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Baire’s Theorem
Michael Leiby

We begin our exploration of Baire’s Theorem with the following definitions:

Definition: If a set A ⊆ R can be written as the countable (finite or countably
infinite) union of closed sets, then we say A is an Fσ set. If a set B ⊆ R can
be written as the countable intersection of open sets, then we say that B is a
Gδ set.

From even a cursory glance at these definitions, a natural question which arises
is if there are any relationships between Fσ and Gδ sets. As we will see in the
following proof, such a relationship does exist, and should be familiar to read-
ers who are aware of the differences between open and closed sets.

Statement: A set A is a Gδ set if and only if its complement is an Fσ set.

PROOF: (⇒) Assume that A is a Gδ set. Thus, A =
⋂

n∈N Sn, where every
Sn is an open set. By definition, AC = R − A = R −

⋂
n∈N Sn. Further, De

Morgan’s Laws tell us that A − (B ∩ C) = (A − B) ∪ (A − C), so applying
this to the countable union here implies that AC =

⋃
n∈N(R − Sn). It follows

that (R− Sn) = SC
n , and since each Sn is an open set, each SC

n is a closed set.
Hence, AC can be written as the countable union of closed sets, so by definition
AC is an Fσ set.

(⇐) Assume that AC is an Fσ set. Thus, AC =
⋃

n∈N Sn, where every Sn is
a closed set. Further, A = R − AC = R −

⋃
n∈N Sn. Once again by De Mor-

gan’s Laws, we have that A =
⋂

n∈N(R − Sn). Since each Sn is a closed set,
(R − Sn) = SC

n is an open set. Hence, A can be written as the countable
intersection of open sets, so A is a Gδ set. ■

A similar argument can be produced to prove that a set A is an Fσ set if and
only if AC is a Gδ set.

Next, we transition to an exploration of a less-general form of Baire’s Theorem,
keeping in mind that a set G ⊆ R is dense in R if, given any two real numbers
a < b, it is possible to find a point x ∈ G with a < x < b.

Theorem: If {G1, G2, G3, ...} is a countable collection of dense, open sets,
then the intersection

⋂∞
n=1Gn is not empty.
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PROOF: First, we pick a g1 ∈ G1, and we can note that since G1 is open, we
have that ∃ ϵ1 > 0 such that Vϵ1(g1) ⊆ G1.

g1 − ϵ1 g1 g1 + ϵ1

Further, by density, we have that ∃ g2 ∈ G2 such that g1 < g2 < g1 + ϵ1. Also,
we add in a closed interval [a1, b1] which is a subset of (g1− ϵ1, g1+ ϵ1) and still
contains both g1 and g2.

a1 b1g1 − ϵ1 g1 g1 + ϵ1g2

Again, by openness, we have that ∃ ϵ2 > 0 such that Vϵ2(g2) ⊆ G2. We require
that ϵ2 < (b1 − g2)/2. Again, we will build a closed interval inside of this new
ϵ− interval.

a1 b1g1 − ϵ1 g1 g1 + ϵ1g2

g2 + ϵ2

b2

g2 − ϵ2
a2

Note that everything inside of this new closed interval [a2, b2] is an element
of G2 and is also an element of G1. Further, [a2, b2] is contained in [a1, b1].
In general, we could keep constructing these intervals and we would see that
each of these subsets is a subset of each of the previous subsets. Further, since
each of these closed intervals are nested, nonempty, compact sets, the Nested
Interval Property tells us that that intersection

⋂∞
n=1[an, bn] ̸= Ø. Thus, there

is at least one element which is in all of these Gn sets, so we can conclude that⋂∞
n=1Gn ̸= Ø. ■

Next, we will turn our attention to the topic of nowhere-dense sets, which we
define as follows:

Definition: A set E is nowhere-dense if E contains no nonempty open inter-
vals. Additionally, we will use the definition that a set E is nowhere-dense in
R if and only if the complement of E is dense in R.
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One common example of a nowhere-dense set in R is Z. Since Z has no limit
points, Z = Z, and clearly Z contains no nonempty open intervals (due to the
inherent gaps between elements). Another familiar set which is nowhere-dense
in R is A = {1/n : n ∈ N}. A = A ∪ {0}, and again, this set contains no
nonempty open intervals. This example shows that a nowhere-dense set is not
necessarily a closed set.

Finally, with these definitions, we are able to state Baire’s Theorem as follows:

Baire’s Theorem: The set of real numbers R cannot be written as the count-
able union of nowhere-dense sets.

PROOF: We prove by contradiction. Assume that R =
⋃

n∈N En, where

each En is a nowhere-dense set in R. Further, since En = En ∪ E
′
n, and

∀ x ∈ E
′
n, x ∈ R, we can write that R =

⋃
n∈NEn. Thus, Rc = R−

⋃
n∈N En =⋂

n∈N(R− En) =
⋂

n∈N En
c
. By previous definition, we have that En

c
is dense,

and further it follows that En
c
is open. Thus, we can write this intersection as⋂

n∈N Gn, where Gn is a dense, open set. Note that Rc = Ø, so Ø =
⋂

n∈NGn.
However, we have by our previous theorem that

⋂
n∈N Gn ̸= Ø(⇒⇐). Thus, we

can conclude that our assumption was false, and R ̸=
⋃

n∈N En, where En is a
nowhere-dense set. ■

Thus, Baire’s Theorem offers us another way to look at R, this time in terms
of nowhere-dense sets. Nowhere-dense sets are considered to be “thin” sets due
to the inherent gaps between the elements, and so any set which is a countable
union of nowhere-dense sets is called a “meager” set or a set of “first category.”
In contrast to these sets are sets of the “second category,” which can not be
written as the countable union of these “thin” sets. Therefore, as Baire’s The-
orem shows, R is of second category.

Definitions and theorems were taken from Understanding Analysis, Second Edi-
tion, by Stephen Abbott. Proofs were supplied by the author of this paper.
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