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Motivation

Symplectic topologists are interested in
infinite-dimensional groups such as Diff(M), Symp(M,ω),
and Ham(M,ω), where M is a compact manifold, and
(M,ω) a compact symplectic manifold.

They often employ either methods from functional analysis,
as well as purely topological constructions, to study these
groups.
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Motivation

For instance, the Flux Conjecture (proved by Ono in [O06])
is that the flux group Γω in the following exact commutative
diagram [McD04] is discrete:

π1(Ham(M,ω)) //

��

π1(Symp0(M,ω))
Flux //

��

Γω

��
H̃am(M,ω) //

��

S̃ymp0(M,ω)
Flux //

��

H1(M,R)

��
Ham(M,ω) // Symp0(M,ω)

Flux // H1(M,R)/Γω

Here Flux(φt) :=

∫ 1

0
[ω (φ̇t, ·)] dt ∈ H1(M,R).
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Motivation

Question
What can theories generalising the differential
geometry/topology of smooth manifolds, such as diffeology or
Sikorski spaces, do for us?

Diffeology provides an “internal” perspective on a space,
whereas Sikorski structures provide an “external”
perspective. Considering both structures together yields a
lot of information about the space.
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Derivatives in Infinite-Dimensions

Definition ([Ha82,Mi84])
Let E and F be locally convex spaces, and let U ⊆ E be
open.
A function f : U → F is C1 if it is continuous, and for every
u ∈ U and h ∈ E, the limit

Df(u;h) := lim
t→0

f(u+ th)− f(u)

t

exists and is continuous as a map U × E → F .
Continuing recursively, one define Ck functions, and then
infinitely-differentiable functions as

⋂
k C

k(U,F ).
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Diffeology

Definition ([IZ13])
Let X be a set.
A parametrisation p : Up → X is a map from an open
subset Up of some Euclidean space.
A diffeology DX on X is a family of parametrisations
satisfying

1 all constant parametrisations are in DX ,
2 if p is a parametrisation and {Uα} an open cover of Up such

that for each α
p|Uα

∈ DX

then p ∈ DX ,
3 if p ∈ DX and f : V → Up is smooth with V an Euclidean

open subset then p ◦ f ∈ DX .
Call (X,DX) a diffeological space and each p ∈ DX a
plot.
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Diffeology

Definition
A map F : (X,DX) → (Y,DY ) is diffeologically smooth if
F ◦ p ∈ DY for every p ∈ DX .

We obtain a “complete, co-complete quasi-topos” [BH11],
denoted Diffeol. In particular, we obtain a category
admitting all subsets, quotients, products, coproducts, and
function spaces.
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Manifolds

Example
A (smooth) manifold comes with a standard diffeological
structure: all smooth parametrisations into it. In fact, the
category of smooth manifolds forms a full subcategory of
Diffeol.
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Irrational Tori

Definition
Let X be a diffeological space with an equivalence relation ∼
and quotient map π : X → X/∼. A parametrisation
p : Up → X/∼ is a plot in the quotient diffeology if for every
u ∈ Up there exists an open neighbourhood V of u and a plot
q : V → X such that p|V = π ◦ q.

Example

Fix an irrational number α. Consider the action of the group Z2

on R by
(m,n) · x = x+m+ αn.

The quotient group Tα := R/Z2 has trivial topology, but its
diffeology is rich. This space is an example of an irrational
torus.
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Diffeology for Locally Convex Spaces

Example
Let E be a locally convex space. The collection of all
infinitely-differentiable parametrisations of E forms a diffeology,
denoted DE .

Example ([L92])
Fréchet spaces form a full subcategory of Diffeol.
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D-Topology

Definition
Let (X,DX) be a diffeological space. The D-topology τDX

on
X is the strongest topology making all plots continuous.

Question
Given a locally convex space E with topology τE , when is
τE = τDE

?

It is always true that τE ⊆ τDE
.
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Sikorski Spaces

Definition ([Ś13])
Let X be a set. A Sikorski (differential) structure on X is a
family of real-valued functions F on X satisfying

1 if g ∈ C∞(Rn) and f1, . . . , fn ∈ F , then g(f1, . . . , fn) ∈ F ;
and

2 with respect to the initial topology τF on X generated by F ,
if f : X → R admits a function fx ∈ F for each x ∈ X
satisfying

f |Ux = fx|Ux

on an open neighbourhood Ux of x, then f ∈ F .
(X,F) is called a Sikorski (differential) space.

Definition
A map φ : (X,FX) → (Y,FY ) is Sikorski smooth if φ∗f ∈ FX

for every f ∈ FY .
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Sikorski Spaces

Sikorski spaces form a category Sik admitting subspaces,
products, coproducts, and quotients.

Function spaces are a little more difficult to deal with.
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Manifolds

Example
Manifolds come with a standard Sikorski structure: all smooth
real-valued functions. In fact, manifolds form a full subcategory
of Sik.
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Singular Varieties

Definition
Given a Sikorski space (X,FX) and a subset Y ⊆ X, the
subspace Sikorski structure FY on Y is given by all
real-valued functions f : Y → R such that for any y ∈ Y there is
an open neighbourhood U ⊆ X of y and a function f̃ ∈ FX

such that
f |U∩Y = f̃ |U∩Y .

Example
Any level set of a smooth function, such as a real
algebraic/analytic variety, comes equipped with a subspace
Sikorski structure.
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Locally Convex Space Sikorski Structure

Example
Let E be a locally convex space. The collection of all
infinitely-differentiable real-valued functions forms a Sikorski
structure, denoted FE .

Question
Given a locally convex space E with topology τE , when is
τE = τFE

, where τFE
is the initial topology generated by FE?

It is always true that τFE
⊆ τE .
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Reflexivity

Given a diffeological space (X,DX), the set of
diffeologically smooth real-valued functions, denoted ΦDX ,
is a Sikorski structure on the underlying set of X.

In fact, these spaces (X,ΦDX) form a subcategory of Sik
isomorphic to the category of Frölicher spaces.

In the other direction, given a Sikorski space (X,FX), the
set of all Sikorski smooth parametrisations into X, denoted
ΠFX , is a diffeology.

Again, the diffeological spaces (X,ΠFX) form a
subcategory of Diffeol isomorphic to the category of
Frölicher spaces.
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Reflexivity

Φ and Π in the previous slide are in fact functors that send
maps to themselves:

Diffeol
Φ ++

Sik
Π
mm

Definition ([BKW23])

If Π ◦ Φ(X,DX) = (X,DX), then DX is called reflexive.
If Φ ◦Π(X,FX) = (X,FX), then FX is called reflexive.
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Reflexivity
Examples

Manifolds have reflexive diffeological and Sikorski
structures.
Manifolds with corners have reflexive Sikorski structures.
They have reflexive diffeological structures if these are
locally induced by subset diffeologies on the orthants used
to make the charts.
Quotient spaces of proper Lie group actions (or proper Lie
groupoids) have reflexive Sikorski structures.
The union of the three axes of R3 has a reflexive Sikorski
structure, but the union of three distinct lines through the
origin in R2 does not.

Question
Given a locally convex space E, when is DE and/or FE

reflexive?
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Sequential Spaces

Definition
A topological space X is sequential if for every subset S ⊆ X,

S = {x ∈ X | ∃(xn) in S s.t. xn → x}.

Example
Any first-countable space is sequential.

Example
The D-topology of a diffeological space is sequential. (This
follows from the fact that diffeological spaces are colimits of
their plot domains.)
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τE vs τDE

Definition
Given a locally convex space E, a sequence (xn) in E
converges fast to x∞ if for every k ∈ N, the set

{nk(xn − x∞)}n∈N

is bounded.

Theorem
Given a sequential locally convex space E, if every convergent
sequence in E admits a fast-converging subsequence, then
τE = τDE

.

Corollary
If E is a metrisable locally convex space, then τE = τDE

.
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τE vs τFE

Definition
A locally convex space E is smoothly regular if for any x ∈ X
and open neighbourhood U ∋ x, there is a function f ∈ FE

such that f(x) = 1 and supp(f) ⊆ U .

Theorem
Given a locally convex space E, τE = τFE

if and only if τE is
smoothly regular.

Corollary
If τE is generated by semi-norms that are smooth on the
complements of their zero-sets, then τE is smoothly regular.
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Reflexivity

Given a locally convex space E, let E∗ denote the
continuous real linear functionals (which are
infinitely-differentiable).

Theorem
1 If E is a metrisable locally convex space, then FE = ΦDE .
2 If E is a sequentially complete locally convex space, then

DE = ΠE∗ (and hence DE = ΠFE).
3 If E is a Fréchet space, then both DE and FE are reflexive.

Theorem
Let M be a Fréchet manifold locally modelled on a smoothly
regular Fréchet space. The natural diffeology DM and Sikorski
structure FM on M are reflexive, and the topology on M is
unambiguous.
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Functional Diffeology

Definition
Given diffeological spaces X and Y , the set of diffeologically
smooth functions between them Diffeol(X,Y ) admits the
functional diffeology, in which a parametrisation p is a plot if

p♯ : Up ×X → Y : (u, x) 7→ p(u)(x)

is smooth.

The functional diffeology satisfies the Exponential Law:

Diffeol(X,Diffeol(Y,Z)) ∼= Diffeol(X × Y,Z).
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Reflexivity of Function Spaces

Question
Given diffeological spaces X and Y , under what conditions is
the functional diffeology on Diffeol(X,Y ) reflexive?

Theorem (Karshon-W.)
If X and Y are diffeological spaces with Y reflexive, then the
functional diffeology of Diffeol(X,Y ) is reflexive.
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Spaces of Maps

Proposition ([CSW14])
Let M be a compact manifold. The functional diffeology of
C∞(M,Rn) coincides with DC∞(M,Rn), where C∞(M,Rn) is
given the smoothly regular Fréchet space structure of the
C∞-topology.

Corollary
Let M and N be manifolds with M compact. The functional
diffeology of C∞(M,N) coincides with DC∞(M,N), where
C∞(M,N) is given the Fréchet manifold structure.

Corollary ([Hi94,CSW14])

Let M be a compact manifold. Then Diff(M) is an open subset
of C∞(M,M) with respect to the D-topology, and hence
inherits all of the nice properties of C∞(M,M).
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Symplectomorphisms

Proposition (Karshon-W.)

Given a compact symplectic manifold (M,ω), the group of
symplectomorphisms Symp(M,ω) is a closed subgroup of
Diff(M) in an unambiguous way. In particular, the smooth
identity component Symp0(M,ω) has an unambiguous
definition.

Corollary

Thus Symp0(M,ω) inherits a Fréchet manifold structure in an
unambiguous way.
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Hamiltonian Diffeomorphisms

Definition
Let (M,ω) be a compact symplectic manifold. Given a function
H : [0, 1]×M →M , a hamiltonian isotopy generated by H is
a smooth path Ψ: [0, 1] → Diff(M) : t 7→ Ψt such that

1 Ψ0 = idM and,
2 the time-dependent vector field ξt given by

ξt⌟ω = dH(t, ·) satisfies
d

dt
Ψt = ξt ◦Ψt.

The group of hamiltonian diffeomorphisms of (M,ω) is

Ham(M,ω) := {ψ | ∃ a hamiltonian isotopy Ψ s.t. ψ = Ψ1}.

We are still working on Ham(M,ω), but expect everything
to go through.
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Covering Spaces
Definition

Given a connected topological space X, denote by X̃τ the
space

X̃τ := C0([0, 1], X)
/
C0-homotopy.

In the case that X is connected, locally path-connected,
and semi-locally simply-connected, then X̃τ is a
topological universal cover of X.

Definition
Given a connected diffeological space X, denote by stPaths(X)
the smooth maps [0, 1] → X constant near 0 and 1, and by X̃D

the diffeological universal cover

X̃D := stPaths(X)
/

diffeologically smooth homotopy.
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Covering Spaces

Example

Let X be the graph of f(x) =

{
x sin(1/x) x > 0,

0 x = 0.
Then X is

simply-connected, but not even smoothly path-connected.

0 0.2 0.4

−0.2

0

0.2

0.4
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Covering Spaces

Example

If X is an irrational torus, then X̃D
∼= R but X̃τ

∼= X.

Question
Given a diffeological space X, when is the underlying
topological space of X̃D the same as X̃τ?

There is always a continuous map σ : X̃D → X̃τ .
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Covering Spaces

Theorem (Karshon-W.)
Let X be a smoothly regular Fréchet manifold. Then
σ : X̃D → X̃τ is a homeomorphism.
Using the fact that topological covering maps are local
homeomorphisms, there is a natural diffeology one can put
on X̃τ that turns σ into a diffeomorphism in the case that
X̃τ is a covering space.
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Groups of Diffeomorphisms

Examples

Given manifolds M and N with M compact, X = C∞(M,N)
satisfies X̃D

∼= X̃τ . If M is a compact manifold, then
X = Diff(M), then X̃D

∼= X̃τ . If (M,ω) is a compact symplectic
manifold, then for X = Symp(M,ω) or = Ham(M,ω), then
again X̃D

∼= X̃τ .
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Thank you!
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