MATH 2300: Honors Calculus II, Fall 2014 FINAL EXAM

Thursday, December 18, 2014

YOUR NAME:

Important note: SHOW ALL WORK. BOX YOUR ANSWERS. Calculators are not allowed. No books, notes, etc.

Problem	Points	Score
$\mathbf{1}$	8	
$\mathbf{2}$	6	
$\mathbf{3}$	8	
$\mathbf{4}$	12	
$\mathbf{5}$	10	
$\mathbf{6}$	9	
$\mathbf{7}$	7	
$\mathbf{8}$	8	
$\mathbf{9}$	16	
$\mathbf{1 0}$	7	
$\mathbf{1 1}$	9	
TOTAL	100	

"On my honor, as a University of Colorado at Boulder student, I have neither given nor received unauthorized assistance on this work."

SIGNATURE:

(1) (4 points each) Compute
(a) $\frac{\partial}{\partial x}\left(x e^{\sqrt{x y}}\right)$
(b) $f_{y}(1, \pi)$ if $f(x, y)=4 x^{2} y+e^{x}+y \sin (x y)$
(2) (6 points) Find the Taylor series of order 3 for $g(x)=\int e^{x^{2}} d x$ near $x=0$.
(3) (8 points) Find the center of mass of the region bounded by $y=3 x^{2}$ and $y=3$ with density $\delta=2$.
(4) (2 points each) Do the following converge or diverge? CIRCLE your answer, no work necessary.
a) $\sum_{n=1}^{\infty} \frac{(n+1)^{2}}{2 n+3}$
CONVERGE DIVERGE
b) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$

CONVERGE DIVERGE
c) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{3^{n}+1}$

CONVERGE DIVERGE
d) $\sum_{n=1}^{\infty} \frac{5 n+2}{n^{2}-7 n}$

CONVERGE DIVERGE
e) $\sum_{n=1}^{\infty} \frac{(n!)^{2}}{(2 n)!}$

CONVERGE DIVERGE
f) $\sum_{n=1}^{\infty}\left(\frac{1}{n}\right)^{n}$

CONVERGE DIVERGE
(5) (a) (3 points) Write the Taylor series for $\sin (x)$ near $x=0$.
(b) (5 points) What is the minimum degree Taylor polynomial of $\sin x$ near $x=0$ necessary to approximate $\sin (0.1)$ to within 0.0002 ?
(c) (2 points) Using the degree you found in part (b), approximate $\sin (0.1)$ to within 0.0002 .
(6) (9 points) Find the area inside $r=2 \sin (2 \theta)$ and outside $r=1$.
(7) (7 points) Find the general solution to the differential equation $\frac{d y}{d x}=\frac{\left(y^{2}+1\right)}{x^{3}}$.
(8) (2 points each) Write the letter of the corresponding slope field under each differential equation.
$\frac{d y}{d x}=x y^{2}, \quad \frac{d y}{d x}=x^{2}, \quad \frac{d y}{d x}=y, \quad \frac{d y}{d x}=x$

C

E

(9) (4 points each) Compute the following indefinite integrals.
(a) $\int \frac{\cos (\sqrt{y})}{\sqrt{y}} d y$
(b) $\int \frac{1}{x^{2}-1} d x$
(c) $\int \frac{x+1}{\sqrt{x}} d x$
(d) $\int \cosh (2 x) e^{x} d x$
(10) (7 points) Integrate $e^{y^{2}}$ over the region shown below.

(11) (a) (3 points) Write the Taylor series of $\cos (x)$ near $x=0$.
(b) (6 points) Does $\int_{0}^{1} \frac{\cos (x)}{x} d x$ converge or diverge? Show your work.

