HOLONOMY

JORDAN ALAN WATTS

1. INTRODUCTION

This paper is comprised of notes for a talk I gave for the Calabi Conjecture Reading Group. The purpose of this seminar series was to familiarise ourselves with Calabi-Yau manifolds and the Calabi Conjecture. The notion of holonomy was one of many steps to this end. In particular, we wished to understand the following definition of a Calabi-Yau manifold.

Definition 1.1. A smooth manifold M of dimension 2m is *Calabi-Yau* if it admits a Kähler metric with holonomy group contained in SU(m).

2. Some Riemannian Geometry

The main reference for this section is Lee's book on riemannian geometry, [2], and Besse's book on Einstein manifolds, [1].

Fix a smooth manifold M.

Definition 2.1. A *(linear) connection* on a vector bundle $\pi : E \to M$ is a linear map $\nabla : \Gamma(E) \to \Omega^1(M) \otimes \Gamma(E)$ satisfying Leibnitz' rule

$$abla(f\sigma) = df \otimes \sigma + f
abla \sigma$$

for any $f \in C^{\infty}(U)$, $\sigma \in \Gamma(E|_U)$ and $U \subseteq M$ open. Note that $\nabla(\sigma)$ acts on a vector field X on M to give a section of E. Denote this section $\nabla_X \sigma$. Thus we have a linear map $\nabla_X : \Gamma(E) \to \Gamma(E)$ that obeys Leibnitz' rule.

Now fix a riemannian metric g on M.

Definition 2.2. The Levi-Civita connection on (M, g) is a connection ∇ such that

(1) ∇ is *g*-compatible; that is for any vector fields X, Y on M,

 $d(g(X,Y)) = g(\nabla X,Y) + g(X,\nabla Y),$

(2) ∇ is torsion-free; that is for any vector fields X, Y on M,

$$\nabla_X Y - \nabla_Y X - [X, Y] = 0.$$

Let I be an interval in \mathbb{R} ; that is, a path-connected subset of \mathbb{R} . We do not require I to be open or closed.

Definition 2.3. Let $\gamma : I \to M$ be a piecewise smooth curve. A vector field X along γ is a smooth map $X : I \to M : t \mapsto X|_t \in T_{\gamma(t)}M$. In other words, it is a smooth section of γ^*TM .

A linear connection ∇ on M determines a unique connection $D_t = \gamma^* \nabla$ on $\gamma^* TM$ such that $D_t X = \nabla_{\dot{\gamma}(t)} \tilde{X}$ if an extension $\tilde{X} \in \operatorname{Vect}(M)$ of $\gamma^* X$ exists.

Fix a linear connection ∇ on M and a piecewise smooth curve γ on M. Let D_t be the induced connection on γ^*TM .

Definition 2.4. A vector field X along γ is parallel along γ if $D_t X = 0$.

Theorem 2.5. Let $t_0 \in I$ and $v \in T_{\gamma(t_0)}M$. Then there exists a unique parallel vector field X along γ such that $X|_{\gamma(t_0)} = v$.

Date: June 1, 2010.

Sketch of proof. If $\gamma(I)$ lives in a chart, then using coordinates, solving for X reduces to a linear system of ODE's. The ODE theorem provides us with the existence and uniqueness of X. If $\gamma(I)$ needs more than one chart to cover it, then let β be the supremum of all $b > t_0$ such that there exists a unique parallel transport of v on $[t_0, b]$. Then, there exists a unique parallel transport of v on $[t_0, \beta)$. If $\beta \notin I$, then we are done. But if $\beta \in I$, then apply the above argument in a small chart centred at $\gamma(\beta)$, and uniqueness implies that β was in fact not a supremum, giving us a contradiction. Thus, such a $\beta \notin I$. \square

Fix a connected riemannian manifold (M, q) equipped with its Levi-Civita connection ∇ . Fix $x \in M$, and let $\gamma: [0,1] \to M$ be a piecewise smooth path starting at x and ending at $y = \gamma(1)$. Then, parallel transport along γ induces a linear map $P_{\gamma}: T_x M \to T_y M$ defined by extending $v \in T_x M$ to the (unique) vector field X along γ such that $X|_{\gamma(0)} = v$, and setting $P_{\gamma}(v) := X|_{y}$. Note that if γ is a loop (*i.e.* x = y), then P_{γ} is a linear endomorphism of $T_x M$.

Remark 2.6. Fix a piecewise smooth loop $\gamma: [0,1] \to M$ starting and ending at x. Let X and Y be the unique vector fields along γ induced by v and w in $T_x M$, respectively. Then,

$$d(g(X,Y)) = g(D_tX,Y) = g(X,D_tY) = 0 + 0 = 0$$

$$\Rightarrow g(P_{\gamma}(v),P_{\gamma}(w)) = g(v,w)$$

$$\Rightarrow P_{\gamma} \in O(n)$$

where $n = \dim M$. Also, it is not hard to show that

- P_{γ⁻¹} = P_γ⁻¹ where γ⁻¹(t) := γ(1 − t)
 P_{γ1*γ2} = P_{γ1} ∘ P_{γ2} for any two loops γ₁ and γ₂.

Definition 2.7. The subgroup of O(n) of all linear maps P_{γ} defined over all piecewise smooth loops γ based at x is called the holonomy group, denoted Hol(x). If we restrict to loops homotopic to a point, we obtain the local holonomy group, denoted $\operatorname{Hol}^{0}(x)$.

Choose $y \neq x \in M$, and let $\rho: [0,1] \to M$ be a path from x to y (recalling that M is connected). Parallel transport along ρ induces a group homomorphism $\operatorname{Hol}(x) \to \operatorname{Hol}(y)$ sending P_{γ} to $P_{\rho*\gamma*\rho^{-1}}$. This map turns out to be an isomorphism of groups. Thus, up to isomorphism, the holonomy group is independent of the point x chosen, depending only on g. The same result occurs for Hol^0 as well. Thus, we shall henceforth denote these groups $\operatorname{Hol}(q)$ and $\operatorname{Hol}^{0}(q)$.

Example 2.8. Consider $\mathbb{S}^n \cong \mathrm{SO}(n+1)/\mathrm{SO}(n)$. Let γ be a loop starting and ending at $x \in \mathbb{S}^n$, and let $v \in T_x \mathbb{S}^n$. Viewing \mathbb{S}^n as an orbit of the action SO(n+1) on \mathbb{R}^{n+1} , γ corresponds to a path in SO(n+1)from the identity e back to itself. $P_{\gamma}(v)$ corresponds to the linear action of $\operatorname{Stab}(x) \cong \operatorname{SO}(n)$ on $T_r M$. Since one can find a loop γ that corresponds to any element of SO(n) in this fashion, the result is that $\operatorname{Hol}(\mathbb{S}^n, g_{std}) \cong \operatorname{SO}(n).$

Definition 2.9. Let $\alpha \in \bigwedge^k T_x^* M$, and let ρ be a piecewise smooth curve starting at x and ending at y. We can parallel transport α along ρ in the following way:

$$P_{\rho}^{*}\alpha(u_{1},...,u_{k}) = \alpha(P_{\rho}^{-1}(u_{1}),...,P_{\rho}^{-1}(u_{k}))$$

for all $u_1, ..., u_k \in T_y M$.

With a little thought, we now know how to parallel transport any tensor (at a point) along a piecewise smooth curve.

Definition 2.10. Now, let A be a tensor field on M. We say that A is *parallel* if for every $x, y \in M$ and every path ρ starting at x and ending at y,

$$P_{\rho}(A|_x) = A_y.$$

Theorem 2.11 (Fundamental Principle of Holonomy). Let (M, q) be a connected riemannian manifold. Then the following are equivalent.

- (1) There exists a tensor field A of type (r, s) which is parallel.
- (2) There exists on (M, g) a tensor field A of type (r, s) such that $\nabla A = 0$.
- (3) There exists $x \in M$ and a tensor α at x such that $\operatorname{Hol}(x)$ fixes α under the action of parallel transport.

Sketch of proof. (1) \Rightarrow (3): This is easy; just use the definition of parallel. (3) \Rightarrow (1): Define the tensor field A by $A|_y = P_\rho(\alpha)$ for some path ρ from x to y. This is well-defined due to the invariance of α under Hol(x).

(1) \Leftrightarrow (2): This is a calculation, and will be omitted.

Remark 2.12. The above principle has a local version.

3. Examples

Example 3.1. Let (M,g) be a connected riemannian manifold of dimension n. Fix $x \in M$ and let $\alpha \in \bigwedge^n(T_x^*M)$ be nonzero. Extend α via parallel transport to an *n*-form $A \in \Omega^n(M)$. This is well-defined if and only if α is invariant under the holonomy action, by the fundamental principle. But any such linear action must be based on a subgroup of SO(n) (since we must have det B = 1 for any element B of this subgroup). Thus, (M,g) is **orientable** if and only if Hol $(g) \leq SO(n)$.

Example 3.2. Let (M,g) be a connected riemannian manifold of dimension 2m. Let $x \in M$ and let J_x be a complex structure on T_xM such that $g(J_xv, J_xw) = g(v, w)$ for all $v, w \in T_xM$. To extend J_x to all of Mas a parallel complex structure J, we require $\operatorname{Hol}(g) \subseteq \operatorname{GL}(m, \mathbb{C}) \cap \operatorname{O}(2m) = U(m)$. This is equivalent to the Hermitian manifold (M, g, J) admitting a (compatible) Kähler structure. Briefly, the torsion-free property of ∇ can be used to show that $\omega(\cdot, \cdot) := g(J \cdot, \cdot)$ is closed and $\nabla J = 0$ if and only if $N_J = 0$, where N_J is the Nijenhuis tensor. See [3]. Thus, (M, g, J) admits a **Kähler** structure if and only if $\operatorname{Hol}(g) \leq U(m)$.

Example 3.3. Let (M, g, J, ω) be a connected Kähler manifold of dimension 2m. Let $\alpha \in \bigwedge_{\mathbb{C}}^{m} T^*_{(m,0),x}M$ be a nonzero holomorphic *m*-covector at some $x \in M$. α extends to a parallel $A \in \Omega^{(n,0)}(M)$ (*i.e.* a nonvanishing section of the canonical line bundle) if and only if for every $P_{\gamma} \in \text{Hol}(g)$, we have $P_{\gamma} \in U(m)$ such that det $P_{\gamma} = 1$. Otherwise, P_{γ} may change the type of A along paths: $d\bar{z}_1 \wedge ... \wedge d\bar{z}_m$ on \mathbb{C}^m is invariant under $B \in U(m)$ if and only if det B = 1. Thus, (M, g, J, ω) is **Calabi-Yau** if and only if $\text{Hol}(g) \subseteq SU(m)$.

Intuitively, a Calabi-Yau manifold is an "orientable" manifold in the Kähler category.

References

- 1. A. Besse, Eistein Manifolds, Springer-Verlag, Berlin, 1987.
- 2. J. M. Lee, Riemannian Manifolds: an Introduction to Curvature, Springer-Verlag, New York, 1997.
- 3. D. McDuff and D. Salamon, Introduction to Symplectic Topology, 2 ed., Oxford Science Publications, 2005.