflies E , F , and G of Lie 2-algebras that fit in a
2-commutative diagram,

L•(M, ω)
R //

E
��

C•(M, ω)
S //

F
��

A•(M, ω)

G
��

Q•(P; γ,B) // Q•(P, γ) // X(P)

The morphisms R and S are those from Rogers and collaborators.
The bottom horizontal morphisms are the natural inclusions.
E is choice-free; F depends on curving; G depends on curving and
connection.
cf. similar results of Fiorenza-Rogers-Schreiber, and
Sevestre-Wurzbacher

Derek Krepski (U. Manitoba) symmetries of S1-gerbes Savannah, GA – Oct 2024 24 / 28



Let P → X ×M X ⇒ X
π→ M be a bundle gerbe over M, with connection

data (γ,B) and 3-curvature ω.

Theorem (K-Vaughan, Djounvouna-K)
There are invertible butterflies E , F , and G of Lie 2-algebras that fit in a
2-commutative diagram,

L•(M, ω)
R //

E
��

C•(M, ω)
S //

F
��

A•(M, ω)

G
��

Q•(P; γ,B) // Q•(P, γ) // X(P)

The morphisms R and S are those from Rogers and collaborators.

The bottom horizontal morphisms are the natural inclusions.
E is choice-free;

F depends on curving; G depends on curving and
connection.
cf. similar results of Fiorenza-Rogers-Schreiber, and
Sevestre-Wurzbacher

Derek Krepski (U. Manitoba) symmetries of S1-gerbes Savannah, GA – Oct 2024 24 / 28



Let P → X ×M X ⇒ X
π→ M be a bundle gerbe over M, with connection

data (γ,B) and 3-curvature ω.

Theorem (K-Vaughan, Djounvouna-K)
There are invertible butterflies E , F , and G of Lie 2-algebras that fit in a
2-commutative diagram,

L•(M, ω)
R //

E
��

C•(M, ω)
S //

F
��

A•(M, ω)

G
��

Q•(P; γ,B) // Q•(P, γ) // X(P)

The morphisms R and S are those from Rogers and collaborators.
The bottom horizontal morphisms are the natural inclusions.

E is choice-free;

F depends on curving; G depends on curving and
connection.
cf. similar results of Fiorenza-Rogers-Schreiber, and
Sevestre-Wurzbacher

Derek Krepski (U. Manitoba) symmetries of S1-gerbes Savannah, GA – Oct 2024 24 / 28



Let P → X ×M X ⇒ X
π→ M be a bundle gerbe over M, with connection

data (γ,B) and 3-curvature ω.

Theorem (K-Vaughan, Djounvouna-K)
There are invertible butterflies E , F , and G of Lie 2-algebras that fit in a
2-commutative diagram,

L•(M, ω)
R //

E
��

C•(M, ω)
S //

F
��

A•(M, ω)

G
��

Q•(P; γ,B) // Q•(P, γ) // X(P)

The morphisms R and S are those from Rogers and collaborators.
The bottom horizontal morphisms are the natural inclusions.
E is choice-free;

F depends on curving; G depends on curving and
connection.

cf. similar results of Fiorenza-Rogers-Schreiber, and
Sevestre-Wurzbacher

Derek Krepski (U. Manitoba) symmetries of S1-gerbes Savannah, GA – Oct 2024 24 / 28



Let P → X ×M X ⇒ X
π→ M be a bundle gerbe over M, with connection

data (γ,B) and 3-curvature ω.

Theorem (K-Vaughan, Djounvouna-K)
There are invertible butterflies E , F , and G of Lie 2-algebras that fit in a
2-commutative diagram,

L•(M, ω)
R //

E
��

C•(M, ω)
S //

F
��

A•(M, ω)

G
��

Q•(P; γ,B) // Q•(P, γ) // X(P)

The morphisms R and S are those from Rogers and collaborators.
The bottom horizontal morphisms are the natural inclusions.
E is choice-free; F depends on curving;

G depends on curving and
connection.
cf. similar results of Fiorenza-Rogers-Schreiber, and
Sevestre-Wurzbacher

Derek Krepski (U. Manitoba) symmetries of S1-gerbes Savannah, GA – Oct 2024 24 / 28



Let P → X ×M X ⇒ X
π→ M be a bundle gerbe over M, with connection

data (γ,B) and 3-curvature ω.

Theorem (K-Vaughan, Djounvouna-K)
There are invertible butterflies E , F , and G of Lie 2-algebras that fit in a
2-commutative diagram,

L•(M, ω)
R //

E
��

C•(M, ω)
S //

F
��

A•(M, ω)

G
��

Q•(P; γ,B) // Q•(P, γ) // X(P)

The morphisms R and S are those from Rogers and collaborators.
The bottom horizontal morphisms are the natural inclusions.
E is choice-free; F depends on curving; G depends on curving and
connection.
cf. similar results of Fiorenza-Rogers-Schreiber, and
Sevestre-Wurzbacher

Derek Krepski (U. Manitoba) symmetries of S1-gerbes Savannah, GA – Oct 2024 24 / 28



Idea of proof:
Suppose we seek a map Q0(P; γ,B)→ L0(M, ω).

Take (U,V , α) with
(U,V ) multiplicative on P ⇒ X and α ∈ Ω1(X ) satisfying

LUB = dα, LV γ = ∂α.

We know U descends to a vector field u on M, and

π∗ιuω = ιUdB

= LUB − dιUB

= d(α− ιUB)

But α− ιUB is not necessarily basic:

∂(α− ιUB) = LV γ − ιV ∂B

= LV γ − ιV dγ

= dιV γ

γ multiplicative ⇒ ∂ιV γ = 0; so there is a function g ∈ C∞(X ) with
∂g = ιV γ, and then α− ιUB − dg is basic and descends to a Hamiltonian
1-form on M.
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= LV γ − ιV dγ

= dιV γ

γ multiplicative ⇒ ∂ιV γ = 0;

so there is a function g ∈ C∞(X ) with
∂g = ιV γ, and then α− ιUB − dg is basic and descends to a Hamiltonian
1-form on M.
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The butterfly E holds all the choices of g .

C∞(M)

��

κ

((

Γ(AP)

��

λ

vv
E

σww ρ ((
Ω1

Ham(M) Q0(P; γ,B)

Set E = {(U,V , α, g) ∈ Q0 × C∞(X )
∣∣ ∂g = ιV γ}.

Then define bracket on E , and check this works. . .
F ,G obtained similarly.
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Thank you.
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