INTRODUCTION TO LIE GROUPOIDS

JORDAN WATTS

Lie group actions are examples of a much more general structure known as a Lie groupoid.
These form a category that include the category of smooth manifolds as a full subcategory
(i.e. the inclusion functor forms a bijection on arrows), as well as the category of Lie groups
(whose intersection with the subcategory of smooth manifolds has only one object: the single
point / the trivial group). For an excellent introduction to Lie groupoids, see [M].

1. FIBRED PrODUCTS

To begin, we need a preliminary definition: the fibred product of sets.

Definition 1.1 (Fibred Product of Sets). Let S,T,U be sets, and let f: S — U and
g: T — U be functions. Define the fibred product of S and T with respect to f and g to
be

Spx,Ti={(s,t) € SxT| f(s)=g(t)}.

As a commutative diagram where pr; and pr, are the projection maps restricted from S x T,
we have

pra
Pr1l lg
S U

f

Example 1.2 (Cartesian Product). Let S and T be sets, and consider the constant maps
f: S = {x}and g: T — {x}, where {x} is a singleton set. Then,

Example 1.3 (Graph). Let S and T be sets, and let f: S — T be a function. Then
S pX;q,. 1" 1s the graph of f sitting in S x T'.

Example 1.4 (Pre-Image). Let S and T be sets, let f: S — T be a function, and fix
to € T with inclusion : {to} — T Then pr, is a bijection from S ;x{to} onto f~*(to).

Example 1.5 (Intersections). Let S and 1" be subsets of a set U, and let i: S — U and
J: T — U be the inclusions. Then both pr; and pry are bijections from S;x,T" onto SN T
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2. LIE GROUPOIDS

Definition 2.1 (Groupoid). A groupoid is a small category G in which every arrow is
invertible. Denote by Gy the set of objects of G, and by G; the set of arrows of G. We have
the following structure maps:

e two maps s: G; — Gy and t: G; — Gy, called the source map and the target map
respectively, defined as:
s(g: g — ¢2) = ¢y,
t(g: c1 = c2) = c3;
e the unit map u: Gy — G; sending each x € Gy to the identity map id,;
e the multiplication map m: G; x,G; — G, sending pairs (h, g) such that t(g) = s(h)
to the composition h o g (often, we drop the symbol o);

e the inversion map inv: G, — G, sending g to g .

Notation 2.2. Sometimes we will denote a groupoid G by G; = G, for convenience.

Example 2.3 (Group). Let G be a group. Then we can construct a groupoid G with
Go = {*} and G; = G. Multiplication is the usual multiplication of a group.

Example 2.4 (Cover Groupoid). Let X be a topological space, and let {U,}aca be an
open cover of X. Then we construct the corresponding covering groupoid U as follows:
Let Uy be the disjoint union ]_[aeA U,, and let U; = H(a’ﬁ)eAXA U, N Ug. Define the source
map component-wise as the inclusion map: s: U, N Ug < U,; similarly, the target map on
U,NUjg is the inclusion into Ug. Multiplication is defined in the obvious way, and corresponds
to elements of triple intersections.

Remark 2.5. The above example is in fact an example of a topological groupoid, but we will
not need to define this here; instead, we move immediately into the smooth category.

Definition 2.6 (Lie Groupoid). A groupoid G is a Lie groupoid if both Gy and G, are
smooth manifolds, s and ¢ are surjective submersions, and u, m, and inv are smooth maps.

Exercise 1 (Smoothness of m). For the smoothness of m to make sense, we require its
domain to be a smooth manifold. But its domain is G; x,G;, a subset of G; x G;. Why is
this a smooth manifold?

Exercise 2 (Units Form an Embedded Submanifold). The unit map u: Gy — G is
an embedding.

Remark 2.7. In the case that s is a proper map, we can drop the requirement that inv
is smooth, as we would get this for free. Indeed, we start with Ehresmann’s Theorem:
given a smooth map F': M — N, if F' is a proper surjective submersion, then F'is a locally
trivial fibration; that is, there exists an open cover {U,} of N such that for each «, the
pre-image F~'(U,) is diffeomorphic to U, x F~(z) for any x € U,. Fix U = U, for some
a. Since u o s: G — Gy is a submersion with image u(Gy), by the Rank Theorem, we
can choose a diffeomorphism ¢: s™H(U) — U x s7!(x) (for some fixed z € U) such that
o Yy, u(x)) = u(y) for all y € U. Note that

(pryoom) ' (u(x)) = {(92‘179) € Gi,x,G1 | s(g) € U}.



Since m is a submersion in its second coordinate, local applications of the implicit function
theorem imply that there exists a smooth function g — ¢~!, which finishes the proof. Note
how this result resembles the fact that for a Lie group, we do not require that the inversion
map is smooth: we get this for free from the fact that multiplication is smooth.

Example 2.8 (Action Groupoid). Let G be a Lie group acting smoothly on a manifold
M. Then we can construct the action groupoid G x M, where the arrows are the pairs in
the product G x M, the objects are the points of M, the source map is s(g,x) = x, and the
target map is t(g,z) = g - x. Multiplication is given by

(h,y)(g, ) = (hg, z)
where y = g - x.
Example 2.9 (Cover Groupoid - Part II). Let M be a manifold, and let {U,}aca be
an open cover. Then the cover groupoid constructed in Example is a Lie groupoid.

Example 2.10 (GL(T'M)). Let M be an m-manifold, and consider its tangent bundle T'M.
Define GL(T'M) to be the groupoid whose objects are the points of M, and whose arrows
form the set

GL(TM), :={&: T,M — T,M | z,y € M and £ is a linear isomorphism}.

The source map sends each arrow to the foot-point of its domain, and the target map sends
each arrow to the foot-point of its codomain.

GL(TM) is a Lie groupoid: for every pair of charts ¢: U — U C R™and ¢: V — V CR™
of M, define
D,p: s HU)NEH(V) = U x GL(m; R) x V C R+
sending an arrow & to (s(§), X, t(§)) where X is the map ¢, 0 £ 0 ¢, |5¢). The collection of
all such @, is a topological atlas. Smooth compatibility is easy to check.

3. LiIE GROUPOID MORPHISMS

Definition 3.1 (Lie Groupoid Morphisms). Let G and H be Lie groupoids. A Lie
groupoid morphism is a functor F': G — H such that the following diagram is commuta-
tive and consists of smooth maps:

"

Gi Hy

(s:t) l (S:t)l

Go % Go m)%o X Ho
It follows that an isomorphism of Lie groupoids is a functor F' as above, where Iy and F}
are diffeomorphisms.

For many purposes, isomorphisms of Lie groupoids is too strict an equivalence. For ex-
ample, often we only care about the orbit spaces of Lie groupoids, and perhaps stabiliser
information (definitions below). If two non-isomorphic Lie groupoids yield the same infor-

mation in this sense, then we wish to have a form of equivalence between these.
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Example 3.2 (Non-Isomorphic Lie Groupoids that should be Equivalent). Consider
two manifolds: SO(3) and S? x S'. Note that SO(3) acts transitively on S? by rotations,
where at any fixed point € S? the stabiliser H is isomorphic to S'. Thus, it follows from the
Orbit-Stabiliser Theorem that S? 2 SO(3)/S!, where S' acts on SO(3) via multiplication,
identifying S! with H.

On the other hand, S' acts on S? x S' by multiplication on S' = {z} x S! for each = € S%.
Both actions yield the same orbit space: S?. Both actions of S! are free, and so have trivial
stabilisers at every point. And yet, SO(3) is not diffeomorphic to S? x S! (think about what
the stabilizers of the SO(3)-action on S? are doing — Exercise!).

It follows that the action groupoids (S' x SO(3)) = SO(3) and (S! x $? x ') = ($?xS')
are not isomorphic Lie groupoids, even though they yield the same orbit spaces and stabilisers
everywhere.

Definition 3.3 (Stabilisers, Orbits, and Orbit Spaces). Let G be a Lie groupoid. Fix
T € go.

(1) The stabiliser Stab(z), or G%, is defined to be the set s~!(z) Nt¢~'(x). Note that
this forms a group.

(2) The set t(s7'(x)) is the orbit of . The partition of Gy into orbits induces an
equivalence relation on Gy.

(3) The set of orbits equipped with the quotient topology, denoted Gy/G;, is the orbit
space of G.

Definition 3.4 (Morita Equivalence). Let F': G — H be a morphism of Lie groupoids.
Then F is a weak equivalence if

(1) the map Gi = (Go X Go) (g, )X (s H1 sending g to (s(g), t(g), Fi1(g)) is a diffeomor-
phism, and
(2) the map Gop x,H1 — Ho sending (z, h) to s(h) is a surjective submersion.

We say that two Lie groupoids G and H are Morita equivalent if there exists another Lie
groupoid U and weak equivalences F': i — G and F': U — H.

Condition 2 in the definition of a weak equivalence implies that for any y € Hg, there
is some x € Gy such that F(z) and y are in the same orbit. Condition 1 implies that
Homg(z1,x2) = Homy (F(x1), F(z3)). For those who are familiar with equivalences of cat-
egories, this yields exactly such an equivalence: the two groupoids (as categories) are “the
same up to isomorphisms”. Moreover, this equivalence respects the smooth structures on the
objects and arrows; it is not just a set-theoretic equivalence.

Exercise 3 (Morita Equivalence, Stabilisers, and Orbit Spaces). Let G and H be
Morita equivalence Lie groupoids, and let mg and 73 be the quotient maps onto their orbit
spaces. Show that there is a homeomorphism ¥: Gy/G; — Ho/H;, and that for any = €
Go/G1, the stabiliser Stab(y) is isomorphic as a group to Stab(z) for any y € m;'(z) and
z € 7 (V(z)).

Remark 3.5. If the orbit spaces happen to be smooth manifolds, then the homeomorphism

in the exercise above can be promoted to a diffeomorphism. In fact, even if the orbit spaces
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are not manifolds, Morita equivalence still induces a diffeomorphism in either the diffeological
or the Sikorski sense between the orbit spaces. See [W13|, [W15].
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