
INTRODUCTION TO LIE GROUPOIDS

JORDAN WATTS

Lie group actions are examples of a much more general structure known as a Lie groupoid.
These form a category that include the category of smooth manifolds as a full subcategory
(i.e. the inclusion functor forms a bijection on arrows), as well as the category of Lie groups
(whose intersection with the subcategory of smooth manifolds has only one object: the single
point / the trivial group). For an excellent introduction to Lie groupoids, see [M].

1. Fibred Products

To begin, we need a preliminary definition: the fibred product of sets.

Definition 1.1 (Fibred Product of Sets). Let S, T, U be sets, and let f : S → U and
g : T → U be functions. Define the fibred product of S and T with respect to f and g to
be

Sf×gT := {(s, t) ∈ S × T | f(s) = g(t)}.

As a commutative diagram where pr1 and pr2 are the projection maps restricted from S×T ,
we have

Sf×gT
pr1
��

pr2 // T

g

��
S

f
// U

Example 1.2 (Cartesian Product). Let S and T be sets, and consider the constant maps
f : S → {∗} and g : T → {∗}, where {∗} is a singleton set. Then,

Sf×gT = S × T.

Example 1.3 (Graph). Let S and T be sets, and let f : S → T be a function. Then
Sf×idT

T is the graph of f sitting in S × T .

Example 1.4 (Pre-Image). Let S and T be sets, let f : S → T be a function, and fix
t0 ∈ T with inclusion i : {t0} → T . Then pr1 is a bijection from Sf×i{t0} onto f−1(t0).

Example 1.5 (Intersections). Let S and T be subsets of a set U , and let i : S → U and
j : T → U be the inclusions. Then both pr1 and pr2 are bijections from Si×jT onto S ∩ T .

Date: March 7, 2017.
1



2. Lie Groupoids

Definition 2.1 (Groupoid). A groupoid is a small category G in which every arrow is
invertible. Denote by G0 the set of objects of G, and by G1 the set of arrows of G. We have
the following structure maps:

• two maps s : G1 → G0 and t : G1 → G0, called the source map and the target map
respectively, defined as:

s(g : c1 → c2) = c1,

t(g : c1 → c2) = c2;

• the unit map u : G0 → G1 sending each x ∈ G0 to the identity map idx;
• themultiplication mapm : G1s×tG1 → G1, sending pairs (h, g) such that t(g) = s(h)
to the composition h ◦ g (often, we drop the symbol ◦);
• the inversion map inv : G1 → G1 sending g to g−1.

Notation 2.2. Sometimes we will denote a groupoid G by G1 ⇒ G0 for convenience.

Example 2.3 (Group). Let G be a group. Then we can construct a groupoid G with
G0 = {∗} and G1 = G. Multiplication is the usual multiplication of a group.

Example 2.4 (Cover Groupoid). Let X be a topological space, and let {Uα}α∈A be an
open cover of X. Then we construct the corresponding covering groupoid U as follows:
Let U0 be the disjoint union

∐
α∈A Uα, and let U1 =

∐
(α,β)∈A×A Uα ∩ Uβ. Define the source

map component-wise as the inclusion map: s : Uα ∩ Uβ ↪→ Uα; similarly, the target map on
Uα∩Uβ is the inclusion into Uβ. Multiplication is defined in the obvious way, and corresponds
to elements of triple intersections.

Remark 2.5. The above example is in fact an example of a topological groupoid, but we will
not need to define this here; instead, we move immediately into the smooth category.

Definition 2.6 (Lie Groupoid). A groupoid G is a Lie groupoid if both G0 and G1 are
smooth manifolds, s and t are surjective submersions, and u, m, and inv are smooth maps.

Exercise 1 (Smoothness of m). For the smoothness of m to make sense, we require its
domain to be a smooth manifold. But its domain is G1s×tG1, a subset of G1 × G1. Why is
this a smooth manifold?

Exercise 2 (Units Form an Embedded Submanifold). The unit map u : G0 → G1 is
an embedding.

Remark 2.7. In the case that s is a proper map, we can drop the requirement that inv
is smooth, as we would get this for free. Indeed, we start with Ehresmann’s Theorem:
given a smooth map F : M → N , if F is a proper surjective submersion, then F is a locally
trivial fibration; that is, there exists an open cover {Uα} of N such that for each α, the
pre-image F−1(Uα) is diffeomorphic to Uα × F−1(x) for any x ∈ Uα. Fix U = Uα for some
α. Since u ◦ s : G1 → G1 is a submersion with image u(G0), by the Rank Theorem, we
can choose a diffeomorphism ϕ : s−1(U) → U × s−1(x) (for some fixed x ∈ U) such that
ϕ−1(y, u(x)) = u(y) for all y ∈ U . Note that

(pr2 ◦ ϕ ◦m)−1(u(x)) = {(g−1, g) ∈ G1s×tG1 | s(g) ∈ U}.
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Since m is a submersion in its second coordinate, local applications of the implicit function
theorem imply that there exists a smooth function g 7→ g−1, which finishes the proof. Note
how this result resembles the fact that for a Lie group, we do not require that the inversion
map is smooth: we get this for free from the fact that multiplication is smooth.

Example 2.8 (Action Groupoid). Let G be a Lie group acting smoothly on a manifold
M . Then we can construct the action groupoid GnM , where the arrows are the pairs in
the product G×M , the objects are the points of M , the source map is s(g, x) = x, and the
target map is t(g, x) = g · x. Multiplication is given by

(h, y)(g, x) = (hg, x)

where y = g · x.

Example 2.9 (Cover Groupoid - Part II). Let M be a manifold, and let {Uα}α∈A be
an open cover. Then the cover groupoid constructed in Example 2.4 is a Lie groupoid.

Example 2.10 (GL(TM)). LetM be an m-manifold, and consider its tangent bundle TM .
Define GL(TM) to be the groupoid whose objects are the points of M , and whose arrows
form the set

GL(TM)1 := {ξ : TxM → TyM | x, y ∈M and ξ is a linear isomorphism}.
The source map sends each arrow to the foot-point of its domain, and the target map sends
each arrow to the foot-point of its codomain.

GL(TM) is a Lie groupoid: for every pair of charts ϕ : U → Ũ ⊆ Rm and ψ : V → Ṽ ⊆ Rm

of M , define
Φϕ,ψ : s−1(U) ∩ t−1(V )→ Ũ ×GL(m;R)× Ṽ ⊆ R2m+m2

sending an arrow ξ to (s(ξ), X, t(ξ)) where X is the map ψ∗ ◦ ξ ◦ ϕ−1∗ |s(ξ). The collection of
all such Φϕ,ψ is a topological atlas. Smooth compatibility is easy to check.

3. Lie Groupoid Morphisms

Definition 3.1 (Lie Groupoid Morphisms). Let G and H be Lie groupoids. A Lie
groupoid morphism is a functor F : G → H such that the following diagram is commuta-
tive and consists of smooth maps:

G1
F1 //

(s,t)
��

H1

(s,t)
��

G0 × G0
(F0,F0)

// H0 ×H0

It follows that an isomorphism of Lie groupoids is a functor F as above, where F0 and F1

are diffeomorphisms.

For many purposes, isomorphisms of Lie groupoids is too strict an equivalence. For ex-
ample, often we only care about the orbit spaces of Lie groupoids, and perhaps stabiliser
information (definitions below). If two non-isomorphic Lie groupoids yield the same infor-
mation in this sense, then we wish to have a form of equivalence between these.
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Example 3.2 (Non-Isomorphic Lie Groupoids that should be Equivalent). Consider
two manifolds: SO(3) and S2 × S1. Note that SO(3) acts transitively on S2 by rotations,
where at any fixed point x ∈ S2 the stabiliser H is isomorphic to S1. Thus, it follows from the
Orbit-Stabiliser Theorem that S2 ∼= SO(3)/S1, where S1 acts on SO(3) via multiplication,
identifying S1 with H.

On the other hand, S1 acts on S2× S1 by multiplication on S1 ∼= {x}× S1 for each x ∈ S2.
Both actions yield the same orbit space: S2. Both actions of S1 are free, and so have trivial
stabilisers at every point. And yet, SO(3) is not diffeomorphic to S2× S1 (think about what
the stabilizers of the SO(3)-action on S2 are doing – Exercise!).

It follows that the action groupoids (S1 × SO(3)) ⇒ SO(3) and (S1 × S2 × S1) ⇒ (S2×S1)
are not isomorphic Lie groupoids, even though they yield the same orbit spaces and stabilisers
everywhere.

Definition 3.3 (Stabilisers, Orbits, and Orbit Spaces). Let G be a Lie groupoid. Fix
x ∈ G0.

(1) The stabiliser Stab(x), or Gxx , is defined to be the set s−1(x) ∩ t−1(x). Note that
this forms a group.

(2) The set t(s−1(x)) is the orbit of x. The partition of G0 into orbits induces an
equivalence relation on G0.

(3) The set of orbits equipped with the quotient topology, denoted G0/G1, is the orbit
space of G.

Definition 3.4 (Morita Equivalence). Let F : G → H be a morphism of Lie groupoids.
Then F is a weak equivalence if

(1) the map G1 → (G0 × G0)(F0,F0)
×(s,t)H1 sending g to (s(g), t(g), F1(g)) is a diffeomor-

phism, and
(2) the map G0F0

×tH1 → H0 sending (x, h) to s(h) is a surjective submersion.

We say that two Lie groupoids G and H are Morita equivalent if there exists another Lie
groupoid U and weak equivalences F : U → G and F ′ : U → H.

Condition 2 in the definition of a weak equivalence implies that for any y ∈ H0, there
is some x ∈ G0 such that F (x) and y are in the same orbit. Condition 1 implies that
HomG(x1, x2) ∼= HomH(F (x1), F (x2)). For those who are familiar with equivalences of cat-
egories, this yields exactly such an equivalence: the two groupoids (as categories) are “the
same up to isomorphisms”. Moreover, this equivalence respects the smooth structures on the
objects and arrows; it is not just a set-theoretic equivalence.

Exercise 3 (Morita Equivalence, Stabilisers, and Orbit Spaces). Let G and H be
Morita equivalence Lie groupoids, and let πG and πH be the quotient maps onto their orbit
spaces. Show that there is a homeomorphism Ψ: G0/G1 → H0/H1, and that for any x ∈
G0/G1, the stabiliser Stab(y) is isomorphic as a group to Stab(z) for any y ∈ π−1G (x) and
z ∈ π−1H (Ψ(x)).

Remark 3.5. If the orbit spaces happen to be smooth manifolds, then the homeomorphism
in the exercise above can be promoted to a diffeomorphism. In fact, even if the orbit spaces

4



are not manifolds, Morita equivalence still induces a diffeomorphism in either the diffeological
or the Sikorski sense between the orbit spaces. See [W13], [W15].
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