EXTRA QUESTIONS

Warning: I do not have answers for all of the following questions. In fact, some of them come from my research and I never bothered to think about them.

Exercise 1 (Euclidean Spaces). Using the tools introduced in this course so far, try showing that \mathbb{R}^m is not homeomorphic to \mathbb{R}^n for $m \neq n$.

Exercise 2 (Topology Induced by Curves and Functions). Fix a topological space (X, \mathcal{T}) . Let $\mathcal{F} := C^0(X, \mathbb{R})$ be the set of all real-valued continuous functions from X to \mathbb{R} (the latter equipped with the Euclidean topology). Let $\mathcal{T}_{\mathcal{F}}$ be the smallest topology on X such that all functions in \mathcal{F} are continuous. Similarly, let $\mathcal{C} := C^0(\mathbb{R}, X)$ be the set of all continuous curves into X; *i.e.* continuous maps from \mathbb{R} (equipped with the Euclidean topology) to X. Let $\mathcal{T}_{\mathcal{C}}$ be the largest topology on X such that all curves in \mathcal{C} are continuous.

- (a) Show that $\mathcal{T}_{\mathcal{F}} \subseteq \mathcal{T} \subseteq \mathcal{T}_{\mathcal{C}}$.
- (b) Show that if $\overline{X} = \mathbb{R}^n$ and \mathcal{T} is the Euclidean topology, then the inclusions in part (a) are, in fact, equalities.

Definition: For the purposes of the following exercises, if (X, \mathcal{T}) is a topological space in which

$$\mathcal{T}=\mathcal{T}_{\mathcal{C}}=\mathcal{T}_{\mathcal{F}},$$

then we say that \mathcal{T} is *balanced*.

Exercise 3 (Quotients). We continue to use the notation introduced in Exercise 2. Let ~ be an equivalence relation on X. Equip X/\sim with the quotient topology $\widetilde{\mathcal{T}}$, and let $\pi: X \to X/\sim$ be the quotient map. Define

$$\widetilde{\mathcal{C}} := \{ \pi \circ c \mid c \in \mathcal{C} \},\$$

and

$$\widetilde{\mathcal{F}} := \{ f : X / \sim \to \mathbb{R} \mid f \circ \pi \in \mathcal{F} \}.$$

- (a) Show that the curves in $\widetilde{\mathcal{C}}$ are continuous with respect to the quotient topology.
- (b) Assume that X is balanced. If $\widetilde{\mathcal{T}}_{\tilde{\mathcal{C}}}$ is the largest topology in which the curves in $\widetilde{\mathcal{C}}$ are continuous, is $\widetilde{\mathcal{T}} = \widetilde{\mathcal{T}}_{\tilde{\mathcal{C}}}$? If so, give a proof. If not, give a counterexample. Also, if not, under what conditions are they equal?
- (c) Show that the functions in $\tilde{\mathcal{F}}$ are continuous with respect to the quotient topology.
- (d) Assume that X is balanced. If $\widetilde{\mathcal{T}}_{\widetilde{\mathcal{F}}}$ is the smallest topology in which the functions in $\widetilde{\mathcal{F}}$ are continuous, is $\widetilde{\mathcal{T}} = \widetilde{\mathcal{T}}_{\widetilde{\mathcal{F}}}$? If so, give a proof. If not, give a counterexample. Also, if not, under what conditions are they equal?

Exercise 4 (Subsets). We repeat Exercise 3 with quotients replaced by subsets. Let $Y \subseteq X$. Equip Y with the subspace topology, \mathcal{T}^Y , and let $i: Y \to X$ be the inclusion map. Define

$$\mathcal{C}^Y := \{ c : \mathbb{R} \to Y \mid i \circ c \in \mathcal{C} \},\$$

and

$$\mathcal{F}^Y := \{ f \circ i \mid f \in \mathcal{F} \}.$$

(a) Show that the curves in \mathcal{C}^{Y} are continuous with respect to the subspace topology.

Date: October 18, 2013.

- (b) Assume that X is balanced. If \$\mathcal{T}_{CY}^Y\$ is the largest topology in which the curves in \$\mathcal{C}^Y\$ are continuous, is \$\mathcal{T}^Y = \mathcal{T}_{CY}^Y\$? If so, give a proof. If not, give a counterexample. Also, if not, under what conditions are they equal?
 (c) Show that the functions in \$\mathcal{F}^Y\$ are continuous with respect to the subspace topology.
 (d) Assume that X is balanced. If \$\mathcal{T}_{FY}^Y\$ is the smallest topology in which the functions in \$\mathcal{F}^Y\$ are continuous, is \$\mathcal{T}^Y = \mathcal{T}_{FY}^Y\$? If so, give a proof. If not, give a counterexample. Also, if not, under what conditions are they equal?