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1. Introduction

This paper is comprised of notes for a talk I gave for the Calabi Conjecture Reading Group. The purpose
of this seminar series was to familiarise ourselves with Calabi-Yau manifolds and the Calabi Conjecture. The
notion of holonomy was one of many steps to this end. In particular, we wished to understand the following
definition of a Calabi-Yau manifold.

Definition 1.1. A smooth manifold M of dimension 2m is Calabi-Yau if it admits a Kähler metric with
holonomy group contained in SU(m).

2. Some Riemannian Geometry

The main reference for this section is Lee’s book on riemannian geometry, [2], and Besse’s book on Einstein
manifolds, [1].

Fix a smooth manifold M .

Definition 2.1. A (linear) connection on a vector bundle π : E → M is a linear map ∇ : Γ(E) →
Ω1(M)⊗ Γ(E) satisfying Leibnitz’ rule

∇(fσ) = df ⊗ σ + f∇σ

for any f ∈ C∞(U), σ ∈ Γ(E|U ) and U ⊆M open. Note that ∇(σ) acts on a vector field X on M to give a
section of E. Denote this section ∇Xσ. Thus we have a linear map ∇X : Γ(E)→ Γ(E) that obeys Leibnitz’
rule.

Now fix a riemannian metric g on M .

Definition 2.2. The Levi-Civita connection on (M, g) is a connection ∇ such that
(1) ∇ is g-compatible; that is for any vector fields X,Y on M ,

d(g(X,Y )) = g(∇X,Y ) + g(X,∇Y ),

(2) ∇ is torsion-free; that is for any vector fields X,Y on M ,

∇XY −∇YX − [X,Y ] = 0.

Let I be an interval in R; that is, a path-connected subset of R. We do not require I to be open or closed.

Definition 2.3. Let γ : I → M be a piecewise smooth curve. A vector field X along γ is a smooth map
X : I →M : t 7→ X|t ∈ Tγ(t)M . In other words, it is a smooth section of γ∗TM .

A linear connection∇ on M determines a unique connection Dt = γ∗∇ on γ∗TM such that DtX = ∇γ̇(t)X̃
if an extension X̃ ∈ Vect(M) of γ∗X exists.

Fix a linear connection ∇ on M and a piecewise smooth curve γ on M . Let Dt be the induced connection
on γ∗TM .

Definition 2.4. A vector field X along γ is parallel along γ if DtX = 0.

Theorem 2.5. Let t0 ∈ I and v ∈ Tγ(t0)M . Then there exists a unique parallel vector field X along γ such
that X|γ(t0) = v.
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Sketch of proof. If γ(I) lives in a chart, then using coordinates, solving for X reduces to a linear system of
ODE’s. The ODE theorem provides us with the existence and uniqueness of X. If γ(I) needs more than one
chart to cover it, then let β be the supremum of all b > t0 such that there exists a unique parallel transport
of v on [t0, b]. Then, there exists a unique parallel transport of v on [t0, β). If β /∈ I, then we are done. But
if β ∈ I, then apply the above argument in a small chart centred at γ(β), and uniqueness implies that β was
in fact not a supremum, giving us a contradiction. Thus, such a β /∈ I. �

Fix a connected riemannian manifold (M, g) equipped with its Levi-Civita connection ∇. Fix x ∈M , and
let γ : [0, 1]→M be a piecewise smooth path starting at x and ending at y = γ(1). Then, parallel transport
along γ induces a linear map Pγ : TxM → TyM defined by extending v ∈ TxM to the (unique) vector field
X along γ such that X|γ(0) = v, and setting Pγ(v) := X|y. Note that if γ is a loop (i.e. x = y), then Pγ is
a linear endomorphism of TxM .

Remark 2.6. Fix a piecewise smooth loop γ : [0, 1] → M starting and ending at x. Let X and Y be the
unique vector fields along γ induced by v and w in TxM , respectively. Then,

d(g(X,Y )) = g(DtX,Y ) = g(X,DtY ) = 0 + 0 = 0

⇒ g(Pγ(v), Pγ(w)) = g(v, w)

⇒ Pγ ∈ O(n)

where n = dimM . Also, it is not hard to show that
• Pγ−1 = P−1

γ where γ−1(t) := γ(1− t)
• Pγ1∗γ2 = Pγ1 ◦ Pγ2 for any two loops γ1 and γ2.

Definition 2.7. The subgroup of O(n) of all linear maps Pγ defined over all piecewise smooth loops γ based
at x is called the holonomy group, denoted Hol(x). If we restrict to loops homotopic to a point, we obtain
the local holonomy group, denoted Hol0(x).

Choose y 6= x ∈M , and let ρ : [0, 1]→M be a path from x to y (recalling that M is connected). Parallel
transport along ρ induces a group homomorphism Hol(x)→ Hol(y) sending Pγ to Pρ∗γ∗ρ−1 . This map turns
out to be an isomorphism of groups. Thus, up to isomorphism, the holonomy group is independent of the
point x chosen, depending only on g. The same result occurs for Hol0 as well. Thus, we shall henceforth
denote these groups Hol(g) and Hol0(g).

Example 2.8. Consider Sn ∼= SO(n + 1)/SO(n). Let γ be a loop starting and ending at x ∈ Sn, and let
v ∈ TxSn. Viewing Sn as an orbit of the action SO(n + 1) on Rn+1, γ corresponds to a path in SO(n + 1)
from the identity e back to itself. Pγ(v) corresponds to the linear action of Stab(x) ∼= SO(n) on TxM .
Since one can find a loop γ that corresponds to any element of SO(n) in this fashion, the result is that
Hol(Sn, gstd) ∼= SO(n).

Definition 2.9. Let α ∈
∧k

T ∗xM , and let ρ be a piecewise smooth curve starting at x and ending at y. We
can parallel transport α along ρ in the following way:

P ∗ρα(u1, ..., uk) = α(P−1
ρ (u1), ..., P−1

ρ (uk))

for all u1, ..., uk ∈ TyM .

With a little thought, we now know how to parallel transport any tensor (at a point) along a piecewise
smooth curve.

Definition 2.10. Now, let A be a tensor field on M . We say that A is parallel if for every x, y ∈ M and
every path ρ starting at x and ending at y,

Pρ(A|x) = Ay.

Theorem 2.11 (Fundamental Principle of Holonomy). Let (M, g) be a connected riemannian manifold.
Then the following are equivalent.

(1) There exists a tensor field A of type (r, s) which is parallel.
(2) There exists on (M, g) a tensor field A of type (r, s) such that ∇A = 0.
(3) There exists x ∈M and a tensor α at x such that Hol(x) fixes α under the action of parallel transport.
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Sketch of proof. (1)⇒ (3): This is easy; just use the definition of parallel.
(3) ⇒ (1): Define the tensor field A by A|y = Pρ(α) for some path ρ from x to y. This is well-defined due
to the invariance of α under Hol(x).
(1)⇔ (2): This is a calculation, and will be omitted. �

Remark 2.12. The above principle has a local version.

3. Examples

Example 3.1. Let (M, g) be a connected riemannian manifold of dimension n. Fix x ∈ M and let α ∈∧n(T ∗xM) be nonzero. Extend α via parallel transport to an n-form A ∈ Ωn(M). This is well-defined if and
only if α is invariant under the holonomy action, by the fundamental principle. But any such linear action
must be based on a subgroup of SO(n) (since we must have detB = 1 for any element B of this subgroup).
Thus, (M, g) is orientable if and only if Hol(g) ≤ SO(n).

Example 3.2. Let (M, g) be a connected riemannian manifold of dimension 2m. Let x ∈M and let Jx be
a complex structure on TxM such that g(Jxv, Jxw) = g(v, w) for all v, w ∈ TxM . To extend Jx to all of M
as a parallel complex structure J , we require Hol(g) ⊆ GL(m,C)∩O(2m) = U(m). This is equivalent to the
Hermitian manifold (M, g, J) admitting a (compatible) Kähler structure. Briefly, the torsion-free property
of ∇ can be used to show that ω(·, ·) := g(J ·, ·) is closed and ∇J = 0 if and only if NJ = 0, where NJ is the
Nijenhuis tensor. See [3]. Thus, (M, g, J) admits a Kähler structure if and only if Hol(g) ≤ U(m).

Example 3.3. Let (M, g, J, ω) be a connected Kähler manifold of dimension 2m. Let α ∈
∧m

C T ∗(m,0),xM

be a nonzero holomorphic m-covector at some x ∈ M . α extends to a parallel A ∈ Ω(n,0)(M) (i.e. a
nonvanishing section of the canonical line bundle) if and only if for every Pγ ∈ Hol(g), we have Pγ ∈ U(m)
such that detPγ = 1. Otherwise, Pγ may change the type of A along paths: dz̄1∧ ...∧dz̄m on Cm is invariant
under B ∈ U(m) if and only if detB = 1. Thus, (M, g, J, ω) is Calabi-Yau if and only if Hol(g) ⊆ SU(m).

Intuitively, a Calabi-Yau manifold is an “orientable” manifold in the Kähler category.
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