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1 Preliminaries
The purpose of this paper is to introduce Poisson manifolds, and to prove the
Splitting Theorem; the result of which will show that Poisson manifolds are
in fact foliations with symplectic leaves. The presentation is based on that of
Weinstein’s paper, [3]. We begin with some basic notions.

Definition 1.1. A Poisson structure on a manifold P is a Lie algebra structure
on C∞(P ), called a Poisson bracket, which satisfies Leibniz’ rule in both entries.
That is, P is equipped with an antisymmetric, bilinear map {·, ·} : C∞(P ) →
C∞(P ) that satisfies Jacobi’s identity, and for any f, g, h ∈ C∞(P )

{fg, h} = f{g, h}+ {f, h}g, (1)

with a similar equation being valid in the other entry.

Note that for a fixed h ∈ C∞(P ), (1) implies that {·, h} is in fact a derivation
on the ring C∞(P ); i.e. there exists a vector field ξh ∈ Vect(P ) such that for
any f ∈ C∞(P ), ξhf = {f, h}. This vector field is called the Hamiltonian vector
field of h. If one of the functions in the bracket is constant, then the Leibniz
rule demands that the bracket be equal to zero. Thus, there is a well-defined
bundle map B : T ∗P → TP : df |p 7→ ξf |p, or equivalently, there is a smooth
contravariant antisymmetric 2-tensor w on P , called the cosymplectic structure,
such that for any f, g ∈ C∞(P ), 〈(df, dg)|w〉 = {f, g}.

There are a couple properties of the Poisson bracket worth mentioning.
First, given a point p ∈ P and local coordinates (x1, ..., xn) about p, for any
point q in the corresponding coordinate neighbourhood of p, {xi, xj}(q) =
〈(dxi, dxj)|w〉(q) = wij |q, and so the bracket is locally determined by the bracket
of the coordinate projections. Second, by the Jacobi identity, ξ{f,g} = −[ξf , ξg]
for any f, g ∈ C∞(P ), and so the map f 7→ ξf is an anti-Lie algebra homomor-
phism from C∞(P ) to Vect(P ).

Definition 1.2. A smooth map ϕ : P1 → P2 between two Poisson manifolds P1

and P2 with Poisson brackets {·, ·}1 and {·, ·}2, respectively, is called a Poisson
mapping if for any f, g ∈ C∞(P2), {f ◦ ϕ, g ◦ ϕ}1 = {f, g}2 ◦ ϕ.
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Definition 1.3. A Poisson submanifold Q of a Poisson manifold P is a sub-
manifold equipped with a Poisson structure such that the inclusion map is a
Poisson mapping.

Definition 1.4. Given two Poisson manifolds, P1 and P2, we define the product
P1 × P2 to be the usual product of smooth manifolds equipped with a Poisson
structure {·, ·} such that the projection maps πi : P1 × P2 → Pi are Poisson
mappings, and

{f ◦ π1, g ◦ π2} = 0

for all f ∈ C∞(P1) and g ∈ C∞(P2). This last condition ensures that C∞(P1)
and C∞(P2) can be mapped via bijective Lie algebra homomorphisms onto
commuting subalgebras of C∞(P1 × P2).

Definition 1.5. The rank of a Poisson manifold at a point p ∈ P is the rank
of the map B|p : T ∗p P → TpP , or equivalently, the rank of the cosymplectic
structure at p.

Remark 1.6. If the rank of the Poisson structure of a Poisson manifold P
is equal to the dimension of the manifold at every point, then P has a nat-
ural symplectic structure. Define a symplectic form Ω on P as Ω(ξ|p, ζ|p) =
w(B−1(ξ|p), B−1(ζ|p)) for any p ∈ P , noting that B would have full rank at
every point, and hence be an invertible bundle map. The Poisson bracket and
the Hamiltonian vector fields will coincide with those defined in the usual sense
on symplectic manifolds.

2 The Splitting Theorem
Theorem 2.1. Let P be a Poisson manifold, and let p ∈ P . Then there exist a
neighbourhood U ⊆ P of p and a diffeomorphic Poisson mapping ϕ = ϕS×ϕN :
U → S×N where S is a symplectic manifold and N is a Poisson manifold with
rank zero at ϕN (p).

Proof. If P has rank zero at p, then U is diffeomorphic to {p} × U . {p} is a
symplectic manifold, and U , as a Poisson submanifold of P , has rank zero at p,
and we are done.

If P has rank greater than zero at p, then there exist functions f1, g1 ∈
C∞(P ) such that {f1, g1}(p) = ξg1f1(p) 6= 0. Hence, ξg1 6= 0, and so we can
apply the “straightening-out lemma” to this vector field in a neighbourhood
U1 ⊆ P of p (see [2]) to get ξg1 |U1 = ∂

∂h1
|U1 for some h1 ∈ C∞(P ). Hence,

{h1, g1} = 1.
Next, from the Jacobi identity for the Poisson bracket we have that ξg1 and

ξh1 commute (and so g1 and h1 are independent). If P has dimension n, then
we can find n− 2 functions x3, ..., xn ∈ C∞(P ) such that

∂xi

∂g1
=

∂xi

∂h1
= 0 (2)
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for each i = 3, ..., n; that is, we have n (independent) coordinates (g1, h1, x
3, ..., xn)

about p, and in fact, from (2), we have that for each i = 3, ..., n, xi commutes
with both g1 and h1. The coordinates (g1, h1) induce a Poisson submanifold
S1 ⊆ U1 of dimension 2 (since the coordinates are independent), with bracket
defined such that the projection is a Poisson mapping. The rank of S1 ev-
erywhere is 2; hence, S1 is symplectic. The coordinates (x3, ..., xn) induce a
Poisson submanifold N1 ⊆ U1 as well, with bracket determined by the cosym-
plectic structure defined by (w1)i−2,j−2|q = {xi, xj}(q) for all q ∈ N1. We have
shown that the subalgebras of C∞(U1) corresponding to C∞(S1) and C∞(N1)
commute, and so U1 = S1 ×N1 is a well-defined product of Poisson manifolds.

We apply the same procedure above to N1, and so on, going through the
procedure a finite number of times (say m times) after which we have a resulting
neighbourhood U of p such that U = S1× ...×Sm×Nm, with local coordinates
(g1, ..., gm, h1, ..., hm, y1, ..., yn−2m) satisfying

{gi, gj} = {hi, hj} = {gi, y
j} = {hi, y

j} = 0

for all i, j, and {gi, hj} = δij , and {yi, yj}(q) = wij(q) for all q ∈ Nm. S =
S1 × ...× Sm is a symplectic manifold, and N = Nm is a Poisson manifold with
Poisson bracket determined by w, which we claim has rank zero at ϕN (φN (p))
for large enough m. To justify this, we need only show that an m exists such
that the rank of the Poisson bracket of N is zero at ϕN (p). But if m = n then
the Poisson bracket becomes trivial (since the cosymplectic structure would have
rank less than two; i.e. 0). Similar to the above argument, U is a well-defined
product of Poisson manifolds, and the theorem is proved.

Remark 2.2. S and N as described in the above theorem are in fact unique
up to local Poisson diffeomorphism (the proof of which shall be omitted – see
[3]).

Examining the proof of the splitting theorem more closely, we have the
following. Define a relation on the points of a Poisson manifold P : set p ∼ q if
there exists a piecewise smooth curve from p to q, the smooth segments of which
are trajectories of Hamiltonian vector fields. Then ∼ is clearly an equivalence
relation. Take a point p ∈ P , and given the neighbourhood U about p as
described in the hypothesis of the splitting theorem, all Hamiltonian vector
fields of U are tangent to S, and so for any q ∈ U , p ∼ q if and only if there
exists a curve from p to q that never travels transversely with respect to S.
Cover any equivalence class with enough such neighbourhoods, and glueing the
symplectic submanifolds together, we have that the equivalence class itself is a
symplectic submanifold. Thus, P is a foliation with symplectic leaves.

3 Examples
Example 3.1. Given a smooth manifold M , we can equip this with the trivial
Poisson structure: {f, g} = 0 for all f, g ∈ C∞(M). The rank of M is 0
everywhere, and the symplectic leaves are precisely the points of M .
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Example 3.2. Let M be a symplectic manifold and N an arbitrary manifold
equipped with the trivial Poisson structure. Then M ×N is a Poisson manifold
with symplectic leaves {M × {x} | x ∈ N}.
Example 3.3. The coadjoint orbits of a Lie group G can be realised as the
symplectic leaves of the Poisson manifold g∗. Define the Poisson bracket on g∗

as
{f, h}(φ) = 〈φ | [df |φ, dh|φ]〉

for f, h ∈ C∞(g∗) and φ ∈ g∗. For example, consider the Lie group SU(2).
Then g∗ = su(2) ∼= R3, and the coadjoint action is in fact rotations about
the origin. The corresponding orbits are concentric spheres about the origin,
{∂B(0, r) | r ≥ 0}, each of which is symplectic.
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