NAME:

Math 3001

Section 002
Midterm Exam \#1
February 17, 2016

Question	Points
1	$/ 12$
2	$/ 13$
3	$/ 12$
4	$/ 13$
Total	$/ 50$

1. (12 points)

For each of the following statements, either prove it is true, or provide a counterexample to show that it is false.
(a) If $x, y, s, t \in \mathbb{R}$, with $x<y$ and $s<t$,

$$
x+s<y+t
$$

(b) If S is a non-empty bounded subset of \mathbb{R}, then

$$
\inf S \leq \sup S
$$

(c) If S is a nonempty bounded subset of \mathbb{R} containing both its maximum and its minimum element, then S is a compact subset of \mathbb{R}.
2. (13 points) Let S be a subset of \mathbb{R}.
(a) Define what it means for $x \in \mathbb{R}$ to be an accumulation point of S, i.e. what does it mean to write $x \in S^{\prime}$?
(b) Compute the set of accumulation points of the set $S=\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$. Justify your answer.
3. (12 points)

Let S be a non-empty bounded subset of the real numbers, with $m=\inf (S)$. Define

$$
3 S=\{3 \cdot s: s \in S\}
$$

(a) Prove that $3 \cdot m$ is a lower bound for $3 S$.
(b) Prove that

$$
3 \cdot m=\inf (3 S)
$$

4. (13 points)

Prove using the definition of convergence of sequences that

$$
\lim \frac{8 n^{3}+n}{4 n^{3}-5}=2
$$

