Final Exam Review

Math 3430 - Section 002
Instructions. Be sure to show your work and explain your reasoning.

1. Solve the following IVPs. For parts (a) and (b), answer the following: What is the domain of the solution? What is the behaviour of the solution as t approaches the endpoints of this domain?
(a) $t y^{\prime}+y=\cos (t), \quad y(1)=2$
(b) $y^{\prime}=\left(y^{2}+1\right) t^{2}, \quad y(0)=1$
(c) $2 x y+\left(1+x^{2}+3 y^{2}\right) \frac{d y}{d x}=0, \quad y(0)=1$
2. Compute the first two Picard iterates for the IVP $y^{\prime}=t^{2}+y^{2}$ with $y(0)=1$.
3. Show that a (unique) solution of $y^{\prime}=t+y^{2}, y(0)=0$ exists for $t \in\left[0,\left(\frac{1}{2}\right)^{2 / 3}\right]$.
4. Solve the following IVP using the method listed below.

$$
\frac{d^{2} y}{d t^{2}}-4 \frac{d y}{d t}+4 y=t e^{2 t} \quad y(0)=y^{\prime}(0)=1
$$

(a) Variation of parameters
(b) Laplace transforms
5. Find the general solution of $t^{2} y^{\prime \prime}+t y^{\prime}-y=0$.
6. Find the following.
(a) $\mathcal{L}\left\{t^{3}\right\}$
(e) $\mathcal{L}^{-1}\left\{\frac{-1}{(s-3)^{2}}\right\}$
(b) $\mathcal{L}\{t \sin (t)\}$
(f) $\mathcal{L}^{-1}\left\{\frac{2}{(s-3)^{2}+4}\right\}$
(c) $\mathcal{L}\left\{t H_{2}(t)\right\}$
(g) $\mathcal{L}^{-1}\left\{\frac{s}{\left(s^{2}+1\right)^{2}}\right\}$
(d) $\mathcal{L}\{\delta(t-3)\}$
(h) $\mathcal{L}^{-1}\left\{\frac{e^{-s}}{s-5}\right\}$
7. Find the general solutions to the following systems.
(a) $\dot{X}=\left[\begin{array}{cc}-7 & 2 \\ 4 & -5\end{array}\right] X$
(c) $\dot{X}=\left[\begin{array}{ll}-4 & 2 \\ -2 & 0\end{array}\right] X$
(b) $\dot{X}=\left[\begin{array}{cc}-1 & -2 \\ 2 & 0\end{array}\right] X$
8. Find the solution to the following IVP (do not solve the integral).

$$
\dot{X}=\left[\begin{array}{cc}
-7 & 2 \\
4 & -5
\end{array}\right] X+\left[\begin{array}{c}
t e^{t} \\
t
\end{array}\right], \quad X(0)=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

9. Determine the stability (if possible) of the following systems at the specified solutions. (a) $\dot{X}=\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6\end{array}\right] X$, all solutions.
(b) $\dot{X}=\left[\begin{array}{c}20 x_{1}-2 x_{1}^{2}-4 x_{1} x_{2} \\ 40 x_{2}-4 x_{2}^{2}-80 x_{1} x_{2}\end{array}\right]$, all equilibrium solutions.

Formulas

$$
\begin{aligned}
\sin ^{2}(x)+\cos ^{2}(x) & =1 \\
\sin (a \pm b) & =\sin (a) \cos (b) \pm \sin (b) \cos (a) \\
\cos (a \pm b) & =\cos (a) \cos (b) \mp \sin (a) \sin (b) \\
\sin (2 x) & =2 \sin (x) \cos (x) \\
\cos (2 x) & =\cos ^{2}(x)-\sin ^{2}(x) \\
& =1-2 \sin ^{2}(x) \\
& =2 \cos ^{2}(x)-1 \\
\int u d v & =u v-\int v d u
\end{aligned}
$$

Table of Laplace Transforms

$f(t)$	$F(s)$	
$t^{n}(n \geq 0)$	$\frac{n!}{s^{n+1}}$	$s>0$
$\cos (\omega t)$	$\frac{s}{s^{2}+\omega^{2}}$	$s>0$
$\sin (\omega t)$	$\frac{\omega^{2}}{s^{2}+\omega^{2}}$	$s>0$
$e^{k t}$	$s F(s)-f(0)$	$s>k$
$f^{\prime}(t)$	$s^{2} F(s)-s f(0)-f^{\prime}(0)$	
$f^{\prime \prime}(t)$	$F^{(n)}(s)$	
$(-1)^{n} t^{n} f(t)$	$F(s-k)$	
$e^{k t} f(t)$	$e^{-s k} F(s)$	
$H_{k}(t) f(t-k)$	$\left\{\begin{array}{cc}e^{-s t_{0}} & t_{0} \geq 0 \\ 0 & t_{0}<0\end{array}\right.$	
$\delta\left(t-t_{0}\right)$	$F(s) G(s)$	
$(f * g)(t)$		

