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Introduction

Circles, spheres and tori are examples of “nice” spaces - what these spaces have in common is
their smoothness, i.e. the spaces have no corners or cusps. This allows us to perform basic calcu-
lus on the objects with a simple extension of undergraduate analysis. However, consider spaces
with corners and or/cusps, or other strange artifacts, such as a cone in 3-space. A large class of
these singular spaces are known as orbifolds, defined as spaces which locally take the appearance
of a Euclidean space modulo a finite group action. Calculus on these surfaces can be defined; it is
a prior result that the set of infinitely differentiable (or smooth) functions on the orbifolds forms
a ring which can detect the corners, boundaries and cusps of the object and distinguish between
different orbifolds [4].

Figure 1: A cross-section of the quotient space produced by S1 	 C2 with weights 1 and 2

Our project examines analogous situations - but rather than orbifolds, we consider spaces which
look like an Euclidean space modulo a circle action, one of the simplest cases of an infinite group
action. Considering the ring of smooth functions, can we distinguish between different spaces to
the same degree as with orbifolds?

Main Objectives

1. Understand the circle action on C2

2. Generalize to Cn for all n.

3. Look at generalizing to other spaces and group actions, such as the torus action.

Materials and Methods

Naiche Downey wrote Mathematica software to determine the invariant polynomials needed to
distinguish between spaces generated by the circle action along with the relations between them.
This allowed us to determine when the spaces Cn/S1 were considered distinct via the ring of
smooth functions. To check our results the number of polynomials generated was compared to
the output of another Mathematica program designed to determine how many invariant polyno-
mials exist at each degree [2].

Example : S1 	 C2

Define the action of S1 on C2 by e2πiθ · (z1, z2) = (e2πia1θz1, e
2πia2θz2) with θ ∈ [0, 1]. Assum-

ing the action is effective requires that the weights, a1, a2 be relatively prime. Then the invariant
polynomials are

P1 = |z1|2 (1)
P2 = |z2|2 (2)
P3 = Re(zα2

1 ∗ z
α1
2 ) (3)

P4 = Im(zα2
1 ∗ z

α1
2 ) (4)

These are further restricted with relationships; that P1, P2 ≥ 0 and:

P 2
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2 (5)
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Figure 2: Stratification of S1 	 C2 with weights 3 and 2

Results
Theorems
Theorem 1. Let S1 act linearly and effectively on Rn. Then the orbit space Rn/S1,
equipped with its smooth structure C∞(Rn/Sn), contains enough invariants such that
the linear action of S1 on Rn can be recovered (up to S1 equivariant diffeomorphism).

Theorem 2. Let S1 act effectively on a connected manifold M .

1. If M/S1 has no codimension-1 strata in its orbit-type stratification, then the circle ac-
tion can be recovered from the differential space (M/S1, C∞(M/S1)) up to a mild form
of equivalence.

2. If M/S1 does contain codimension-1 strata in its orbit-type stratification, append to
each codimension-1 stratum S an integer label n = dim Γ where Γ is the isotropy group
at any point of S. Then the circle action can be recovered from the differential space
(M/S1, C∞(M/S1)) with these integer labels up to a mild form of equivalence.

Example: The Codimension-1 Case
When codimension-1 strata are present, we need integer labels to tell the difference between orbit
spaces of circle actions. For example, consider the circle acting on the 2-sphere by rotation. The
orbit space is diffeomorphic to a compact connected interval [0, 1]. Both endpoints have isotropy
groups equal to the circle itself.

By identifying antipodal points on 2-sphere one obtains the real projective plane, and the circle
action descends to this. The orbit space is again diffeomorphic to [0, 1] but one endpoint has the
circle as an isotropy group, while the other has the cyclic group Z2.

Forthcoming Research
We hope to continue work with the torus action and submit a paper.
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