NAME: _____

Math 3001 Section 002 Midterm Exam #1 February 17, 2016

Question	Points
1	/12
2	/13
3	/12
4	/13
Total	/50

1. (12 points)

For each of the following statements, either prove it is true, or provide a counterexample to show that it is false.

(a) If $x, y, s, t \in \mathbb{R}$, with x < y and s < t,

x+s < y+t.

(b) If S is a non-empty bounded subset of \mathbb{R} , then

$$inf S \leq sup S.$$

(c) If S is a nonempty bounded subset of \mathbb{R} containing both its maximum and its minimum element, then S is a compact subset of \mathbb{R} .

- 2. (13 points) Let S be a subset of \mathbb{R} .
 - (a) Define what it means for $x \in \mathbb{R}$ to be an accumulation point of S, i.e. what does it mean to write $x \in S'$?

(b) Compute the set of accumulation points of the set $S = \{\frac{1}{n} : n \in \mathbb{N}\}$. Justify your answer.

3. (12 points)

Let S be a non-empty bounded subset of the real numbers, with m = inf(S). Define

 $3S = \{3 \cdot s : s \in S\}.$

(a) Prove that $3 \cdot m$ is a lower bound for 3S.

(b) Prove that

 $3 \cdot m = inf (3S).$

4. (13 points)

Prove using the definition of convergence of sequences that

$$\lim \frac{8n^3 + n}{4n^3 - 5} = 2.$$