Frobenius Reciprocity and Diffeological Reduction Based on arXiv:2403.03927v1, joint with J. Watts and F. Ziegler

Gabriele Barbieri Università di Milano-Bicocca and Università di Pavia

American Mathematical Society Sectional Meeting Georgia Southern University

October 5, 2024

Introduction

Reduced Forms

Symplectic Reduction

Let (X, ω, Φ) be a Hamiltonian *G*-space. The reduced space is:

$$X \not | G := \Phi^{-1}(0)/G.$$

Let (X, ω, Φ) be a Hamiltonian *G*-space. The reduced space is:

$$X \not \parallel G := \Phi^{-1}(0)/G.$$

• $X \parallel G$ is not necessarily a manifold.

Let (X, ω, Φ) be a Hamiltonian *G*-space. The reduced space is:

$$X /\!\!/ G := \Phi^{-1}(0)/G.$$

• $X \parallel G$ is not necessarily a manifold.

• $X \not\parallel G$ can be endowed with a natural subquotient diffeology.

Let (X, ω, Φ) be a Hamiltonian *G*-space. The reduced space is:

$$X /\!\!/ G := \Phi^{-1}(0)/G.$$

- $X \not\parallel G$ is not necessarily a manifold.
- $X \not\parallel G$ can be endowed with a natural subquotient diffeology.
- X // G may carry a reduced 2-form.

Let (X, ω, Φ) be a Hamiltonian *G*-space. The reduced space is:

$$X /\!\!/ G := \Phi^{-1}(0)/G.$$

- $X \parallel G$ is not necessarily a manifold.
- $X \not\parallel G$ can be endowed with a natural subquotient diffeology.
- X // G may carry a reduced 2-form.

Let (X, ω, Φ) be a Hamiltonian *G*-space. The reduced space is:

$$X /\!\!/ G := \Phi^{-1}(0)/G.$$

- X // G is not necessarily a manifold.
- $X \not\parallel G$ can be endowed with a natural subquotient diffeology.
- X // G may carry a reduced 2-form.

Definition

The reduced space $X \not\parallel G$ carries a reduced 2-form if there is a (diffeological) 2-form $\omega_{X \not\parallel G}$ on it such that $j^* \omega = \pi^* \omega_{X \not\parallel G}$, where j and π are the natural inclusion and projection maps in

$$\begin{array}{ccc} \Phi^{-1}(0) & \stackrel{j}{\longrightarrow} X \\ & \downarrow^{\pi} \\ X \not \parallel G \end{array}$$

Reduced Forms

Example: Symplectic intertwiner space (Guillemin-Sternberg, 1982)

This is

$$\operatorname{Hom}_{G}(X_{1},X_{2}):=(X_{1}^{-}\times X_{2}) \not /\!\!/ G,$$

This is

$$\operatorname{Hom}_{{\mathcal G}}(X_1,X_2):= \left(X_1^-\times X_2\right)/\!\!/ {\mathcal G},$$

where (X_i, ω_i, Φ_i) are Hamiltonian *G*-spaces and $X^- := (X, -\omega, -\Phi)$.

This is

$$\operatorname{Hom}_{G}(X_{1}, X_{2}) := (X_{1}^{-} \times X_{2}) /\!\!/ G,$$

where (X_i, ω_i, Φ_i) are Hamiltonian *G*-spaces and $X^- := (X, -\omega, -\Phi)$. The product can be endowed with the diagonal *G*-action, symplectic form $\omega_2 - \omega_1$ and moment map $\Phi(x_1, x_2) = \Phi_2(x_2) - \Phi_1(x_1)$.

This is

$$\operatorname{Hom}_{G}(X_{1}, X_{2}) := (X_{1}^{-} \times X_{2}) /\!\!/ G,$$

where (X_i, ω_i, Φ_i) are Hamiltonian *G*-spaces and $X^- := (X, -\omega, -\Phi)$. The product can be endowed with the diagonal *G*-action, symplectic form $\omega_2 - \omega_1$ and moment map $\Phi(x_1, x_2) = \Phi_2(x_2) - \Phi_1(x_1)$.

• If we take $X_1 = (\{0\}, 0, 0)$, then $\operatorname{Hom}_G(X_1, X_2) = X_2 \not |\!| G$.

This is

$$\operatorname{Hom}_{G}(X_{1}, X_{2}) := (X_{1}^{-} \times X_{2}) /\!\!/ G,$$

where (X_i, ω_i, Φ_i) are Hamiltonian *G*-spaces and $X^- := (X, -\omega, -\Phi)$. The product can be endowed with the diagonal *G*-action, symplectic form $\omega_2 - \omega_1$ and moment map $\Phi(x_1, x_2) = \Phi_2(x_2) - \Phi_1(x_1)$.

- If we take $X_1 = (\{0\}, 0, 0)$, then $\operatorname{Hom}_{G}(X_1, X_2) = X_2 \not |\!| G$.
- If we take $X_1 = G(\mu)$, coadjoint orbit through $\mu \in \mathfrak{g}^*$, then $\operatorname{Hom}_G(X_1, X_2) = \Phi_2^{-1}(\mu)/G_{\mu}$, i.e. Marsden-Weinstein "shifting trick" (Guillemin-Sternberg, 1982).

Reduced Forms

Example: $\operatorname{Ind}_{H}^{G} Y$

Example: $\operatorname{Ind}_{H}^{G} Y$

This is

$$\operatorname{Ind}_{H}^{G} Y := (T^{*}G \times Y) / H = \psi^{-1}(0)/H,$$

Example: $\operatorname{Ind}_{H}^{G}Y$

This is

$$\operatorname{Ind}_{H}^{G}Y := (T^{*}G \times Y) / H = \psi^{-1}(0)/H,$$

where $H \subset G$ is an aribtrary subgroup, (Y, ω_Y, Ψ) is a Hamiltonian *H*-space and $L := T^*G \times Y$ is a Hamiltonian $G \times H$ -space with action $(g, h)(p, y) = (gph^{-1}, h(y))$, 2-form $\omega_L := d\varpi_{T^*G} + \omega_Y$ and moment map $\phi \times \psi : L \to \mathfrak{g}^* \times \mathfrak{h}^*$:

$$egin{cases} \phi({m p},y)={m p}q^{-1}\ \psi({m p},y)=\Psi(y)-q^{-1}{m p}_{|{f f}} \end{cases}$$

Example: $\operatorname{Ind}_{H}^{G}Y$

This is

$$\operatorname{Ind}_{H}^{G}Y := (T^{*}G \times Y) / H = \psi^{-1}(0)/H,$$

where $H \subset G$ is an aribtrary subgroup, (Y, ω_Y, Ψ) is a Hamiltonian *H*-space and $L := T^*G \times Y$ is a Hamiltonian $G \times H$ -space with action $(g, h)(p, y) = (gph^{-1}, h(y))$, 2-form $\omega_L := d\varpi_{T^*G} + \omega_Y$ and moment map $\phi \times \psi : L \to \mathfrak{g}^* \times \mathfrak{h}^*$:

$$egin{cases} \phi({m p},y)={m p}q^{-1}\ \psi({m p},y)=\Psi(y)-q^{-1}{m p}_{|{f f}} \end{cases}$$

Note: if we assume H closed, $\operatorname{Ind}_{H}^{G}Y$ is a reduced manifold and a Hamiltonian G-space with the residual G-action and moment map $\Phi_{L/\!/H}$: $\operatorname{Ind}_{H}^{G}Y \to \mathfrak{g}^{*}$ (Khazdan-Kostant-Sternberg, 1978, Weinstein, 1978).

Reduced Forms

Diffeology

Definition

Let X be a non-empty set and let τ_n denote the Euclidean topology of \mathbb{R}^n . A diffeology \mathcal{P} on X is a subset of $\bigcup_{n \in \mathbb{N}, U \in \tau_n} \operatorname{Maps}(U, X)$, such that the following axioms are satisfied:

Definition

Let X be a non-empty set and let τ_n denote the Euclidean topology of \mathbb{R}^n . A diffeology \mathcal{P} on X is a subset of $\bigcup_{n \in \mathbb{N}, U \in \tau_n} \operatorname{Maps}(U, X)$, such that the following axioms are satisfied:

• Covering. All constant maps $\mathbb{R}^n \to X$ are in \mathcal{P} , for all n.

Definition

Let X be a non-empty set and let τ_n denote the Euclidean topology of \mathbb{R}^n . A diffeology \mathcal{P} on X is a subset of $\bigcup_{n \in \mathbb{N}, U \in \tau_n} \operatorname{Maps}(U, X)$, such that the following axioms are satisfied:

- Covering. All constant maps $\mathbb{R}^n \to X$ are in \mathcal{P} , for all n.
- Locality. Let P : U → X, U ∈ τ_n; if for any u ∈ U there exists an open neighbourhood V ⊂ U of u such that P|_V ∈ P, then P ∈ P.

Definition

Let X be a non-empty set and let τ_n denote the Euclidean topology of \mathbb{R}^n . A diffeology \mathcal{P} on X is a subset of $\bigcup_{n \in \mathbb{N}, U \in \tau_n} \operatorname{Maps}(U, X)$, such that the following axioms are satisfied:

- Covering. All constant maps $\mathbb{R}^n \to X$ are in \mathcal{P} , for all n.
- Locality. Let P : U → X, U ∈ τ_n; if for any u ∈ U there exists an open neighbourhood V ⊂ U of u such that P|_V ∈ P, then P ∈ P.
- Smooth compatibility. Let $P: U \to X, U \in \tau_n, V \in \tau_m$ and $\psi \in \mathcal{C}^{\infty}(V, U)$. If $P \in \mathcal{P}$, then $P \circ \psi \in \mathcal{P}$.

Definition

Let X be a non-empty set and let τ_n denote the Euclidean topology of \mathbb{R}^n . A diffeology \mathcal{P} on X is a subset of $\bigcup_{n \in \mathbb{N}, U \in \tau_n} \operatorname{Maps}(U, X)$, such that the following axioms are satisfied:

- Covering. All constant maps $\mathbb{R}^n \to X$ are in \mathcal{P} , for all n.
- Locality. Let P : U → X, U ∈ τ_n; if for any u ∈ U there exists an open neighbourhood V ⊂ U of u such that P|_V ∈ P, then P ∈ P.
- Smooth compatibility. Let $P: U \to X, U \in \tau_n, V \in \tau_m$ and $\psi \in \mathcal{C}^{\infty}(V, U)$. If $P \in \mathcal{P}$, then $P \circ \psi \in \mathcal{P}$.

The couple (X, \mathcal{P}) is called *diffeological space* and the maps in \mathcal{P} are called *plots*.

Definition

Let X be a non-empty set and let τ_n denote the Euclidean topology of \mathbb{R}^n . A diffeology \mathcal{P} on X is a subset of $\bigcup_{n \in \mathbb{N}, U \in \tau_n} \operatorname{Maps}(U, X)$, such that the following axioms are satisfied:

- Covering. All constant maps $\mathbb{R}^n \to X$ are in \mathcal{P} , for all n.
- Locality. Let P : U → X, U ∈ τ_n; if for any u ∈ U there exists an open neighbourhood V ⊂ U of u such that P|_V ∈ P, then P ∈ P.
- Smooth compatibility. Let $P: U \to X, U \in \tau_n, V \in \tau_m$ and $\psi \in \mathcal{C}^{\infty}(V, U)$. If $P \in \mathcal{P}$, then $P \circ \psi \in \mathcal{P}$.

The couple (X, \mathcal{P}) is called *diffeological space* and the maps in \mathcal{P} are called *plots*.

Example: A manifold M has a natural diffeological space structure if it is endowed with $\mathcal{P} = \bigcup_{n \in \mathbb{N}, U \in \tau_n} \mathcal{C}^{\infty}(U, M)$.

Introduction
00000000000

Other definitions:

 A map F : (X, P) → (Y, Q) between diffeological spaces is smooth if for any P ∈ P, F ∘ P ∈ Q. Other definitions:

- A map F : (X, P) → (Y, Q) between diffeological spaces is smooth if for any P ∈ P, F ∘ P ∈ Q.
- If the identity map $Id : (X, \mathcal{P}) \to (X, \mathcal{Q})$ is smooth, then we say that \mathcal{P} is **finer** and \mathcal{Q} is **coarser**.

Other definitions:

- A map F : (X, P) → (Y, Q) between diffeological spaces is smooth if for any P ∈ P, F ∘ P ∈ Q.
- If the identity map $Id : (X, \mathcal{P}) \to (X, \mathcal{Q})$ is smooth, then we say that \mathcal{P} is **finer** and \mathcal{Q} is **coarser**.
- Let X ⊆ Y, Y a diffeological space and i : X → Y the natural inclusion. The subset diffeology on X is the coarsest diffeology that makes i smooth; its plots are the maps P : U → X such that i ∘ P is a plot of Y.

Univeral property: a map F to X is smooth if and only if $i \circ F$ is smooth.

• Let X be a diffeological space, \mathcal{R} an equivalence relation on X and $s: X \to X/\mathcal{R}$ the natural projection. The **quotient diffeology** on X/\mathcal{R} is the finest diffeology that makes s smooth; its plots are the maps $P: U \to X/\mathcal{R}$ such that for any $u \in U$ there exist an open neighbourhood $V \subset U$ of u and a plot $Q: V \to X$ such that $P|_V = s \circ Q$.

Univeral property: a map F from X/\mathcal{R} is smooth if and only if $F \circ s$ is smooth.

- Let X be a diffeological space, R an equivalence relation on X and s: X → X/R the natural projection. The quotient diffeology on X/R is the finest diffeology that makes s smooth; its plots are the maps P: U → X/R such that for any u ∈ U there exist an open neighbourhood V ⊂ U of u and a plot Q : V → X such that P|_V = s ∘ Q. Univeral property: a map F from X/R is smooth if and only if F ∘ s is smooth.
- The subquotient diffeology on X // G = Φ⁻¹(0)/G is obtained by taking the subset diffeology on Φ⁻¹(0) and then the quotient diffeology, or, equivalently, by taking the quotient diffeology on X/G and then the subset diffeology.

• The equivalence relation on X is: $x_1 \sim x_2 \iff F(x_1) = F(x_2)$. The quotient X / \sim is endowed with the quotient diffeology and s is the projection map.

- The equivalence relation on X is: $x_1 \sim x_2 \iff F(x_1) = F(x_2)$. The quotient X / \sim is endowed with the quotient diffeology and s is the projection map.
- The image is endowed with the subset diffeology and *i* is the inclusion map.

- The equivalence relation on X is: $x_1 \sim x_2 \iff F(x_1) = F(x_2)$. The quotient X / \sim is endowed with the quotient diffeology and s is the projection map.
- The image is endowed with the subset diffeology and *i* is the inclusion map.
- The map \dot{F} is a bijection and it is smooth if and only if F is smooth.

- The equivalence relation on X is: $x_1 \sim x_2 \iff F(x_1) = F(x_2)$. The quotient X / \sim is endowed with the quotient diffeology and s is the projection map.
- The image is endowed with the subset diffeology and *i* is the inclusion map.
- The map \dot{F} is a bijection and it is smooth if and only if F is smooth.
- The map F is called **strict** if both \dot{F} and \dot{F}^{-1} are smooth.
Every map $F : X \to Y$ between diffeological spaces can be decomposed as follows:

- The equivalence relation on X is: $x_1 \sim x_2 \iff F(x_1) = F(x_2)$. The quotient X / \sim is endowed with the quotient diffeology and s is the projection map.
- The image is endowed with the subset diffeology and *i* is the inclusion map.
- The map \dot{F} is a bijection and it is smooth if and only if F is smooth.
- The map F is called **strict** if both \dot{F} and \dot{F}^{-1} are smooth.
- An induction is a strict injection.

Every map $F : X \to Y$ between diffeological spaces can be decomposed as follows:

- The equivalence relation on X is: $x_1 \sim x_2 \iff F(x_1) = F(x_2)$. The quotient X / \sim is endowed with the quotient diffeology and s is the projection map.
- The image is endowed with the subset diffeology and *i* is the inclusion map.
- The map \dot{F} is a bijection and it is smooth if and only if F is smooth.
- The map F is called **strict** if both \dot{F} and \dot{F}^{-1} are smooth.
- An induction is a strict injection.
- A subduction is a strict surjection.

Definition

A diffeological k-form α on the diffeological space Y is a functional that associates to each plot $P: U \to Y$ a k-form on U, denoted $P^*\alpha$. Diffeological forms are required to satisfy a compatibility condition: for any $\psi \in C^{\infty}(V, U)$, then $(P \circ \psi)^* \alpha = \psi^* P^* \alpha$.

10/30

Definition

A diffeological k-form α on the diffeological space Y is a functional that associates to each plot $P: U \to Y$ a k-form on U, denoted $P^*\alpha$. Diffeological forms are required to satisfy a compatibility condition: for any $\psi \in C^{\infty}(V, U)$, then $(P \circ \psi)^* \alpha = \psi^* P^* \alpha$.

Let F : X → Y be a smooth map between diffeological spaces and α be as in the definition. The **pullback** of α by F is the diffeological form on X such that for any plot P of X: P*F*α = (F ∘ P)*α.

Definition

A diffeological k-form α on the diffeological space Y is a functional that associates to each plot $P: U \to Y$ a k-form on U, denoted $P^*\alpha$. Diffeological forms are required to satisfy a compatibility condition: for any $\psi \in C^{\infty}(V, U)$, then $(P \circ \psi)^* \alpha = \psi^* P^* \alpha$.

- Let F : X → Y be a smooth map between diffeological spaces and α be as in the definition. The **pullback** of α by F is the diffeological form on X such that for any plot P of X: P*F*α = (F ∘ P)*α.
- The exterior derivative dα is the (k + 1)-form on Y such that for any plot P of Y, P*dα = dP*α.

Theorem (Souriau's criterion)

Let $s : X \to Y$ be a subduction and α a k-form on X. Then the following are equivalent:

- There exists a k-form β on Y such that $\alpha = s^*\beta$.
- For all P, Q, plots of X such that $s \circ P = s \circ Q$, then $P^* \alpha = Q^* \alpha$.

If β exists, then it is unique.

Theorem (Souriau's criterion)

Let $s : X \to Y$ be a subduction and α a k-form on X. Then the following are equivalent:

• There exists a k-form β on Y such that $\alpha = s^*\beta$.

• For all P, Q, plots of X such that $s \circ P = s \circ Q$, then $P^* \alpha = Q^* \alpha$.

If β exists, then it is unique.

Theorem (Souriau's criterion)

Let $s : X \to Y$ be a subduction and α a k-form on X. Then the following are equivalent:

- There exists a k-form β on Y such that $\alpha = s^*\beta$.
- For all P, Q, plots of X such that $s \circ P = s \circ Q$, then $P^* \alpha = Q^* \alpha$.

If β exists, then it is unique.

•
$$X = C := \Phi^{-1}(0)$$
 and $Y = C/G$

Theorem (Souriau's criterion)

Let $s : X \to Y$ be a subduction and α a k-form on X. Then the following are equivalent:

- There exists a k-form β on Y such that $\alpha = s^*\beta$.
- For all P, Q, plots of X such that $s \circ P = s \circ Q$, then $P^* \alpha = Q^* \alpha$.

If β exists, then it is unique.

Theorem (Souriau's criterion)

Let $s : X \to Y$ be a subduction and α a k-form on X. Then the following are equivalent:

- There exists a k-form β on Y such that $\alpha = s^*\beta$.
- For all P, Q, plots of X such that $s \circ P = s \circ Q$, then $P^* \alpha = Q^* \alpha$.

If β exists, then it is unique.

•
$$\alpha = \omega_{|C|}$$

Theorem (Souriau's criterion)

Let $s : X \to Y$ be a subduction and α a k-form on X. Then the following are equivalent:

- There exists a k-form β on Y such that $\alpha = s^*\beta$.
- For all P, Q, plots of X such that $s \circ P = s \circ Q$, then $P^* \alpha = Q^* \alpha$.

If β exists, then it is unique.

•
$$X = C := \Phi^{-1}(0)$$
 and $Y = C/G$

•
$$s = \pi : C \rightarrow C/G$$

•
$$\alpha = \omega_{|C|}$$

• If
$$\beta$$
 exists, then $\beta = \omega_{X/\!\!/ G}$.

Remark: Just like symplectic Frobenius reciprocity holds in Hamiltonian *G*-space category and prequantum *G*-space category (Ratiu-Ziegler, 2022), the diffeological Frobenius reciprocity and the results on reduced forms hold in both categories.

Reduced Forms

Frobenius reciprocity

Symplectic Frobenius reciprocity was established by the following:

Symplectic Frobenius reciprocity was established by the following:

Theorem (Ratiu-Ziegler, 2022)

Let G be a Lie group and $H \subset G$ closed; let X be a Hamiltonian G-space and Y a Hamiltonian H-space. We have already defined $\operatorname{Ind}_{H}^{G}Y$; we can also introduce the restriction functor $\operatorname{Res}_{H}^{G}$ from Hamiltonian G-spaces to Hamiltonian H-spaces. Then there exists a bijection

 $t: \operatorname{Hom}_{G}(X, \operatorname{Ind}_{H}^{G}Y) \to \operatorname{Hom}_{H}(\operatorname{Res}_{H}^{G}X, Y).$

Symplectic Frobenius reciprocity was established by the following:

Theorem (Ratiu-Ziegler, 2022)

Let G be a Lie group and $H \subset G$ closed; let X be a Hamiltonian G-space and Y a Hamiltonian H-space. We have already defined $\operatorname{Ind}_{H}^{G}Y$; we can also introduce the restriction functor $\operatorname{Res}_{H}^{G}$ from Hamiltonian G-spaces to Hamiltonian H-spaces. Then there exists a bijection

$$t: \operatorname{Hom}_{\mathcal{G}}(X, \operatorname{Ind}_{\mathcal{H}}^{\mathcal{G}}Y) \to \operatorname{Hom}_{\mathcal{H}}(\operatorname{Res}_{\mathcal{H}}^{\mathcal{G}}X, Y).$$

Moreover, the authors conjectured:

Symplectic Frobenius reciprocity was established by the following:

Theorem (Ratiu-Ziegler, 2022)

Let G be a Lie group and $H \subset G$ closed; let X be a Hamiltonian G-space and Y a Hamiltonian H-space. We have already defined $\operatorname{Ind}_{H}^{G}Y$; we can also introduce the restriction functor $\operatorname{Res}_{H}^{G}$ from Hamiltonian G-spaces to Hamiltonian H-spaces. Then there exists a bijection

$$t: \operatorname{Hom}_{G}(X, \operatorname{Ind}_{H}^{G}Y) \to \operatorname{Hom}_{H}(\operatorname{Res}_{H}^{G}X, Y).$$

Moreover, the authors conjectured:

• The map *t* is a diffeological diffeomorphism.

Symplectic Frobenius reciprocity was established by the following:

Theorem (Ratiu-Ziegler, 2022)

Let G be a Lie group and $H \subset G$ closed; let X be a Hamiltonian G-space and Y a Hamiltonian H-space. We have already defined $\operatorname{Ind}_{H}^{G}Y$; we can also introduce the restriction functor $\operatorname{Res}_{H}^{G}$ from Hamiltonian G-spaces to Hamiltonian H-spaces. Then there exists a bijection

$$t: \operatorname{Hom}_{\mathcal{G}}(X, \operatorname{Ind}_{H}^{\mathcal{G}}Y) \to \operatorname{Hom}_{\mathcal{H}}(\operatorname{Res}_{H}^{\mathcal{G}}X, Y).$$

Moreover, the authors conjectured:

- The map *t* is a diffeological diffeomorphism.
- The map *t* preserves the (diffeological) 2-forms that the reduced spaces may carry.

Under the same assumptions of the previous theorem, the bijection t is a diffeological diffeomorphism. Moreover, if one side carries a reduced 2-form, then so does the other, and t relates the 2-forms.

15 / 30

Under the same assumptions of the previous theorem, the bijection t is a diffeological diffeomorphism. Moreover, if one side carries a reduced 2-form, then so does the other, and t relates the 2-forms.

Proof:

Under the same assumptions of the previous theorem, the bijection t is a diffeological diffeomorphism. Moreover, if one side carries a reduced 2-form, then so does the other, and t relates the 2-forms.

Proof:

• $M := X^- \times T^*G \times Y$ • $N := X^- \times Y$

Under the same assumptions of the previous theorem, the bijection t is a diffeological diffeomorphism. Moreover, if one side carries a reduced 2-form, then so does the other, and t relates the 2-forms.

Proof:

• $M := X^- \times T^*G \times Y$

•
$$\omega_M := \omega_Y + d\varpi_{T^*G} - \omega_X$$

- $N := X^- \times Y$
- $\omega_N := \omega_Y \omega_X$

Under the same assumptions of the previous theorem, the bijection t is a diffeological diffeomorphism. Moreover, if one side carries a reduced 2-form, then so does the other, and t relates the 2-forms.

Proof:

- $M := X^- \times T^*G \times Y$
- $\omega_M := \omega_Y + d\varpi_{T^*G} \omega_X$
- (g,h)(x,p,y) := $(g(x),gph^{-1},h(y))$

- $N := X^- \times Y$
- $\omega_N := \omega_Y \omega_X$
- h(x, y) := (h(x), h(y))

Under the same assumptions of the previous theorem, the bijection t is a diffeological diffeomorphism. Moreover, if one side carries a reduced 2-form, then so does the other, and t relates the 2-forms.

Proof:

- $M := X^- \times T^*G \times Y$
- $\omega_M := \omega_Y + d\varpi_{T^*G} \omega_X$
- (g,h)(x,p,y) := $(g(x),gph^{-1},h(y))$
- $\phi_M \times \psi_M : M \to \mathfrak{g}^* \times \mathfrak{h}^*$,

$$egin{cases} \phi_M(p,y) = pq^{-1} - \Phi(x) \ \psi_M(p,y) = \Psi(y) - q^{-1}p_{|\mathfrak{h}} \end{cases}$$

- $N := X^- \times Y$
- $\omega_N := \omega_Y \omega_X$
- h(x, y) := (h(x), h(y))

•
$$\psi_N: N o \mathfrak{h}^*$$
,

 $\psi_N(x,y) = \Psi(y) - \Phi(x)_{|\mathfrak{h}|}$

Let $r: M \to N$, $r(x, p, y) := (q^{-1}(x), y)$ and $r': N \to M$, $r'(x, y) := (x, \Phi(x), y)$. The maps r and r' restrict to maps s and s'.

• The map s sends $G \times H$ -orbits to H-orbits and s' sends H-orbits to orbits of the diagonal action of H.

- The map s sends $G \times H$ -orbits to H-orbits and s' sends H-orbits to orbits of the diagonal action of H.
- The maps s and s' descend to a bijection t and its inverse t^{-1} , respectively (Ratiu-Ziegler, 2022).

Gabriele Barbieri

Frobenius Reciprocity and Reduction

 By the universal properties of inductions and subductions, applied to the inclusions and the projections of the diagram, t and t⁻¹ are smooth and t is a diffeological diffeomorphism.

- By the universal properties of inductions and subductions, applied to the inclusions and the projections of the diagram, t and t⁻¹ are smooth and t is a diffeological diffeomorphism.
- Now assume that both $(M /\!\!/ H) /\!\!/ G$ and $N /\!\!/ H$ carry reduced 2-forms $\omega_{(M /\!\!/ H)/\!\!/ G}$ and $\omega_{N /\!\!/ H}$. Then t preserves them.

- By the universal properties of inductions and subductions, applied to the inclusions and the projections of the diagram, t and t⁻¹ are smooth and t is a diffeological diffeomorphism.
- Now assume that both $(M /\!\!/ H) /\!\!/ G$ and $N /\!\!/ H$ carry reduced 2-forms $\omega_{(M /\!\!/ H)/\!\!/ G}$ and $\omega_{N /\!\!/ H}$. Then t preserves them.

- By the universal properties of inductions and subductions, applied to the inclusions and the projections of the diagram, t and t⁻¹ are smooth and t is a diffeological diffeomorphism.
- Now assume that both $(M /\!\!/ H) /\!\!/ G$ and $N /\!\!/ H$ carry reduced 2-forms $\omega_{(M /\!\!/ H)/\!\!/ G}$ and $\omega_{N /\!\!/ H}$. Then *t preserves them*.
 - The diffeomorphism t preserves the reduced forms if

 $\omega_{(M/\!/ H)/\!/ G} = t^* \omega_{N/\!/ H}.$
- By the universal properties of inductions and subductions, applied to the inclusions and the projections of the diagram, t and t⁻¹ are smooth and t is a diffeological diffeomorphism.
- Now assume that both $(M /\!\!/ H) /\!\!/ G$ and $N /\!\!/ H$ carry reduced 2-forms $\omega_{(M /\!\!/ H)/\!\!/ G}$ and $\omega_{N /\!\!/ H}$. Then *t preserves them*.
 - The diffeomorphism t preserves the reduced forms if

$$\omega_{(M/\!/H)/\!/G} = t^* \omega_{N/\!/H}.$$

• It is enough to prove $j^*j_1^*\omega_M = j^*j_1^*r^*\omega_N$, i.e. $P^*j_1^*j_1^*\omega_M = P^*j_1^*j_1^*r^*\omega_N$, where P is a plot of the (subset) diffeology of $\phi_M^{-1}(0) \times \psi_M^{-1}(0)$.

- By the universal properties of inductions and subductions, applied to the inclusions and the projections of the diagram, t and t^{-1} are smooth and t is a *diffeological diffeomorphism*.
- Now assume that both $(M /\!\!/ H) /\!\!/ G$ and $N /\!\!/ H$ carry reduced 2-forms $\omega_{(M /\!\!/ H)/\!\!/ G}$ and $\omega_{N /\!\!/ H}$. Then *t preserves them*.
 - The diffeomorphism t preserves the reduced forms if

$$\omega_{(M/\!/H)/\!/G} = t^* \omega_{N/\!/H}.$$

- It is enough to prove $j^*j_1^*\omega_M = j^*j_1^*r^*\omega_N$, i.e. $P^*j^*j_1^*\omega_M = P^*j_1^*r_1^*r^*\omega_N$, where P is a plot of the (subset) diffeology of $\phi_M^{-1}(0) \times \psi_M^{-1}(0)$.
- The map $F := j_1 \circ j \circ P$ is a smooth map $U \to M$ taking values in $\phi_M^{-1}(0) \times \psi_M^{-1}(0)$.

- By the universal properties of inductions and subductions, applied to the inclusions and the projections of the diagram, t and t⁻¹ are smooth and t is a diffeological diffeomorphism.
- Now assume that both $(M /\!\!/ H) /\!\!/ G$ and $N /\!\!/ H$ carry reduced 2-forms $\omega_{(M /\!\!/ H)/\!\!/ G}$ and $\omega_{N /\!\!/ H}$. Then t preserves them.
 - The diffeomorphism *t* preserves the reduced forms if

$$\omega_{(M/\!/H)/\!/G} = t^* \omega_{N/\!/H}.$$

- It is enough to prove $j^*j_1^*\omega_M = j^*j_1^*r^*\omega_N$, i.e. $P^*j^*j_1^*\omega_M = P^*j_1^*r_1^*r^*\omega_N$, where P is a plot of the (subset) diffeology of $\phi_M^{-1}(0) \times \psi_M^{-1}(0)$.
- The map $F := j_1 \circ j \circ P$ is a smooth map $U \to M$ taking values in $\phi_M^{-1}(0) \times \psi_M^{-1}(0)$.
- The equality $F^*\omega_M = F^*r^*\omega_N$ can be proved for every smooth map $U \to M$ taking values in $\phi_M^{-1}(0) \times \psi_M^{-1}(0)$.

- By the universal properties of inductions and subductions, applied to the inclusions and the projections of the diagram, t and t⁻¹ are smooth and t is a diffeological diffeomorphism.
- Now assume that both $(M /\!\!/ H) /\!\!/ G$ and $N /\!\!/ H$ carry reduced 2-forms $\omega_{(M /\!\!/ H)/\!\!/ G}$ and $\omega_{N /\!\!/ H}$. Then *t preserves them*.
 - The diffeomorphism t preserves the reduced forms if

$$\omega_{(M/\!/H)/\!/G} = t^* \omega_{N/\!/H}.$$

- It is enough to prove $j^*j_1^*\omega_M = j^*j_1^*r^*\omega_N$, i.e. $P^*j^*j_1^*\omega_M = P^*j_1^*r_1^*r^*\omega_N$, where P is a plot of the (subset) diffeology of $\phi_M^{-1}(0) \times \psi_M^{-1}(0)$.
- The map $F := j_1 \circ j \circ P$ is a smooth map $U \to M$ taking values in $\phi_M^{-1}(0) \times \psi_M^{-1}(0)$.
- The equality $F^*\omega_M = F^*r^*\omega_N$ can be proved for every smooth map $U \to M$ taking values in $\phi_M^{-1}(0) \times \psi_M^{-1}(0)$.
- If only one reduced form exists, the other one can be defined by the equation $\omega_{(M/\!/ H)/\!/ G} = t^* \omega_{N/\!/ H}$.

Group actions

Let us consider again (X, ω, Φ) a Hamiltonian *G*-space and denote $C := \Phi^{-1}(0)$. Define also $\theta : G \times X \to X \times X$, $(g, x) \mapsto (x, g(x))$.

Group actions

Let us consider again (X, ω, Φ) a Hamiltonian *G*-space and denote $C := \Phi^{-1}(0)$. Define also $\theta : G \times X \to X \times X$, $(g, x) \mapsto (x, g(x))$.

Definition

• The action of G on X is free if for all $x \in X$ the stabilizer $G_x = \{e\}$.

Group actions

Let us consider again (X, ω, Φ) a Hamiltonian *G*-space and denote $C := \Phi^{-1}(0)$. Define also $\theta : G \times X \to X \times X$, $(g, x) \mapsto (x, g(x))$.

Definition

- The action of G on X is free if for all $x \in X$ the stabilizer $G_x = \{e\}$.
- The action of G on X is locally free if for all x ∈ X the infinitesimal stabilizer g_x = {0}.

Group actions

Let us consider again (X, ω, Φ) a Hamiltonian *G*-space and denote $C := \Phi^{-1}(0)$. Define also $\theta : G \times X \to X \times X$, $(g, x) \mapsto (x, g(x))$.

Definition

- The action of G on X is free if for all $x \in X$ the stabilizer $G_x = \{e\}$.
- The action of G on X is locally free if for all x ∈ X the infinitesimal stabilizer g_x = {0}.
- The action of G on X is proper if θ is proper, i.e. preimages of compact sets via θ are compact.

Reduced Forms

Reduced forms

Reduced Forms

Reduced forms

Combining the previous group actions it was shown that:

Combining the previous group actions it was shown that:

• If the G-action on C is free and proper, then $X \not\parallel G$ is a manifold and it is endowed with a symplectic 2-form (Marsden-Weinstein, 1974).

Combining the previous group actions it was shown that:

- If the *G*-action on *C* is free and proper, then *X* ∥ *G* is a manifold and it is endowed with a symplectic 2-form (Marsden-Weinstein, 1974).
- If the G-action on C is locally free and proper, then X // G is an orbifold and it is endowed with an orbifold 2-form (for the details see Cushman-Bates, 1997). Moreover, if the orbifolds are regarded as diffeological spaces, orbifold forms coincide with diffeological forms (Karshon-Watts, 2016). Therefore, X // G carries a reduced 2-form.

Combining the previous group actions it was shown that:

- If the *G*-action on *C* is free and proper, then *X* ∥ *G* is a manifold and it is endowed with a symplectic 2-form (Marsden-Weinstein, 1974).
- If the G-action on C is locally free and proper, then X // G is an orbifold and it is endowed with an orbifold 2-form (for the details see Cushman-Bates, 1997). Moreover, if the orbifolds are regarded as diffeological spaces, orbifold forms coincide with diffeological forms (Karshon-Watts, 2016). Therefore, X // G carries a reduced 2-form.

Combining the previous group actions it was shown that:

- If the G-action on C is free and proper, then $X \not\parallel G$ is a manifold and it is endowed with a symplectic 2-form (Marsden-Weinstein, 1974).
- If the G-action on C is locally free and proper, then X // G is an orbifold and it is endowed with an orbifold 2-form (for the details see Cushman-Bates, 1997). Moreover, if the orbifolds are regarded as diffeological spaces, orbifold forms coincide with diffeological forms (Karshon-Watts, 2016). Therefore, X // G carries a reduced 2-form.

We are going to prove that it suffices to assume the G-action strict or locally free or proper.

Reduced Forms

Strict action

Let us consider the action of a diffeological group G on a diffeological space X.

Let us consider the action of a diffeological group G on a diffeological space X.

Definition

The action is **strict** if the map θ corresponding to the *G*-action is strict.

Let us consider the action of a diffeological group G on a diffeological space X.

Definition

The action is **strict** if the map θ corresponding to the *G*-action is strict.

Example: Any **smooth free** action or **smooth transitive** action of a Lie group on a manifold is strict.

Let us consider the action of a diffeological group G on a diffeological space X.

Definition

The action is **strict** if the map θ corresponding to the *G*-action is strict.

Example: Any **smooth free** action or **smooth transitive** action of a Lie group on a manifold is strict.

Theorem

Let (X, ω, Φ) be a Hamiltonian G-space and suppose that the G-action on $C = \Phi^{-1}(0)$ is strict. Then $X \not\parallel G$ carries a reduced 2-form.

Proof:

Proof: We wish to apply Souriau's criterion:

Proof: We wish to apply Souriau's criterion:

• Let $P, Q: U \to C$ be plots of C such that $\pi \circ P = \pi \circ Q$.

Proof: We wish to apply Souriau's criterion:

- Let $P, Q: U \to C$ be plots of C such that $\pi \circ P = \pi \circ Q$.
- Then $P \times Q \in \theta(G \times C)$.

Proof: We wish to apply Souriau's criterion:

- Let $P, Q: U \to C$ be plots of C such that $\pi \circ P = \pi \circ Q$.
- Then $P \times Q \in \theta(G \times C)$.
- The strictness assumption implies that plots $R: V \to G$, and $S: V \to C$ exist and $(P \times Q_{|V}) = \theta \circ (R \times S)$. Therefore:

$$P_{|V} = S$$
 $Q(u) = R(u)(P(u)), \forall u \in V.$

23 / 30

Proof: We wish to apply Souriau's criterion:

- Let $P, Q: U \to C$ be plots of C such that $\pi \circ P = \pi \circ Q$.
- Then $P \times Q \in \theta(G \times C)$.
- The strictness assumption implies that plots $R: V \to G$, and $S: V \to C$ exist and $(P \times Q_{|V}) = \theta \circ (R \times S)$. Therefore:

$$P_{|V} = S$$
 $Q(u) = R(u)(P(u)), \forall u \in V.$

• This allows us to verify via direct calculation that $Q^*j^*\omega = P^*j^*\omega$.

Proof: We wish to apply Souriau's criterion:

- Let $P, Q: U \to C$ be plots of C such that $\pi \circ P = \pi \circ Q$.
- Then $P \times Q \in \theta(G \times C)$.
- The strictness assumption implies that plots $R: V \to G$, and $S: V \to C$ exist and $(P \times Q_{|V}) = \theta \circ (R \times S)$. Therefore:

$$P_{|V} = S$$
 $Q(u) = R(u)(P(u)), \forall u \in V.$

- This allows us to verify via direct calculation that $Q^*j^*\omega = P^*j^*\omega$.
- The Theorem follows from Souriau's criterion.

Reduced Forms

Example: Induced Hamiltonian space (Reprise)

Example: Induced Hamiltonian space (Reprise)

As we said before, this is

$$\operatorname{Ind}_{H}^{G} Y := (T^{*}G \times Y) / H = \psi^{-1}(0)/H,$$

where $H \subset G$ is an arbitrary subgroup, (Y, ω_Y, Ψ) is a Hamiltonian H-space and $L := T^*G \times Y$ is a Hamiltonian $G \times H$ -space, it is endowed with 2-form $\omega_L := d\varpi_{T^*G} + \omega_Y$ and moment map $\phi \times \psi : L \to \mathfrak{g}^* \times \mathfrak{h}^*$.

Example: Induced Hamiltonian space (Reprise)

As we said before, this is

$$\operatorname{Ind}_{H}^{G}Y := (T^{*}G \times Y) / H = \psi^{-1}(0)/H,$$

where $H \subset G$ is an arbitrary subgroup, (Y, ω_Y, Ψ) is a Hamiltonian H-space and $L := T^*G \times Y$ is a Hamiltonian $G \times H$ -space, it is endowed with 2-form $\omega_L := d\varpi_{T^*G} + \omega_Y$ and moment map $\phi \times \psi : L \to \mathfrak{g}^* \times \mathfrak{h}^*$. Even if H is not closed, the H-action on $\psi^{-1}(0)$ is strict. Therefore the previous theorem applies and ω_L descends to $\omega_{L/\!/H}$ and $(\operatorname{Ind}_H^G Y, \omega_{L/\!/H}, \Phi_{L/\!/H})$ yields a "parasymplectic" induced Hamiltonian G-space.

Introduction 0000000000 Frobenius Reciprocity

Reduced Forms

Particular case: $Ind_{H}^{G}\{0\}$

Consider $\operatorname{Ind}_{H}^{G}\{0\} = T^{*}G /\!\!/ H$. By definition this is the reduction of $T^{*}G$ with respect to the *H*-action.

 If H ⊂ G is closed, then T*G // H = T*(G/H) and the reduced form is the canonical cotangent bundle 2-form (Kummer-Marsden-Satzer isomorphism).

Consider $\operatorname{Ind}_{H}^{G}\{0\} = T^{*}G /\!\!/ H$. By definition this is the reduction of $T^{*}G$ with respect to the *H*-action.

- If $H \subset G$ is closed, then $T^*G /\!\!/ H = T^*(G/H)$ and the reduced form is the canonical cotangent bundle 2-form (Kummer-Marsden-Satzer isomorphism).
- Even if H is not closed in G, we still have the intrinsic notion of the cotangent space to a diffeological space $T^*(X)$, which is endowed with the canonical 2-form dLiouv (Iglesias-Zemmour, 2010).

Consider $\operatorname{Ind}_{H}^{G}\{0\} = T^{*}G /\!\!/ H$. By definition this is the reduction of $T^{*}G$ with respect to the *H*-action.

- If $H \subset G$ is closed, then $T^*G /\!\!/ H = T^*(G/H)$ and the reduced form is the canonical cotangent bundle 2-form (Kummer-Marsden-Satzer isomorphism).
- Even if H is not closed in G, we still have the intrinsic notion of the cotangent space to a diffeological space $T^*(X)$, which is endowed with the canonical 2-form dLiouv (Iglesias-Zemmour, 2010).

Consider $\operatorname{Ind}_{H}^{G}\{0\} = T^{*}G /\!\!/ H$. By definition this is the reduction of $T^{*}G$ with respect to the *H*-action.

- If $H \subset G$ is closed, then $T^*G /\!\!/ H = T^*(G/H)$ and the reduced form is the canonical cotangent bundle 2-form (Kummer-Marsden-Satzer isomorphism).
- Even if H is not closed in G, we still have the intrinsic notion of the cotangent space to a diffeological space $T^*(X)$, which is endowed with the canonical 2-form dLiouv (Iglesias-Zemmour, 2010).

Thanks to the last item, we can prove the isomorphism when H is dense:

Consider $\operatorname{Ind}_{H}^{G}\{0\} = T^{*}G /\!\!/ H$. By definition this is the reduction of $T^{*}G$ with respect to the *H*-action.

- If $H \subset G$ is closed, then $T^*G /\!\!/ H = T^*(G/H)$ and the reduced form is the canonical cotangent bundle 2-form (Kummer-Marsden-Satzer isomorphism).
- Even if H is not closed in G, we still have the intrinsic notion of the cotangent space to a diffeological space $T^*(X)$, which is endowed with the canonical 2-form dLiouv (Iglesias-Zemmour, 2010).

Thanks to the last item, we can prove the isomorphism when H is dense:

Theorem

Let G be a Lie group and H a dense subgroup. Then $T^*G // H$ with its reduced 2-form and $T^*(G/H)$ with dLiouv are isomorphic as diffeological parasymplectic Hamiltonian G-spaces.
Particular case: $\operatorname{Ind}_{H}^{G}\{0\}$

Consider $\operatorname{Ind}_{H}^{G}\{0\} = T^{*}G /\!\!/ H$. By definition this is the reduction of $T^{*}G$ with respect to the *H*-action.

- If $H \subset G$ is closed, then $T^*G /\!\!/ H = T^*(G/H)$ and the reduced form is the canonical cotangent bundle 2-form (Kummer-Marsden-Satzer isomorphism).
- Even if H is not closed in G, we still have the intrinsic notion of the cotangent space to a diffeological space $T^*(X)$, which is endowed with the canonical 2-form dLiouv (Iglesias-Zemmour, 2010).

Thanks to the last item, we can prove the isomorphism when H is dense:

Theorem

Let G be a Lie group and H a dense subgroup. Then $T^*G // H$ with its reduced 2-form and $T^*(G/H)$ with dLiouv are isomorphic as diffeological parasymplectic Hamiltonian G-spaces.

Example: If
$$G = \mathbb{T}^2$$
 and $H = S_{\alpha}, \alpha \in \mathbb{R} \setminus \mathbb{Q}$, $G/H = T_{\alpha}$.

Gabriele Barbieri

Frobenius Reciprocity and Reduction

Reduced Forms

Locally free action

Locally free action

Theorem

Let (X, ω, Φ) be a Hamiltonian G-space and suppose that the G-action on $C = \Phi^{-1}(0)$ is locally free and G is connected. Then $X \not\parallel G$ carries a reduced 2-form.

Locally free action

Theorem

Let (X, ω, Φ) be a Hamiltonian G-space and suppose that the G-action on $C = \Phi^{-1}(0)$ is locally free and G is connected. Then $X \not\parallel G$ carries a reduced 2-form.

Proof: Local freeness implies:

Locally free action

Theorem

Let (X, ω, Φ) be a Hamiltonian G-space and suppose that the G-action on $C = \Phi^{-1}(0)$ is locally free and G is connected. Then $X \not\parallel G$ carries a reduced 2-form.

Proof: Local freeness implies:

• $0 \in \mathfrak{g}^*$ is a regular value for Φ and therefore *C* is a manifold.

Locally free action

Theorem

Let (X, ω, Φ) be a Hamiltonian G-space and suppose that the G-action on $C = \Phi^{-1}(0)$ is locally free and G is connected. Then $X \not\parallel G$ carries a reduced 2-form.

Proof: Local freeness implies:

- $0 \in \mathfrak{g}^*$ is a regular value for Φ and therefore *C* is a manifold.
- The G-orbits are the leaves of a foliation \mathcal{F} of C.

Locally free action

Theorem

Let (X, ω, Φ) be a Hamiltonian G-space and suppose that the G-action on $C = \Phi^{-1}(0)$ is locally free and G is connected. Then $X \not\parallel G$ carries a reduced 2-form.

Proof: Local freeness implies:

- $0 \in \mathfrak{g}^*$ is a regular value for Φ and therefore *C* is a manifold.
- The G-orbits are the leaves of a foliation \mathcal{F} of C.

Locally free action

Theorem

Let (X, ω, Φ) be a Hamiltonian G-space and suppose that the G-action on $C = \Phi^{-1}(0)$ is locally free and G is connected. Then $X \not\parallel G$ carries a reduced 2-form.

Proof: Local freeness implies:

- $0 \in \mathfrak{g}^*$ is a regular value for Φ and therefore *C* is a manifold.
- The G-orbits are the leaves of a foliation \mathcal{F} of C.

Moreover, $j^*\omega$ is basic, since it is *G*-invariant and $\mathfrak{g}(x) \subset \operatorname{Ker}(j^*\omega)$.

Locally free action

Theorem

Let (X, ω, Φ) be a Hamiltonian G-space and suppose that the G-action on $C = \Phi^{-1}(0)$ is locally free and G is connected. Then $X \not\parallel G$ carries a reduced 2-form.

Proof: Local freeness implies:

- $0 \in \mathfrak{g}^*$ is a regular value for Φ and therefore *C* is a manifold.
- The G-orbits are the leaves of a foliation \mathcal{F} of C.

Moreover, $j^*\omega$ is basic, since it is *G*-invariant and $\mathfrak{g}(x) \subset \operatorname{Ker}(j^*\omega)$. Therefore, it is possible to apply a theorem of *Hector et al.* (2011), which implies that $j^*\omega$ is the pullback of a diffeological 2-form on $C/\mathcal{F} = X /\!\!/ G$.

Reduced Forms

Proper action

Proper action

Theorem

Let (X, ω, Φ) be a Hamiltonian G-space and suppose that the G-action on X is proper. Then $X \parallel G$ carries a reduced 2-form.

Proper action

Theorem

Let (X, ω, Φ) be a Hamiltonian G-space and suppose that the G-action on X is proper. Then $X \parallel G$ carries a reduced 2-form.

Proof: Under the properness assumption, $X \not\parallel G$ is a stratified symplectic space, then, in particular, it is a disjoint union of symplectic manifolds $(C_t/G, \omega_t)$, where t denotes the orbit type (Sjamaar-Lerman, 1991 and Bates-Lerman, 1997).

Proper action

Theorem

Let (X, ω, Φ) be a Hamiltonian G-space and suppose that the G-action on X is proper. Then $X \parallel G$ carries a reduced 2-form.

Proof: Under the properness assumption, $X \not\parallel G$ is a stratified symplectic space, then, in particular, it is a disjoint union of symplectic manifolds $(C_t/G, \omega_t)$, where t denotes the orbit type (Sjamaar-Lerman, 1991 and Bates-Lerman, 1997). The 2-forms ω_t are characterized by

$$(j_{|C_t})^*\omega = (\pi_{|C_t})^*\omega_t.$$

Proper action

Theorem

Let (X, ω, Φ) be a Hamiltonian G-space and suppose that the G-action on X is proper. Then $X \parallel G$ carries a reduced 2-form.

Proof: Under the properness assumption, $X \not\parallel G$ is a stratified symplectic space, then, in particular, it is a disjoint union of symplectic manifolds $(C_t/G, \omega_t)$, where t denotes the orbit type (Sjamaar-Lerman, 1991 and Bates-Lerman, 1997). The 2-forms ω_t are characterized by

$$(j_{|C_t})^*\omega = (\pi_{|C_t})^*\omega_t.$$

The existence of the reduced form $\omega_{X/\!\!/G}$ can be proved working on the previous equality and applying Souriau's criterion to $j^*\omega$.

Reduced Forms

• Let $P, Q: U \to C$ with $\pi \circ Q = \pi \circ P$ and $U_t := P^{-1}(C_t) = Q^{-1}(C_t)$.

- Let $P, Q: U \to C$ with $\pi \circ Q = \pi \circ P$ and $U_t := P^{-1}(C_t) = Q^{-1}(C_t)$.
- Pulling back the previous identity by $P_{|U_t}$ and $Q_{|U_t}$, we get:

$$((j \circ P)_{|U_t})^* \omega = ((\pi \circ P)_{|C_t})^* \omega_t = ((\pi \circ Q)_{|C_t})^* \omega_t = ((j \circ Q)_{|U_t})^* \omega.$$

- Let $P, Q: U \to C$ with $\pi \circ Q = \pi \circ P$ and $U_t := P^{-1}(C_t) = Q^{-1}(C_t)$.
- Pulling back the previous identity by $P_{|U_t}$ and $Q_{|U_t}$, we get:

$$((j \circ P)_{|U_t})^* \omega = ((\pi \circ P)_{|C_t})^* \omega_t = ((\pi \circ Q)_{|C_t})^* \omega_t = ((j \circ Q)_{|U_t})^* \omega.$$

• Therefore $Q^*j^*\omega = P^*j^*\omega$ on every U_t .

- Let $P, Q: U \to C$ with $\pi \circ Q = \pi \circ P$ and $U_t := P^{-1}(C_t) = Q^{-1}(C_t)$.
- Pulling back the previous identity by $P_{|U_t}$ and $Q_{|U_t}$, we get:

$$((j \circ P)_{|U_t})^* \omega = ((\pi \circ P)_{|C_t})^* \omega_t = ((\pi \circ Q)_{|C_t})^* \omega_t = ((j \circ Q)_{|U_t})^* \omega.$$

- Therefore $Q^*j^*\omega = P^*j^*\omega$ on every U_t .
- Caveat: U_t need not to be open.

- Let $P, Q: U \to C$ with $\pi \circ Q = \pi \circ P$ and $U_t := P^{-1}(C_t) = Q^{-1}(C_t)$.
- Pulling back the previous identity by $P_{|U_t}$ and $Q_{|U_t}$, we get:

$$((j \circ P)_{|U_t})^* \omega = ((\pi \circ P)_{|C_t})^* \omega_t = ((\pi \circ Q)_{|C_t})^* \omega_t = ((j \circ Q)_{|U_t})^* \omega_t.$$

- Therefore $Q^*j^*\omega = P^*j^*\omega$ on every U_t .
- Caveat: U_t need not to be open.
- Then let $V_t := U_t \cap \operatorname{int}(\operatorname{cl}(U_t)).$

- Let $P, Q: U \to C$ with $\pi \circ Q = \pi \circ P$ and $U_t := P^{-1}(C_t) = Q^{-1}(C_t)$.
- Pulling back the previous identity by $P_{|U_t}$ and $Q_{|U_t}$, we get:

$$((j \circ P)_{|U_t})^* \omega = ((\pi \circ P)_{|C_t})^* \omega_t = ((\pi \circ Q)_{|C_t})^* \omega_t = ((j \circ Q)_{|U_t})^* \omega_t.$$

- Therefore $Q^*j^*\omega = P^*j^*\omega$ on every U_t .
- Caveat: U_t need not to be open.

• Then let
$$V_t := U_t \cap \operatorname{int}(\operatorname{cl}(U_t)).$$

• V_t is open in U

- Let $P, Q: U \to C$ with $\pi \circ Q = \pi \circ P$ and $U_t := P^{-1}(C_t) = Q^{-1}(C_t)$.
- Pulling back the previous identity by $P_{|U_t}$ and $Q_{|U_t}$, we get:

$$((j \circ P)_{|U_t})^* \omega = ((\pi \circ P)_{|C_t})^* \omega_t = ((\pi \circ Q)_{|C_t})^* \omega_t = ((j \circ Q)_{|U_t})^* \omega_t.$$

- Therefore $Q^*j^*\omega = P^*j^*\omega$ on every U_t .
- Caveat: U_t need not to be open.
- Then let $V_t := U_t \cap \operatorname{int}(\operatorname{cl}(U_t)).$
 - V_t is open in U
 - The union of the V_t is dense in U.

- Let $P, Q: U \to C$ with $\pi \circ Q = \pi \circ P$ and $U_t := P^{-1}(C_t) = Q^{-1}(C_t)$.
- Pulling back the previous identity by $P_{|U_t}$ and $Q_{|U_t}$, we get:

$$((j \circ P)_{|U_t})^* \omega = ((\pi \circ P)_{|C_t})^* \omega_t = ((\pi \circ Q)_{|C_t})^* \omega_t = ((j \circ Q)_{|U_t})^* \omega_t.$$

- Therefore $Q^*j^*\omega = P^*j^*\omega$ on every U_t .
- Caveat: U_t need not to be open.
- Then let $V_t := U_t \cap \operatorname{int}(\operatorname{cl}(U_t)).$
 - V_t is open in U
 - The union of the V_t is dense in U.
- Proceeding as before, with V_t instead of U_t , leads to $Q^*j^*\omega = P^*j^*\omega$ on U.

- Let $P, Q: U \to C$ with $\pi \circ Q = \pi \circ P$ and $U_t := P^{-1}(C_t) = Q^{-1}(C_t)$.
- Pulling back the previous identity by $P_{|U_t}$ and $Q_{|U_t}$, we get:

$$((j \circ P)_{|U_t})^* \omega = ((\pi \circ P)_{|C_t})^* \omega_t = ((\pi \circ Q)_{|C_t})^* \omega_t = ((j \circ Q)_{|U_t})^* \omega_t.$$

- Therefore $Q^*j^*\omega = P^*j^*\omega$ on every U_t .
- Caveat: U_t need not to be open.
- Then let $V_t := U_t \cap \operatorname{int}(\operatorname{cl}(U_t)).$
 - V_t is open in U
 - The union of the V_t is dense in U.
- Proceeding as before, with V_t instead of U_t , leads to $Q^*j^*\omega = P^*j^*\omega$ on U.
- The theorem follows from Souriau's criterion.

The reduced form $\omega_{X/\!\!/G}$ induces the symplectic forms on the strata:

The reduced form $\omega_{X/\!\!/G}$ induces the symplectic forms on the strata:

Corollary

The 2-form $\omega_{X/\!\!/G}$ on $X/\!\!/ G$ restricts to the Sjamaar-Lerman-Bates 2-form ω_t on each reduced piece C_t/G .

Thank you!