Infinite-Dimensional Calculus & Symplectic Topology

Jordan Watts

Central Michigan University

March 2025

Jordan Watts Infinite-Dimensional Calculus & Symplectic Topology

• This is joint work with Yael Karshon (in progress).

- Symplectic topologists are interested in infinite-dimensional groups such as Diff(M), Symp(M,ω), and Ham(M,ω), where M is a compact manifold, and (M,ω) a compact symplectic manifold.
- They often employ either methods from functional analysis, as well as purely topological constructions, to study these groups.

Motivation

 For instance, the Flux Conjecture (proved by Ono in [O06]) is that the flux group Γ_ω in the following exact commutative diagram [McD04] is discrete:

• Here
$$\operatorname{Flux}(\varphi_t) := \int_0^1 \left[\omega\left(\dot{\varphi_t}, \cdot\right) \right] dt \in H^1(M, \mathbb{R}).$$

Question

What can theories generalising the differential geometry/topology of smooth manifolds, such as **diffeology** or **Sikorski spaces**, do for us?

 Diffeology provides an "internal" perspective on a space, whereas Sikorski structures provide an "external" perspective. Considering both structures together yields a lot of information about the space.

Definition ([Ha82,Mi84])

- Let E and F be locally convex spaces, and let U ⊆ E be open.
- A function $f: U \to F$ is C^1 if it is continuous, and for every $u \in U$ and $h \in E$, the limit

$$Df(u;h) := \lim_{t \to 0} \frac{f(u+th) - f(u)}{t}$$

exists and is continuous as a map $U \times E \rightarrow F$.

• Continuing recursively, one define C^k functions, and then **infinitely-differentiable** functions as $\bigcap_k C^k(U, F)$.

Definition ([IZ13])

- Let X be a set.
- A parametrisation p: U_p → X is a map from an open subset U_p of some Euclidean space.
- A diffeology \mathcal{D}_X on X is a family of parametrisations satisfying
 - **()** all constant parametrisations are in \mathcal{D}_X ,
 - 2 if p is a parametrisation and $\{U_{\alpha}\}$ an open cover of U_p such that for each α

$$p|_{U_{\alpha}} \in \mathcal{D}_X$$

then $p \in \mathcal{D}_X$,

- 3 if $p \in \mathcal{D}_X$ and $f: V \to U_p$ is smooth with V an Euclidean open subset then $p \circ f \in \mathcal{D}_X$.
- Call (X, D_X) a diffeological space and each p ∈ D_X a plot.

Definition

A map $F: (X, \mathcal{D}_X) \to (Y, \mathcal{D}_Y)$ is diffeologically smooth if $F \circ p \in \mathcal{D}_Y$ for every $p \in \mathcal{D}_X$.

• We obtain a "complete, co-complete quasi-topos" [BH11], denoted Diffeol. In particular, we obtain a category admitting all subsets, quotients, products, coproducts, and function spaces.

Example

A (smooth) manifold comes with a standard diffeological structure: all smooth parametrisations into it. In fact, the category of smooth manifolds forms a full subcategory of Diffeol.

Irrational Tori

Definition

Let *X* be a diffeological space with an equivalence relation \sim and quotient map $\pi \colon X \to X/\sim$. A parametrisation $p \colon U_p \to X/\sim$ is a plot in the **quotient diffeology** if for every $u \in U_p$ there exists an open neighbourhood *V* of *u* and a plot $q \colon V \to X$ such that $p|_V = \pi \circ q$.

Example

Fix an irrational number $\alpha.$ Consider the action of the group \mathbb{Z}^2 on \mathbb{R} by

$$(m,n) \cdot x = x + m + \alpha n.$$

The quotient group $T_{\alpha} := \mathbb{R}/\mathbb{Z}^2$ has trivial topology, but its diffeology is rich. This space is an example of an **irrational** torus.

Example

Let *E* be a locally convex space. The collection of all infinitely-differentiable parametrisations of *E* forms a diffeology, denoted \mathcal{D}_E .

Example ([L92])

Fréchet spaces form a full subcategory of Diffeol.

Definition

Let (X, \mathcal{D}_X) be a diffeological space. The **D-topology** $\tau_{\mathcal{D}_X}$ on X is the strongest topology making all plots continuous.

Question

Given a locally convex space E with topology τ_E , when is $\tau_E = \tau_{\mathcal{D}_E}$?

• It is always true that $\tau_E \subseteq \tau_{\mathcal{D}_E}$.

Sikorski Spaces

Definition ([Ś13])

Let *X* be a set. A **Sikorski (differential) structure** on *X* is a family of real-valued functions \mathcal{F} on *X* satisfying

- if $g \in C^{\infty}(\mathbb{R}^n)$ and $f_1, \ldots, f_n \in \mathcal{F}$, then $g(f_1, \ldots, f_n) \in \mathcal{F}$; and
- With respect to the initial topology *τ_F* on *X* generated by *F*, if *f* : *X* → ℝ admits a function *f_x* ∈ *F* for each *x* ∈ *X* satisfying

$$f|_{U_x} = f_x|_{U_x}$$

on an open neighbourhood U_x of x, then $f \in \mathcal{F}$. (X, \mathcal{F}) is called a **Sikorski (differential) space**.

Definition

A map $\varphi \colon (X, \mathcal{F}_X) \to (Y, \mathcal{F}_Y)$ is Sikorski smooth if $\varphi^* f \in \mathcal{F}_X$ for every $f \in \mathcal{F}_Y$.

- Sikorski spaces form a category Sik admitting subspaces, products, coproducts, and quotients.
- Function spaces are a little more difficult to deal with.

Example

Manifolds come with a standard Sikorski structure: all smooth real-valued functions. In fact, manifolds form a full subcategory of Sik.

Definition

Given a Sikorski space (X, \mathcal{F}_X) and a subset $Y \subseteq X$, the **subspace Sikorski structure** \mathcal{F}_Y on Y is given by all real-valued functions $f: Y \to \mathbb{R}$ such that for any $y \in Y$ there is an open neighbourhood $U \subseteq X$ of y and a function $\tilde{f} \in \mathcal{F}_X$ such that

$$f|_{U\cap Y} = \widetilde{f}|_{U\cap Y}.$$

Example

Any level set of a smooth function, such as a real algebraic/analytic variety, comes equipped with a subspace Sikorski structure.

Example

Let *E* be a locally convex space. The collection of all infinitely-differentiable real-valued functions forms a Sikorski structure, denoted \mathcal{F}_E .

Question

Given a locally convex space *E* with topology τ_E , when is $\tau_E = \tau_{\mathcal{F}_E}$, where $\tau_{\mathcal{F}_E}$ is the initial topology generated by \mathcal{F}_E ?

• It is always true that $\tau_{\mathcal{F}_E} \subseteq \tau_E$.

Reflexivity

- Given a diffeological space (X, D_X), the set of diffeologically smooth real-valued functions, denoted ΦD_X, is a Sikorski structure on the underlying set of X.
- In fact, these spaces (X, ΦD_X) form a subcategory of Sik isomorphic to the category of Frölicher spaces.
- In the other direction, given a Sikorski space (X, F_X), the set of all Sikorski smooth parametrisations into X, denoted ΠF_X, is a diffeology.
- Again, the diffeological spaces (X, ΠF_X) form a subcategory of Diffeol isomorphic to the category of Frölicher spaces.

 Φ and Π in the previous slide are in fact functors that send maps to themselves:

$$\operatorname{Diffeol}_{\overset{\Phi}{\longleftarrow}} \operatorname{Sik}$$

Definition ([BKW23])

If Π ∘ Φ(X, D_X) = (X, D_X), then D_X is called reflexive.
If Φ ∘ Π(X, F_X) = (X, F_X), then F_X is called reflexive.

Reflexivity

Examples

- Manifolds have reflexive diffeological and Sikorski structures.
- Manifolds with corners have reflexive Sikorski structures. They have reflexive diffeological structures if these are locally induced by subset diffeologies on the orthants used to make the charts.
- Quotient spaces of proper Lie group actions (or proper Lie groupoids) have reflexive Sikorski structures.
- The union of the three axes of ℝ³ has a reflexive Sikorski structure, but the union of three distinct lines through the origin in ℝ² does not.

Question

Given a locally convex space E, when is \mathcal{D}_E and/or \mathcal{F}_E reflexive?

Definition

A topological space X is **sequential** if for every subset $S \subseteq X$,

$$\overline{S} = \{ x \in X \mid \exists (x_n) \text{ in } S \text{ s.t. } x_n \to x \}.$$

Example

Any first-countable space is sequential.

Example

The D-topology of a diffeological space is sequential. (This follows from the fact that diffeological spaces are colimits of their plot domains.)

au_E VS $au_{\mathcal{D}_E}$

Definition

Given a locally convex space E, a sequence (x_n) in Econverges fast to x_∞ if for every $k \in \mathbb{N}$, the set

$${n^k(x_n - x_\infty)}_{n \in \mathbb{N}}$$

is bounded.

Theorem

Given a sequential locally convex space E, if every convergent sequence in E admits a fast-converging subsequence, then

 $\tau_E = \tau_{\mathcal{D}_E}.$

Corollary

If *E* is a metrisable locally convex space, then $\tau_E = \tau_{\mathcal{D}_E}$.

Definition

A locally convex space *E* is **smoothly regular** if for any $x \in X$ and open neighbourhood $U \ni x$, there is a function $f \in \mathcal{F}_E$ such that f(x) = 1 and $\operatorname{supp}(f) \subseteq U$.

Theorem

Given a locally convex space E, $\tau_E = \tau_{\mathcal{F}_E}$ if and only if τ_E is smoothly regular.

Corollary

If τ_E is generated by semi-norms that are smooth on the complements of their zero-sets, then τ_E is smoothly regular.

Reflexivity

• Given a locally convex space *E*, let *E*^{*} denote the continuous real linear functionals (which are infinitely-differentiable).

Theorem

- If *E* is a metrisable locally convex space, then *F_E* = Φ*D_E*.
 If *E* is a sequentially complete locally convex space, then *D_E* = Π*E*^{*} (and hence *D_E* = Π*F_E*).
- If E is a Fréchet space, then both \mathcal{D}_E and \mathcal{F}_E are reflexive.

Theorem

Let M be a Fréchet manifold locally modelled on a smoothly regular Fréchet space. The natural diffeology \mathcal{D}_M and Sikorski structure \mathcal{F}_M on M are reflexive, and the topology on M is unambiguous.

Definition

Given diffeological spaces X and Y, the set of diffeologically smooth functions between them $\mathbf{Diffeol}(X, Y)$ admits the **functional diffeology**, in which a parametrisation p is a plot if

$$p^{\sharp} \colon U_p \times X \to Y \colon (u, x) \mapsto p(u)(x)$$

is smooth.

• The functional diffeology satisfies the Exponential Law:

 $\mathbf{Diffeol}(X, \mathbf{Diffeol}(Y, Z)) \cong \mathbf{Diffeol}(X \times Y, Z).$

Question

Given diffeological spaces X and Y, under what conditions is the functional diffeology on $\mathbf{Diffeol}(X, Y)$ reflexive?

Theorem (Karshon-W.)

If X and Y are diffeological spaces with Y reflexive, then the functional diffeology of $\mathbf{Diffeol}(X, Y)$ is reflexive.

Proposition ([CSW14])

Let *M* be a compact manifold. The functional diffeology of $C^{\infty}(M, \mathbb{R}^n)$ coincides with $\mathcal{D}_{C^{\infty}(M, \mathbb{R}^n)}$, where $C^{\infty}(M, \mathbb{R}^n)$ is given the smoothly regular Fréchet space structure of the C^{∞} -topology.

Corollary

Let M and N be manifolds with M compact. The functional diffeology of $C^{\infty}(M, N)$ coincides with $\mathcal{D}_{C^{\infty}(M, N)}$, where $C^{\infty}(M, N)$ is given the Fréchet manifold structure.

Corollary ([Hi94,CSW14])

Let *M* be a compact manifold. Then Diff(M) is an open subset of $C^{\infty}(M, M)$ with respect to the *D*-topology, and hence inherits all of the nice properties of $C^{\infty}(M, M)$.

Proposition (Karshon-W.)

Given a compact symplectic manifold (M, ω) , the group of symplectomorphisms $\operatorname{Symp}(M, \omega)$ is a closed subgroup of $\operatorname{Diff}(M)$ in an unambiguous way. In particular, the smooth identity component $\operatorname{Symp}_0(M, \omega)$ has an unambiguous definition.

Corollary

Thus $\mathrm{Symp}_0(M,\omega)$ inherits a Fréchet manifold structure in an unambiguous way.

Hamiltonian Diffeomorphisms

Definition

Let (M, ω) be a compact symplectic manifold. Given a function $H: [0,1] \times M \to M$, a **hamiltonian isotopy generated by** H is a smooth path $\Psi: [0,1] \to \text{Diff}(M): t \mapsto \Psi_t$ such that

• $\Psi_0 = \operatorname{id}_M$ and,

2 the time-dependent vector field ξ_t given by

$$\xi_t \lrcorner \omega = dH(t, \cdot)$$
 satisfies $\frac{d}{dt} \Psi_t = \xi_t \circ \Psi_t.$

The group of hamiltonian diffeomorphisms of (M, ω) is

 $\operatorname{Ham}(M,\omega) := \{\psi \mid \exists \text{ a hamiltonian isotopy } \Psi \text{ s.t. } \psi = \Psi_1 \}.$

• We are still working on $\operatorname{Ham}(M, \omega)$, but expect everything to go through.

Covering Spaces

Definition

Given a connected topological space X, denote by \widetilde{X}_τ the space

$$\widetilde{X}_{ au}:=C^0([0,1],X)\Big/C^0$$
-homotopy.

 In the case that X is connected, locally path-connected, and semi-locally simply-connected, then X
[˜]_τ is a topological universal cover of X.

Definition

Given a connected diffeological space X, denote by $\operatorname{stPaths}(X)$ the smooth maps $[0,1] \to X$ constant near 0 and 1, and by \widetilde{X}_D the **diffeological universal cover**

 $\widetilde{X}_D := \operatorname{stPaths}(X) / \operatorname{diffeologically smooth homotopy}.$

Covering Spaces

Example

Let X be the graph of
$$f(x) = \begin{cases} x \sin(1/x) & x > 0, \\ 0 & x = 0. \end{cases}$$
 Then X is

simply-connected, but not even smoothly path-connected.

Example

If X is an irrational torus, then $\widetilde{X}_D \cong \mathbb{R}$ but $\widetilde{X}_\tau \cong X$.

Question

Given a diffeological space X, when is the underlying topological space of \widetilde{X}_D the same as \widetilde{X}_{τ} ?

• There is always a continuous map $\sigma \colon \widetilde{X}_D \to \widetilde{X}_{\tau}$.

Theorem (Karshon-W.)

- Let X be a smoothly regular Fréchet manifold. Then
 σ: X̃_D → X̃_τ is a homeomorphism.
- Using the fact that topological covering maps are local homeomorphisms, there is a natural diffeology one can put on X
 _τ that turns σ into a diffeomorphism in the case that X
 _τ is a covering space.

Examples

Given manifolds M and N with M compact, $X = C^{\infty}(M, N)$ satisfies $\widetilde{X}_D \cong \widetilde{X}_{\tau}$. If M is a compact manifold, then X = Diff(M), then $\widetilde{X}_D \cong \widetilde{X}_{\tau}$. If (M, ω) is a compact symplectic manifold, then for $X = \text{Symp}(M, \omega)$ or $= \text{Ham}(M, \omega)$, then again $\widetilde{X}_D \cong \widetilde{X}_{\tau}$. Thank you!

References

- BH11 John C. Baez and Alexander E. Hoffnung, "Convenient categories of smooth spaces", Trans. Amer. Math. Soc. 363 (2011), 5789-5825.
- BKW23 Augustin Batubenge, Yael Karshon, and Jordan Watts, "Diffeological, Frölicher, and differential spaces", Rocky Mountain J. Math. (to appear).
- CSW14 J. Daniel Christensen, Gordon Sinnamon, and Enxin Wu, "The D-topology for diffeological spaces", Pacific J. Math. 272 (2014), no. 1, 87–110.
 - Ha82 Richard S. Hamilton, "The inverse function theorem of Nash and Moser", Bull. Amer. Math. Soc. (N.S.) 7 (1982), no. 1, 65–222.
 - Hi94 Morris W. Hirsch, Differential Topology, In: Grad. Texts in Math., 33, Springer-Verlag, New York, 1994.
 - IZ13 Patrick Iglésias-Zemmour, Diffeology, Math. Surveys Monogr., 185, American Mathematical Society, 2013.
 - KM97 Andres Kriegl and Peter W. Michor, The Convenient Settings of Global Analysis, Math. Surveys Monogr., 53, American Mathematical Society, 1997.
 - L92 Mark V. Losik, "Fréchet manifolds as diffeological spaces", Izv. Vyssh. Uchebn. Zaved. Mat. (1992), 36-42.
- McD04 Dusa McDuff, "Lectures on groups of symplectomorphisms", Rend. Circ. Mat. Palermo (2) Suppl. No. 72 (2004), 43–78.
 - Mi84 John Milnor, "Remarks on infinite-dimensional Lie groups", *Relativity, groups and topology, II (Les Houches, 1983)*, 1007–1057; North-Holland Publishing Co., Amsterdam, 1984.

References

- O06 Kaoru Ono, "Floer-Novikov cohomology and the flux conjecture", Geom. Funct. Anal. 16 (2006), no. 5, 981–1020.
- Ś13 Jędrzej Śniatycki, Differential Geometry of Singular Spaces and Reduction of Symmetry In: New Math. Monogr., 23; Cambridge University Press, Cambridge, 2013.
- W12 Jordan Watts, Diffeologies, Differential Spaces, and Symplectic Geometry, Ph.D. Dissertation, University of Toronto, 2012.