HOLONOMY

JORDAN ALAN WATTS

1. INTRODUCTION

This paper is comprised of notes for a talk I gave for the Calabi Conjecture Reading Group. The purpose
of this seminar series was to familiarise ourselves with Calabi-Yau manifolds and the Calabi Conjecture. The
notion of holonomy was one of many steps to this end. In particular, we wished to understand the following
definition of a Calabi-Yau manifold.

Definition 1.1. A smooth manifold M of dimension 2m is Calabi- Yau if it admits a K&hler metric with
holonomy group contained in SU(m).
2. SOME RIEMANNIAN GEOMETRY

The main reference for this section is Lee’s book on riemannian geometry, [2], and Besse’s book on Einstein
manifolds, [I].
Fix a smooth manifold M.

Definition 2.1. A (linear) connection on a vector bundle 7 : E — M is a linear map V : I'(F) —
O (M) @ T(E) satisfying Leibnitz’ rule

V(fo)=df ® o + fVo

for any f € C>*(U), 0 € I'(E|y) and U C M open. Note that V(o) acts on a vector field X on M to give a
section of E. Denote this section Vxo. Thus we have a linear map Vx : I'(E) — I'(E) that obeys Leibnitz’
rule.

Now fix a riemannian metric g on M.

Definition 2.2. The Levi-Civita connection on (M, g) is a connection V such that
(1) V is g-compatible; that is for any vector fields X,Y on M,

d(g(X,Y)) = g(VX,Y) +g(X,VY),
(2) V is torsion-free; that is for any vector fields X,Y on M,
VxY -VyX —[X,Y]=0.
Let I be an interval in R; that is, a path-connected subset of R. We do not require I to be open or closed.

Definition 2.3. Let v : I — M be a piecewise smooth curve. A wector field X along - is a smooth map
X:I—M:tw X|; €Ty4M. In other words, it is a smooth section of v*T'M.

A linear connection V on M determines a unique connection D; = v*V on v*T'M such that D; X = Vﬁ(t)X
if an extension X € Vect(M) of v*X exists.

Fix a linear connection V on M and a piecewise smooth curve v on M. Let D; be the induced connection
on YT M.

Definition 2.4. A vector field X along + is parallel along v if D;X = 0.

Theorem 2.5. Let to € I and v € T, ;)M . Then there exists a unique parallel vector field X along v such
that X|7(t0) =.
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Sketch of proof. If v(I) lives in a chart, then using coordinates, solving for X reduces to a linear system of
ODE’s. The ODE theorem provides us with the existence and uniqueness of X. If v(I) needs more than one
chart to cover it, then let 8 be the supremum of all b > ¢y such that there exists a unique parallel transport
of v on [tg,b]. Then, there exists a unique parallel transport of v on [tg, 3). If 5 ¢ I, then we are done. But
if 8 € I, then apply the above argument in a small chart centred at v(3), and uniqueness implies that § was
in fact not a supremum, giving us a contradiction. Thus, such a § ¢ T. O

Fix a connected riemannian manifold (M, g) equipped with its Levi-Civita connection V. Fix € M, and
let v : [0,1] — M be a piecewise smooth path starting at « and ending at y = v(1). Then, parallel transport
along 7 induces a linear map P, : T, M — T, M defined by extending v € T, M to the (unique) vector field
X along 7 such that X|,() = v, and setting P, (v) := X|,. Note that if v is a loop (i.e. x = y), then P, is
a linear endomorphism of T, M.

Remark 2.6. Fix a piecewise smooth loop « : [0,1] — M starting and ending at x. Let X and Y be the
unique vector fields along 7 induced by v and w in T, M, respectively. Then,

d(g(X,Y)) =g(D:X,Y) = g(X, DY) =04+0=0
= 9(Py(v), Py(w)) = g(v, w)
= P, € O(n)
where n = dim M. Also, it is not hard to show that

e P,ov = P! where v~ (t) == y(1 - t)

o P, .y, =P, oP,, for any two loops 71 and ~».
Definition 2.7. The subgroup of O(n) of all linear maps P, defined over all piecewise smooth loops 7 based
at x is called the holonomy group, denoted Hol(x). If we restrict to loops homotopic to a point, we obtain
the local holonomy group, denoted Hol’ (z:).

Choose y # ¢ € M, and let p: [0,1] — M be a path from z to y (recalling that M is connected). Parallel
transport along p induces a group homomorphism Hol(x) — Hol(y) sending P, to P,,..,-1. This map turns
out to be an isomorphism of groups. Thus, up to isomorphism, the holonomy group is independent of the
point z chosen, depending only on g. The same result occurs for Hol" as well. Thus, we shall henceforth
denote these groups Hol(g) and Hol"(g).

Example 2.8. Consider S” = SO(n + 1)/SO(n). Let v be a loop starting and ending at « € S”, and let
v € T,S"™. Viewing S™ as an orbit of the action SO(n + 1) on R"*1, ~ corresponds to a path in SO(n + 1)
from the identity e back to itself. P,(v) corresponds to the linear action of Stab(z) = SO(n) on T, M.
Since one can find a loop 7 that corresponds to any element of SO(n) in this fashion, the result is that
Hol(S"™, gsiq) = SO(n).

Definition 2.9. Let o € /\k T M, and let p be a piecewise smooth curve starting at  and ending at y. We
can parallel transport « along p in the following way:

P:O[(Ul, "-7uk) = O‘(Pfjl(ul)v ,,,,P;l(uk))

for all uy,...,ur € Ty M.

With a little thought, we now know how to parallel transport any tensor (at a point) along a piecewise
smooth curve.

Definition 2.10. Now, let A be a tensor field on M. We say that A is parallel if for every x,y € M and
every path p starting at « and ending at vy,

1y p(A|x) =Ay.
Theorem 2.11 (Fundamental Principle of Holonomy). Let (M, g) be a connected riemannian manifold.

Then the following are equivalent.

(1) There exists a tensor field A of type (r,s) which is parallel.
(2) There exists on (M, g) a tensor field A of type (r,s) such that VA = 0.
(3) There ezists x € M and a tensor a at x such that Hol(z) fizes o under the action of parallel transport.
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Sketch of proof. (1) = (3): This is easy; just use the definition of parallel.

(3) = (1): Define the tensor field A by A|, = P,(«a) for some path p from x to y. This is well-defined due
to the invariance of a under Hol(x).

(1) & (2): This is a calculation, and will be omitted. O

Remark 2.12. The above principle has a local version.

3. EXAMPLES

Example 3.1. Let (M,g) be a connected riemannian manifold of dimension n. Fix z € M and let a €
N" (T M) be nonzero. Extend « via parallel transport to an n-form A € Q™(M). This is well-defined if and
only if « is invariant under the holonomy action, by the fundamental principle. But any such linear action
must be based on a subgroup of SO(n) (since we must have det B = 1 for any element B of this subgroup).
Thus, (M, g) is orientable if and only if Hol(g) < SO(n).

Example 3.2. Let (M, g) be a connected riemannian manifold of dimension 2m. Let € M and let J, be
a complex structure on T, M such that g(J,v, J,w) = g(v,w) for all v,w € T, M. To extend J, to all of M
as a parallel complex structure J, we require Hol(g) C GL(m,C)NO(2m) = U(m). This is equivalent to the
Hermitian manifold (M, g, J) admitting a (compatible) Kahler structure. Briefly, the torsion-free property
of V can be used to show that w(-,-) := g(J-,-) is closed and V.J = 0 if and only if N; = 0, where N is the
Nijenhuis tensor. See [3]. Thus, (M, g, J) admits a Kahler structure if and only if Hol(g) < U(m).

Example 3.3. Let (M, g, J,w) be a connected Kéhler manifold of dimension 2m. Let o € /\gI T(t”n,,O),acM

be a nonzero holomorphic m-covector at some x € M. «a extends to a parallel A € QMO (M) (i.e. a
nonvanishing section of the canonical line bundle) if and only if for every P, € Hol(g), we have P, € U(m)
such that det P, = 1. Otherwise, P, may change the type of A along paths: dz; A... Ad%p, on C™ is invariant
under B € U(m) if and only if det B = 1. Thus, (M, g, J,w) is Calabi-Yau if and only if Hol(g) C SU(m).

Intuitively, a Calabi-Yau manifold is an “orientable” manifold in the Kéhler category.
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