1. Consider the Fibonacci Sequence $f_{1}=1, f_{2}=1$, and $f_{n}=f_{n-1}+f_{n-2}$ for $n \geq 3$. f_{n} is called the nth Fibonacci number.
(a) Show that

$$
\lim _{n \rightarrow \infty} \frac{f_{n}}{f_{n-1}}=\frac{1+\sqrt{5}}{2} \approx 1.618
$$

(b) Show that the Maclaurin series of the function

$$
f(x)=\frac{x}{1-x-x^{2}} \quad \text { is } \quad \sum_{n=1}^{\infty} f_{n} x^{n}
$$

where f_{n} is the nth Fibonacci number.
(c) By writing $f(x)$ as a sum of partial fractions and thereby obtaining the Maclaurin series in a different way, show that an explicit formula for the \boldsymbol{n} th Fibonacci number is

$$
f_{n}=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right]
$$

(d) Find the interval of convergence of the series $\sum_{n=1}^{\infty} f_{n} x^{n}$ where f_{n} is the nth Fibonacci number.

