When is a Symplectic Quotient a Diffeological Orbifold?

Jordan Watts

Central Michigan University

April 12, 2024

Jordan Watts Diffeology Seminar

Lie Groupoids

Definition

A **groupoid** is a small category in which every arrow is invertible.

Notation

We often denote a groupoid $\mathcal{G} = (\mathcal{G}_1 \implies \mathcal{G}_0)$, where \mathcal{G}_1 is the set of arrows and \mathcal{G}_0 is the set of objects. Also, we have

- the source map s: $\mathcal{G}_1 \to \mathcal{G}_0$ sending an arrow $x \stackrel{g}{\sim}_y$ to x,
- the target map $t: \mathcal{G}_1 \to \mathcal{G}_0$ sending an arrow ${}_x \stackrel{g}{\frown}_y$ to y,
- the **unit map** u: $\mathcal{G}_0 \to \mathcal{G}_1$ sending an object x to its identity arrow $x \stackrel{u_x}{\frown}_x$,
- the multiplication map m: G_{1s}×_tG₁ → G₁ given by composition, and

• the inversion map $\operatorname{inv}: \mathcal{G}_1 \to \mathcal{G}_1$ sending ${}_x \stackrel{g}{\curvearrowright}_y$ to ${}_x \stackrel{g^{-1}}{\frown}_y$.

Definition

A Lie groupoid \mathcal{G} is a groupoid in which \mathcal{G}_1 and \mathcal{G}_0 are smooth manifolds; s, t, u, m, and inv are all smooth maps; and s and t are submersive.

Definition

A Lie groupoid homomorphism $\varphi \colon \mathcal{G} \to \mathcal{H}$ is a smooth functor; that is, a pair of maps $\varphi_1 \colon \mathcal{G}_1 \to \mathcal{H}_1$ and $\varphi_0 \colon \mathcal{G}_0 \to \mathcal{H}_0$ respecting the source and target maps:

$$\begin{array}{c} \mathcal{G}_1 \xrightarrow{\varphi_1} \mathcal{H}_1 \\ & & \\ \downarrow \downarrow & & \\ \mathcal{G}_0 \xrightarrow{\varphi_0} \mathcal{H}_0 \end{array}$$

Example

Any Lie group G is a Lie groupoid $G \implies *$.

Example

Any Lie group action $G \circlearrowright M$ induces a Lie groupoid $G \ltimes M$, called its **action groupoid**,

$$G \times M \implies M,$$

with source $(g, x) \mapsto x$ and target $(g, x) \mapsto g \cdot x$.

A *G*-equivariant map $f: M \to N$ between *G*-manifolds *M* and *N* induces a smooth functor $G \ltimes M \to G \ltimes N$.

Example

Any vector field X on a smooth manifold M has a **local flow**, which is a Lie groupoid $U \Rightarrow M$ where U is an open neighbourhood of $\{0\} \times M$ in $\mathbb{R} \times M$; the source map is $(t, x) \mapsto x$ and the target map is $(t, x) \mapsto \exp(tX)(x)$, where

$$\frac{d}{dt}\Big|_{t=0}\exp(tX)(x) = X|_x.$$

Examples

Example

Any manifold M can be viewed as a **trivial groupoid** $M \Rightarrow M$, where source and target maps are the identity maps. Any Lie groupoid \mathcal{G} admits a smooth embedding of its units $(\mathcal{G}_0 \Rightarrow \mathcal{G}_0) \hookrightarrow \mathcal{G}$.

Example

Any manifold has its **pair groupoid** $M \times M \Rightarrow M$, where the source and target maps are the first and second projections maps, resp. Any Lie groupoid \mathcal{G} admits the smooth functor

Definition

Given a Lie groupoid \mathcal{G} , the **orbit** of $x \in \mathcal{G}_0$ is the set $t(s^{-1}(x))$. The **stabiliser** of x is the set $s^{-1}(x) \cap t^{-1}(x)$. The **orbit space** of \mathcal{G} is the set of orbits $\mathcal{G}_0/\mathcal{G}_1$ equipped with the quotient diffeology.

- Any smooth functor between Lie groupoids φ: G → H descends to a smooth map φ̂: G₀/G₁ → H₀/H₁.
- This induces a functor *Q* from the category of Lie groupoids LieGpoid to the category of diffeological spaces Diffeol.

Orbifolds

- After the work of Moerdijk, Pronk, and others, effective orbifolds are now often treated as Lie groupoids that are proper, effective, and étale (or Morita equivalent to one of these). [P96, MP97]
- The work of Iglesias-Zemmour Karshon Zadka [IZKZ] implies that Q restricted to effective orbifolds as Lie groupoids is "essentially injective" onto effective diffeological orbifolds: diffeological spaces locally diffeomorphic to linear quotients of finite groups.
- Essential injectivity means that if Q(G) ≅ Q(H), then G and H are "Morita equivalent". To make this precise, we need to extend LieGpoid.

Definition

Recall that Lie groupoids are categories. So there should be a notion of "equivalence of categories" for them. Define a **weak equivalence** $\varphi: \mathcal{G} \xrightarrow{\simeq} \mathcal{H}$ to be a smooth functor that is "smoothly fully faithful" and "smoothly essentially surjective". (See the work of Moerdijk, Pronk, Lerman, or del Hoyo for definitions [P96, MP97, L10, dH].)

 We would like weak equivalences to be invertible; however, they typically are not.

Morita Equivalence

Definition

Define a generalised morphism from ${\mathcal G}$ to ${\mathcal H}$ to be the span

A **Morita equivalence** is a generalised morphism in which ψ is also a weak equivalence.

- A Morita equivalence can be inverted by switching φ and ψ .
- We now have a bicategory $\mathbf{LieGpoid}[W^{-1}]$ (there is no need for us to discuss the 2-arrows).

- The functor Q extends to a pseudofunctor from LieGpoid[W⁻¹] to Diffeol (the latter viewed as a 2-category with trivial 2-arrows) [W22a].
- Restricting Q to the full sub-bicategory of effective orbifolds, the result is essentially injective (See [W17].)
- In fact, Q can be extended even further to a pseudofunctor DGpoid[DW⁻¹] to Diffeol, where DGpoid[DW⁻¹] is the bicategory of diffeological groupoids [vdS21, W22a].

Sikorski Spaces

Definition

Fix a set *X*. A **Sikorski structure** \mathcal{F} on *X* is a family of functions $X \to \mathbb{R}$ such that

• for any $g \in C^{\infty}(\mathbb{R}^n)$ and for any $f_1, \ldots, f_n \in \mathcal{F}$,

$$g(f_1,\ldots,f_n)\in\mathcal{F};$$

and

if f: X → ℝ satisfies for every x ∈ X that there exist an open neighbourhood of x (with respect to the initial topology on X induced by F) and f ∈ F such that f|_U = f|_U, then f ∈ F.
Call (X, F) a Sikorski space (also called a differential space in the literature). A map between Sikorski spaces
φ: (X, F_X) → (Y, F_Y) is Sikorski smooth if φ*f ∈ F_X for

 $\varphi \colon (X, \mathcal{F}_X) \to (Y, \mathcal{F}_Y)$ is Sikorski smooth if $\varphi^* f \in \mathcal{F}$ every $f \in \mathcal{F}_Y$.

Example

Let (X, D) be a diffeological space. The diffeologically smooth real-valued functions $C^{\infty}(X)$ is a Sikorski structure, making $(X, C^{\infty}(X))$ into a Sikorski space. In fact, there is a functor

 $\Phi\colon \mathbf{Diffeol}\to \mathbf{Sik}$

from diffeological spaces to Sikorski spaces that sends a diffeologically smooth map to itself.

- It turns out that restricting Φ ∘ Q to effective orbifolds as Lie groupoids is again essentially injective: call the objects in the image of this functor "Sikorski orbifolds".
- Many interesting questions remain about Φ ∘ Q, applied to Lie group actions and other Lie groupoids.

Symplectic Quotients

Definition

- Let (M, ω) be a symplectic manifold admitting a Hamiltonian action of a compact Lie group G: this means that $g^*\omega = \omega$ for all $g \in G$ and that there is an equivariant momentum map $\mu \colon M \to \mathfrak{g}^*$.
- If 0 ∈ g* is a regular value of μ, then Z := μ⁻¹(0) is an embedded G-invariant submanifold; if additionally the action G ⊖ Z is free, then M//₀G := Z/G is a symplectic manifold, called the reduced space or symplectic quotient at 0.
- Without the freeness assumption of G ⊂ Z, this action is automatically locally free and the symplectic quotient Z/G is a symplectic orbifold. (That is, G ⊨ Z is an orbifold.)
- If 0 ∈ g* is a critical value, then Z is no longer necessarily a submanifold of M, but it is G-invariant, and the symplectic quotient Z/G is a symplectic stratified space [SL].

Symplectic Quotients

- Note that *G* × *Z* will always be a diffeological groupoid, and so the quotient space *Q*(*G* × *Z*) with its quotient diffeology is another way of thinking about the symplectic quotient besides as a stratified space. Yet another way is thinking of *Z*/*G* as a Sikorski space with this the subquotient Sikorski structure (induced by *M*).
- Sometimes the subquotient Sikorski structure on Z/G is a Sikorski orbifold when Z is a critical level set, which is somewhat unexpected. This has been studied in detail by Seaton, Farsi, Herbig, Schwarz, et al. [FHS13, HSS15].

Example (Cushman-Sjamaar)

Example

- Consider $\mathbb{S}^1 \oplus \mathbb{C}^2$ given by $e^{i\theta} \cdot (z_1, z_2) := (e^{i\theta}z_1, e^{-i\theta}z_2)$. This is a Hamiltonian action with respect to the standard symplectic form with momentum map $\mu(z_1, z_2) = |z_1|^2 - |z_2|^2$.
- $Z = \{|z_1| = |z_2|\}$, which is the quadratic cone of a torus.
- The diagonal map Δ: C → Z: z ↦ (z, z) is an induction, and the image intersects every S¹-orbit in Z at exactly two points ((z, z) and (-z, -z)), except for the fixed point (0, 0).
- It follows that $\mathcal{F}_{Z/\mathbb{S}^1} = \mathcal{F}_{\mathbb{C}/\mathbb{Z}_2}$; this is exactly the cone

$$s^2 + t^2 = u^2, \ u \ge 0.$$

- Is $\Phi \circ Q(\mathbb{S}^1 \ltimes Z) = \mathcal{F}_{Z/\mathbb{S}^1}$?
- Is $Q(\mathbb{S}^1 \ltimes Z)$ a diffeological orbifold?
- Under what conditions are symplectic quotients, reduced at critical level sets, diffeological orbifolds?
- Note: S¹ ⊨ Z is not Morita equivalent as a diffeological groupoid to an orbifold groupoid.

Thank you!

References

- dH Matias del Hoyo, "Lie groupoids and their orbispaces", Port. Math. 70 (2013), 161-209.
- FHS13 Carla Farsi, and Hans-Christian Herbig, and Christopher Seaton, "On orbifold criteria for symplectic toric quotients", SIGMA Symmetry Integrability Geom. Methods Appl. 9 (2013), 032.
- HSS15 Hans-Christian Herbig, Gerald W. Schwarz, and Christopher Seaton, "When is a symplectic quotient an orbifold?", Adv. Math. 280 (2015), 280–224.
 - IZKZ Patrick Iglesias-Zemmour, Yael Karshon, and Moshe Zadka, "Orbifolds as diffeologies", Trans. Amer. Math. Soc. 362 (2010), 2811–2831.
 - L10 Eugene Lerman, "Orbifolds as stacks?", Enseign. Math. (2) 56 (2010), 315-363.
- MP97 leke Moerdijk and Dorette Pronk, "Orbifolds, sheaves and groupoids", K-Theory 12 (1997), 3–21.
 - P96 Dorette Pronk, "Etendues and stacks as bicategories of fractions", Compos. Math., 102 (1996), 243–303.
- PS21 Dorette Pronk and Laura Scull, "Bicategories of fractions revisited: towards small Homs and canonical 2-cells", Theory Appl. Categ. 38 (2022), 913–1014.
 - SL Reyer Sjamaar and Eugene Lerman, "Stratified symplectic spaces and reduction", Ann. of Math. (2) 134 (1991), 375–422.
- vdS21 Nesta van der Schaaf, "Diffeological Morita equivalence", *Cah. Topol. Géom. Différ. Catég.*, LXII-2 (2021), 177–238.
- W17 Jordan Watts, "The differential structure of an orbifold", Rocky Mountain J. Math. 47 (2017) 289–327.
- W22a Jordan Watts, "The orbit space and basic forms of a proper Lie groupoid", In: Current Trends in Analysis, its Applications and Computation: Proceedings of the 12th ISAAC Congress, Aveiro, Portugal, 2019; Trends in Mathematics: Research Perspectives; Birkhäuser, 2022.
- W22b Jordan Watts, "Bicategories of diffeological groupoids" (preprint).