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Abstract

IFO is a newly developed computer program which
transforms experimental structure factors for disordered
materials to atomic distribution functions by employing
an image-reconstruction-type technique. The transfor-
mation is carried out through a Monte Carlo search for
an atomic distribution function which is a smooth, i.e.
free of termination and other spurious ripples, real-
space image of a given experimental structure factor.
IFO has been tested on a number of data-sets and its
efficiency has been demonstrated. The program is

considered to be a useful tool for controlling and.

improving the quality of experimental structure func-
tions for disordered materials.

1. Introduction

The structure of a disordered material such as glass,
liquid, melt or gel is commonly described in terms of the
radial distribution function (RDF), which is a direc-
tionally averaged representation of the atomic
arrangement and gives the probability of finding an
atom at a distance r from a reference atom (Klug &
Alexander, 1974; Wagner, 1978). RDFs are usually
obtained by diffraction experiments employing X-rays,
neutrons or electrons in the following manner. A
particular diffraction experiment is carried out and the
spectrum obtained is subjected to appropriate correc-
tions (Wagner, 1978; Thijsse, 1984; Mufioz et al., 1988;
Cockayne & McKenzie, 1988) in order to derive the so-
called structure factor, S(g), which is the only structure-
dependent part of the recorded intensities. From the
experimental S(g) data the so-called reduced RDF,
G(r) = 4nr[p(r) — p,], where p(r) and p, are the local
and average atomic number densities, respectively, is
obtained by carrying out a Fourier transformation as
follows

(0.9)
G(r) = (2/7) [ q[S(q) — 1]sin(gr) dg. 1
0
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Here r is the radial distance and g the magnitude of the
wave (scattering) vector. Once G(r) has been obtained,
some other frequently used RDFs, such as the pair
distribution function g(r) = [o(r)/p,] or the total RDF =
477 p(r), are readily derived. The generation of RDFs
involves a numerical transformation of data from reci-
procal [S(g) data] into real space [G(r) data] which
should pose no problems provided all quantities on the
right-hand side of (1) are exactly known. In practice,
however, certain problems make direct application of
the Fourier transformation of (1) rather inefficient. One
of the problems stems from the fact that no diffraction
experiment can yield S(g) data covering the region from
g =0 to g approaching infinity. On one hand, S(g) data at
very low values of g are difficult to collect. On the other,
even time-of-flight neutron diffraction experiments
(Grimley et al, 1990), wide-angle X-ray diffraction
experiments employing hard X-rays (Poulsen et al.,
1995) and energy-dispersive X-ray diffraction (Petkov,
1995) yield S(q) data at g values no higher than 30—
40 A~T. Thus the set of S(q) data available in practice
always turns out to be confined to some finite region in
reciprocal space. While the S(q) data ‘missing’ at very
low values of g can be, without much harm, derived by
some wisely devised extrapolation towards g = 0
(Waseda, 1980), it is not possible to restore unambigu-
ously the data ‘missing’ at higher g values. As predicted
by the theory of Fourier transformations and as is shown
by Warren & Mozzi (1975), the truncation of S(q) data
at some gmax value spoils the resolution of the corre-
sponding RDF and, furthermore, gives rise to appreci-
able high-frequency false oscillations known as
termination ripples.

Another problem is that the experimental S(g) data at
higher g values, even though extracted from diffraction
spectra obtained using the most powerful radiation
sources currently available (see Figs. 4 in Poulsen et al.,
1995; Jal et al., 1991), are often of poor statistical accu-
racy. Thus, when the Fourier transformation of (1) is
directly carried out the statistical noise in S(q) propa-
gates in the corresponding RDF and corrupts its fine
features (see Figs. 1 and 2 presented later).

Yet another problem is that if some systematic errors
are present in the experimental S(q) data, considerable
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spurious oscillations appear in the corresponding RDF
obtained by a direct Fourier transformation (Klug &
Alexander, 1974). These false oscillations may substan-
tially distort the shape of RDFs and spoil the accuracy of
the estimates of some important structural parameters,
in particular those for the first coordination numbers
and distances.
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Fig. 1. Structure factors for Percus—Yevick hard-sphere liquid.
Theoretical error-free data (full line); theoretical data with added
statistical noise (broken line; upper part); reconstructed data
(symbols; lower part).

Percus-Yevick hard spheres

Fig. 2. Reduced RDFs for Percus-Yevick hard-sphere liquid obtained
by: direct Fourier transformation of the error-free structure factor of
Fig. 1 (thin full line); direct Fourier transformation of the noise-
containing structure factor of Fig. 1 (symbols; upper part); the
image-reconstruction technique presently considered (symbols;
lower part). The nonphysical shoulder of the first peak in the
conventionally derived G(r) is marked by an arrow.
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Several computational procedures have been worked
out and put into practice in an attempt to solve the long-
standing problems described above. To lessen the effects
of statistical noise and S(g) termination on RDFs a
modifying function, M(q), usually of the type M(q) =
SIN(7q/Gmax)/(7q/qmax) O M(q) = exp(—constg®), is
often included in the direct Fourier transformation of
(1). However, as shown by Thijsse (1984) the price for
using a modification function is an additional obscuring
of the fine features of RDFs (see also Figs. 11-13
presented later). To eliminate the systematic errors in
S(q) and their artifacts in the corresponding RDF,
corrective procedures based on repeated direct Fourier
transformations of artificially extended S(g) data have
been suggested (Kaplow et al, 1965; Konnert & Karle,
1973). However, only the spurious oscillations at low r
values are removed by these corrective procedures while
the rest of the RDF data remain uncorrected (see Fig. 13
presented later). Other procedures aimed at improving
the normalization of S(g) data (Cumbrera et al., 1995),
obtaining smoothed RDFs by using analytical
(Korsunsky & Naberukhin, 1980), numerical (Krylov &
Vvedenskii, 1995) or computer-simulated (Howe et al.,
1996) approximations to the direct Fourier transforma-
tion of (1) have also been developed. None of them,
however, has proved to be so efficient as to combat
satisfactorily all the problems discussed so far. Thus it is
still difficult to obtain reliable RDFs on the basis of S(g)
data that are incomplete (terminated at some @max
value), often, if not always, noisy at high g values and
that possibly comprise some systematic errors. Gener-
ally speaking, similar tasks are frequently encountered
in modern physics when a physical quantity (in our a
case an RDF) is to be reconstructed from an under-
determined set of experimental data [in our case S(gq)
data]. Practice has shown that such tasks can be quite
successfully tackled by employing image-reconstruction-
type techniques such as the maximum-entropy (MEM)
method (Linden, 1995). In fact, MEM, or its modifica-
tions, is nowadays widely employed in applied crystal-
lography (Miiller & Hansen, 1994; Schotte et al., 1995;
Lin & Tsao, 1996; Schleger et al., 1997) and some MEM
applications to structure data of disordered materials
are also known (Wei, 1986; Mufioz et al., 1988; Jal et al.,
1991; Allen & Howe, 1992). However, no thoroughly
tested, generally applicable and easy-to-use procedure
for image-reconstruction-type processing of S(g) and
RDF data has been developed until now. It is the
purpose of the present work to develop such a compu-
tational procedure, which, when necessary, could be
applied with confidence to real data.

2. Theoretical background

The structure data for disordered materials are primarily
obtained in reciprocal space as a set of S(g;) (usually
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_ equidistant) data points, where the g;’s are the magni-
tudes of the scattering vectors at which diffracted
intensities have been recorded. Accounting for the fact
that the measured S(gq) data reflect the actual atomic
arrangement of the disordered material being investi-
gated, which, as already discussed, is usually described in
terms of the RDF, one can rewrite (1) in the following
two equivalent relations:

Qﬁ@J—ﬂEF@D=§¥mMﬂKWQMH 2a)

N

F(g) = kZl Ty G(ry), (2b)
where the Fourier integral has been approximated by a
discrete summation over N properly selected data points
r (usually r, = kAr;k=1,2...N; A7 = /G max), Aq is the
sampling interval in reciprocal space and T} is a short-
hand notation for the transformation matrix from G(rx)
to F(q;). The main goal of the image-reconstruction
technique is to restore the real RDF or, at least, to
derive an RDF that is maximally close to the real one,
i.e. that is free of termination and spurious ripples and
other experimental or computational artifacts, from
incomplete noisy experimental structure-factor data,
which possibly comprise systematic errors, provided the
sought G(r,) and the available F(q;) data are related by
a nonlinear (Fourier sine) transformation (Ty). To
achieve this goal the theory of information is evoked.
Since RDFs give nothing else but a time- and space-
averaged picture of the atomic-scale structure of disor-
dered materials, one may well consider them as statis-
tical quantities. Formally, the information content of any
statistical quantity regarded as a set of N positive data
points {f;}, which are to be determined, can be quantified
by the information entropy, H, defined as

N
= _;piln(pi/bi) —p;+b 3)

where p; = f;/ Y_f; and b; is our prior knowledge about
some features which {p;} (i.e. {f}) must satisfy (Skilling &
Bryan, 1984; Skilling, 1988; Soper, 1990). It can be
readily shown that our knowledge (information) about
quantity {f;} is maximal when H is maximal. This infor-
mation entropy lies at the root of the application of
several image-reconstruction techniques, including
MEM. Let us suppose that a set of experimental data
{a} that is related to {f}} through a transformation matrix
T,-k, ie.

N
a = ;Tikﬁ” Q)

is available. MEM selects a set of p/s (or a corre-
sponding set of {f;}) for which H is maximal subject to a
constraint that when this set is supplied to the right-hand
side of (4) the data computed agree well with the
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experimentally measured data. Mathematically, this
can be expressed by minimization of some func-
tional, Q,

g =hy'—H, (5)

where
r= Zk:(aixp — ™y (6)

and ) is a Lagrange-type multiplier predetermining how
closely the derived {p;} (i.e. {fi}) should reproduce the
available experimental data {a,}. The theoretical back-
ground and justification for the application of MEM to
reconstruction of RDFs have been given by Wei (1986)
and we will not repeat these details here. The applica-
tion of MEM according to the approach outlined by Wei
(1986), however, revealed that unreliable results may be
obtained unless the experimental S(g) data are good
quality (Mufioz et al., 1988). This drawback of MEM is
partially due to the fact that when the experimental data
are not good quality the respective Lagrange multiplier,
A, is chosen very close to zero. In such a case the mini-
mization of the functional Q, i.e. the maximization of
entropy H, yields a solution which closely reproduces
our prior information, ie. a set of {pi} = {b:}. When,
however, the prior information is scarce or not available
at all, which occurs quite often in practice, the solution is
the most disordered among all possible solutions, i.e. it is
simply a set of uniformly distributed {p;} (Skilling &
Bryan, 1984; Linden, 1995). Thus, when poor-quality
S(q) data are available MEM tends to yield uniform
RDFs, i.e. RDFs whose characteristic features are
smeared out, and thus produces not very reliable results.
Since MEM, as it stands, does not take into account the
underlying continuity (‘smoothness’) of the atomic
arrangement in disordered materials but rather forces
the reconstructed RDFs to be more or less featureless,
Soper (1990) has argued that the information entropy,
H, is not the function that most suitably reflects the
physical information contained in RDFs. He postulated
that the real RDFs being sought are most likely to be the
least noisy (the smoothest) among all other possible
solutions. To quantify the noise in the G(r) data, Soper
(1990) introduced a noise function I

N
= ;[G”(rk)]z/ G'(r), ™

where G”(ri) and G'(ry) are, respectively, the second
and first local derivatives of the reduced RDF, taking
advantage of the fact that the derivatives of a function
exaggerate the noise in that function.

Since the numerator of the function I is sensitive to
the noise in the data while the denominator de-
emphasizes the importance of the noise in those regions
where G(r) is changing rapidly, one may obtain a smooth
rather than flat (uniform) G(r) by simply making I
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minimal. Thus, according to Soper (1990), the functional
QO to be minimized is

QO=r3>+1. 8)

We explored the approach of Soper (1990) and our
test calculations showed that, when a noise function / of
the type

N
/L :I;([_G("k-z) +16G(r,_;) — 30G(r,)

+16G(ry1) — Glry.4)T’/{explconst| G(r,)
= G(ri_1)I] + explconst| G(r,. ) — G(rIT}) (9)

is employed, quite reliable results are obtained. The
good performance of this function is based on the
suitable choice of its components. For the calculation of
the local second derivative of G(r) [the numerator of
(9)] a five-data-point scheme is employed (Savitzky &
Golay, 1964) which exactly accounts for the high-
frequency noise in the data. If three- or seven-data-point
schemes are employed, the noise in the data is under-
or overestimated, respectively. The denominator is
composed of two exponents whose factors are propor-
tional to the local first derivative of G(r). The exponents
are necessary in order that the rapid changes in the
shape of G(r) are appropriately accounted for. If the
local first derivative of G(r) is not made a factor of
exponents, the peaks in G(r) turn out to be nonphysi-
cally rounded off. Because of the well balanced actions
of the components of the noise function, one can both
efficiently remove the high-frequency noise from G(r)
and preserve the physically relevant sharp features of
G(r). That is why the noise function, I, defined by (9) is
implemented in the program IFO.

Furthermore, as already discussed, experimental S(g)
data often comprise some systematic errors that cause
the appearance of false oscillating features in the
corresponding RDF. Since the false oscillations usually
involve correlations between a large number of data
points in real space, the noise function 7, designed for
removing presumably high-frequency false features, may
not be sensitive enough to them. In order to cope
successfully with low-frequency artifacts in both reci-
procal and real space, we introduced two additional
constraints on the solution searched for by corre-
spondingly adding two new terms to the functional Q to
be minimized. The constraints involve all data points
being considered and ensure a consistent overall beha-
viour of the reconstructed RDF and its Fourier associate
S(g). One of these constraints, S1, is based on the so-
called integral ‘sum rule’ (Wagner, 1978),

e e}
f qZ[S(q) ¥ 1] dq = 2”2,00 = Sltheor1

q=0

(10)

and concerns the experimental data in reciprocal space.
For finite experimental S(q) data it can be written as
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qmax
Z‘LZ[S(CI,) = 1]Aq = anpa = Sllheor.

q=0

The other, S$2, is based on the relation (Klug & Alex-
ander, 1974) :

(11)

[oe]
[ p(Anr? dr = N* —1,

7=0

(12)

which can be readily reduced to the following ‘sum rule’
concerning finite real-space data:
rlTlEiX
> rG(r)Ar = —1 = §2theer, (13)
r=0
(Here N*' is the number of all atomic species in the
disordered material.) As a result, the functional Q

employed in the program /FO comprises the following
terms

Q — )\XZ 4L /'LI + ylsltheor = Slcalcl AL 5|521he0r - Szcalcl
(14)

whose sum is to be minimized. Here it may be added
that since (11) and (13) are only true for decided values
Of Gmax and 7., Tespectively, the integral constraints S1
and S2 should be considered as relatively ‘soft’ and be
used to direct the image-reconstruction process towards
a solution consistent with them only. Thus, by selecting
proper values for the Lagrange-type multipliers A, u, y
and 8, which are input parameters to the program IFO,
one may obtain an RDF which reproduces as closely as
necessary the experimental S(g) data (due to the x?
term) and which is a smooth, i.e. a noise-free, function
(due to the 7 term); it also behaves consistently with the
‘sum rule’ applicable to real-space data (due to the S2
term). The Fourier counterpart of such an RDF will be a
structure factor that is as close to the original one as the
quality of the experimental data allows (due to the x*
term), that does not introduce false oscillations in the
corresponding G(7) (due to the I and S2 terms) and that
satisfies the respective ‘sum rule’ (due to the S1 term).
Therefore, a minimization of the functional of (14), may,
in principle, yield both a structure factor that is
corrected for statistical and systematic errors and an
RDF of improved quality. The efficiency of the image-
reconstruction-type technique described here has been
demonstrated by our test calculations discussed later.
There are several computational approaches that may
be employed for the minimization of the functional Q
presently considered. Since Q incorporates terms of data
related by a nonlinear transformation and since a cycling
between real and reciprocal space is inevitable with the
minimization process, some iterative computational
approach, as shown in practice (Press et al., 1992), is
appropriate. For the minimization of Q a Monte Carlo-
type approach, that is essentially iterative and is not
prone to get stuck into local ‘false’ minima, has been
adopted in the program /FO. In the Monte Carlo
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approach it is considered that there exists an ensemble
of RDFs, {G(r),}, which encompasses all possible
images of the available experimental data, each image
occurring with some probability, p,,, defined as

Pm = exp(=0y) (15)

where Q,, is the value of the functional Q [(14)] for the
respective image G(r),.. Clearly, the G(r), with the
highest probability of occurring is the one for which the
functional Q is minimal and it is exactly the solution
searched for. Since the minimum of Q is usually rather
flat, a number of G(r),,’s have a high probability of
occurring. As a result, the Monte Carlo approach yields
a solution representing a weighted (ensemble) average
of all such G(r),’s; with the weights are the corre-
sponding probabilities p,. The G(r),’s with a high
probability of occurring are searched for by carrying out
a random walk through configuration space of all
possible G(r),’s. This random walk, known as an
‘importance sampling’ (Binder & Heerman, 1992), starts
with the calculation of an RDF G(r).4, €xactly corre-
sponding to the available set of experimental data
{S(g:)}, and of the corresponding value of the functional
0, Qoq. Then, one randomly selected data point of
G(r)oq is subjected to a small change (usually of the
order of £0.05) and the value of the functional O, Onew
corresponding to this already modified RDF G(r)acw is
calculated. The change made is accepted if the following
inequality,

(16)

where 7 is a random number uniformly distributed in the
interval [0, 1] and AQ = Qgig — Onew holds. The para-
meter o, which is an input parameter to the program
IFO, is used here to renormalize the differences AQ,
which are usually very small numbers, and to control the
percentage of accepted changes. When a change is
accepted, the just generated G(r)new is stored in a
statistical sum and is further considered as the next
G(r)oe- If a change is rejected, the current G()ola 18
stored in the statistical sum and is again considered as
G(r)oia. The process is repeated until a preset number of
changes has been made and the functional Q has been
minimized. Finally, an assembly-averaged RDF G(r) is
calculated on the basis of all G(r),’s which, together
with their corresponding probabilities p,,, have been
stored in the statistical sum

exp(—aAQ)>1,

s s
G(r) = 2 PmG)n/ 2P 7
where S is the number of accepted changes. As usual,
some number of G(r),’s sampled during the initial
stages of the random walk are not included in the
statistical sum defined by (17) in order that the solution
is not influenced considerably by the starting data.
Accordingly, accumulation of the statistical sum in the
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program IFO starts only when 10% of the preset
number of trials to be accepted has really been achieved.
As an option, one extra, rather stringent, constraint,
requiring that the reconstructed G(r) behaves as —4mrp,
(Wagner, 1978) for values of r smaller than a preset
small real-space distance, has also been included in the
program IFO. It has been found that even a temporary
switching on of this constraint in the course of the
reconstruction process considerably reduces the number
of Monte Carlo trials necessary to reach the global
minimum of the functional Q and, furthermore, helps in
removing some of the residual systematic errors in the
S(g) data which, if present, show as false oscillations
near the origin of real space.

3. Test applications of IFO

To check the performance of the technique for image-
reconstruction-type calculation of RDFs we applied the
program [FO to a number of theoretical and experi-
mental data-sets representing examples of some
frequently occurring cases.

3.1. Reconstruction of RDFs for a Percus-Yevick hard-
sphere liquid

A structure factor for a hypothetical hard-sphere-like
liquid, having the atomic number density of liquid tin
(p, = 0.035 at. A™3), has been derived using the Percus-
Yevick equation (Waseda, 1980). This is shown in Fig. 1,
with the corresponding RDF G(r), obtained by a direct
Fourier transformation, shown in Fig. 2. Since, in order
to mimic an experimental data-set, the S(q) data have
been deliberately calculated only up t0 Gmax = 12 A7,
some truncation ripples are seen in real space. No other
false features are expected to be present in the original
G(r) data since the theoretically derived structure factor
is inherently free from statistical and systematic errors.
Such errors were introduced in the S(g) data and the
program IFO was then applied as follows. At first we
simulated statistical noise in the S(g) data by adding/
subtracting a small number inversely proportional to the
original S(g) values. As one can see in Fig. 1 the noise we
have introduced becomes more and more noticeable
with the increase in g values, as usually occurs with
experimental S(q) data. One can also see in Fig. 2 that
the statistical noise in the S(g) data propagates in the
G(r) data obtained by a direct Fourier transformation
and gives rise to some false features (see the region
between 6 and 8 A). Application of the image-recon-
struction technique clearly restores the original S(g)
data in the finest detail (see Figs. 1 and 2) and corre-
spondingly removes the false features from the G(r)
data. Besides, the amplitudes of the termination ripples
are also reduced and the first peak in the reconstructed
G(r) does not exhibit a nonphysical shoulder on its high-
r side. It may be added that the constraint requiring that
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G(r) behaves as —47rp, at small values of 7 has not been
applied during the particular reconstruction process
carried out with the following values of the Lagrange
parameters: A =8, u =5, y=2and § = 2.

Having ascertained that the image-reconstruction
technique successfully copes with noisy S(g) data, we
went on with an evaluation of the case of S(g) data
comprising some systematic error. The original S(q) data
were systematically distorted by adding an oscillation
having a short period in g. The imperfect S(g) data
obtained are shown in Fig. 3. and the corresponding
RDF G(r) in Fig. 4. As one can see in Fig. 4 the
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Fig. 3. Structure factors for Percus—Yevick hard-sphere liquid.
Theoretical error-free data (full line); theoretical data with an
added oscillation modelling a systematic error having a short period
in g (full line; upper part); reconstructed data (full line with
symbols; lower part).
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by: direct Fourier transformation of the error-free structure factor of
Fig. 3 (full line); direct Fourier transformation of the deliberately
distorted structure factor of Fig. 3 (broken line; upper part); the
image-reconstruction technique (symbols; lower part).
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systematic error in the reciprocal-space data introduces
pronounced false features in the real-space data. The
period of oscillations in G(r) shifts and the first peak of
G(r) appears split up. Application of the program IFO
removes the systematic error from S(q) (see Fig. 3) and
the false features from G(r) (see Fig. 4). The particular
image-reconstruction process has been carried out with
the use of the constraint requiring that G(r) behaves as
—4mrp, at small values of r and with the following values
of the Lagrange parameters: A = 5, u = 50, y = 10 and
Ga=3il 0}

One more case that occurs in practice is that of S(g)
data containing both statistical and systematic errors.
This rather worse case was simulated by making the
original S(g) data noisy as already described and adding
to them an oscillation slowly varying with g. The
manipulated S(g) data are shown in Fig. 5 and their
direct Fourier transform, G(r), in Fig. 6. As one can see
in the figures, the combination of an imperfection slowly
varying with g and high-frequency noise causes both
pronounced false oscillations concentrated presumably
at small values of r and high-frequency ripples modi-
fying the shape of G(r) at higher values of r [see the G(r)
data for values of r greater than 10 A]. Application of
the image-reconstruction technique restores the original
S(q) data (see Fig. 5) and removes all spurious features
from the G(r) data. To achieve this positive effect the
constraint requiring that G(r) data behave as —4srp, at
small values of r was applied and the following values of
the Lagrange parameters were used: A =5, = 50, ¥ = 10,
d = 10. In summary, the test calculations carried out
clearly demonstrated that the IFO program efficiently
removes systematic errors of short and long period in g
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. and noise from S(g) data and thus yields RDFs of
improved quality.

3.2. Reconstruction of RDFs for sol-gel-derived TiO;
layers

TiO, layers, produced by the sol-gel route, were
subjected to electron diffraction experiments that
yielded the structure factor given in Fig. 7. Detailed
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Fig. 6. Reduced RDFs for Percus—Yevick hard-sphere liquid obtained
by: direct Fourier transformation of the error-free structure factor of
Fig. 5 (thin full line); direct Fourier transformation of the imperfect
structure factor of Fig. 5 (broken line with symbols; upper part); the
image-reconstruction technique (broken line with symbols; lower
part).
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Fig. 7. Structure factors for TiO, layers (middle). Experimental data
(thin full line); reconstructed data (symbols). The lower line gives
the difference between the experimental and reconstructed data.
For comparison, the upper line is a calculated structure factor for
microcrystalline TiO,.
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structural studies (Petkov, Holzhiiter et al., 1998) have
shown that the particular TiO, layers are a mixture of
amorphous TiO, and crystalline anatase, giving rise to
the slowly and rapidly varying with g features in the
experimental S(q) data, respectively. Since the S(q) data
turned out to be rather noisy, mainly because the
thickness of the layers investigated was only of the order
of 500 A, too many spurious sharp features appeared in
the G(r) data, which made interpretation difficult. As
one can see in Fig. 8, application of the image-recon-
struction technique successfully removed the statistical
noise from the experimental S(g) data and the corre-
sponding false oscillations in the RDF G(r); some
physically relevant features of G(r) were considerably
sharpened [see the first peak in G(r) positioned at
approximately 2 A]. At the same time, the sharp peaks
in the original structure factor, due to the presence of a
small amount of crystalline anatase, remained intact.
This result illustrates well that, although smooth solu-
tions are favoured by the image-reconstruction tech-
nique considered here, no physically relevant sharp
features are removed from the experimental structure
functions being reconstructed; this is due to the suitable
choice of the noise function, I, implemented in the
program IFO. The reconstructed G(r) data have not
been forced to behave as —4mrp, at small values of 7
since no reliable estimate for the atomic number density
of the TiO, layers investigated could be obtained. The
values of the Lagrange parameters used were: A = 10, p
=20,y=0and § =0.

3.3. Reconstruction of the partial RDF Gyi_ni(r) for
Nig;B ;o metallic glass

Partial RDFs for NigB;, metallic glass have been
obtained by neutron diffraction experiments making use
of the isotopic substitution technique (Lamparter et al.,
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Fig. 8. Reduced RDFs for TiO, layers obtained by: direct Fourier
transformation of the experimental data of Fig. 7 (thin full line); the
image-reconstruction technique (broken line with symbols).



616

1982). Some features of the experimental data, in
particular the presence of a small hump just after the
first main peak in Gyini(7), however, have not been
reproduced well by recent model calculations; this has
inspired some discussion about their physical relevance
(Sietsma & Thijsse, 1991; Ee et al., 1998). To address this
point we applied the image-reconstruction technique to
the experimental Sy; ni(g) data shown in Fig. 9 with
Lagrange parameters of the following values: A = 50, u =
5,v=2and 8§ = 2. As one can see in Fig. 10 the recon-
structed G(r) does not exhibit any hump after its first
main peak. Furthermore, the first peak in the recon-
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Fig. 9. Ni-Ni partial structure factors for Nig;Bj, metallic glass.
Experimental data (full line); reconstructed data (broken line);
difference between the experimental and reconstructed data (full
line with symbols).
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Fig. 10. Ni-Ni partial RDFs for Nig;B;, metallic glass obtained by:
direct Fourier transformation of the experimental data of Fig. 9 (full
line); the image-reconstruction technique (broken line with
symbols). The position of the small hump under question (see text)
is indicated by an arrow.
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structed G(r) is slightly increased in amplitude when
compared to that in the G(r) obtained by a direct
Fourier transformation, which is in line with the
predictions of molecular dynamics simulations (Ee et al.,
1998). These observations suggest that the small hump
in Gnini(r) very likely originates from some residual
error in the experimental structure-factor data. As one
can see in Fig. 9, the errors likely to be present in
Snini(g) are of quite a small magnitude and are
concentrated at high values of g. The present test
example demonstrates the usefulness of the image-
reconstruction technique in testing the significance of
fine features in experimentally derived structure func-
tions for disordered materials.

3.4. Reconstruction of RDFs for silicate glasses

Energy-dispersive X-ray diffraction experiments
(EDXD) on a series of calcium-aluminium silicate
glasses have been carried out recently (Petkov, Gerber
& Himmel, 1998). The experimental structure factors,
well extended in reciprocal space, for two of the glasses
investigated are shown in Fig. 11 and the corresponding
RDFs G(r), obtained by a direct Fourier transformation,
in Fig. 12. As one can see in Fig. 11 the G(r) for silica
glass has a well defined first peak positioned at
approximately 1.61 A, which is due to first-neighbour
Si-O atoms forming well defined tetrahedral structural
units. The first peak in G(r) for Cag;7Aly5SiosO, glass
shows some evidence of splitting into two components,
one due to Si-O first neighbours and another most
probably due to AI-O first neighbours. Since the
amplitude of the false oscillations in the experimental
RDF data, although not very high, is of the order of the

Cag17Al5S8ig50,

IS
n
|

=
(=)
1

Reduced structure factor g[S(g)-1]

I
<
n

|

|
U
(=)

e T T T T e T T T T T e =TT =—T—T—T==T—T—T

10 15 20 25 30
q (A

o
W

Fig. 11. Structure factors for silica and Cag;,AlysSipsO, glasses.
Experimental data (thin full line); reconstructed data (broken line
with symbols).
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magnitude of the high-r component of the first peak in
G(r) for Cag;7AlysSipsO, glass, the question arises
whether the observed splitting has a structural origin or
is an experimental artifact. To answer this question we
first applied some standard procedures for reducing the
amplitudes of the false oscillations in G(r) data. The
results are shown in Fig. 13. As one can see in the figure,
the inclusion of a modification function M(q) =
exp(—constg®) in the direct Fourier transformation
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w
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Fig. 12. Reduced RDF:s for silica and Cayg17Alg5Sig 5O, glasses obtained
by: direct Fourier transformation of the experimental data of Fig. 11
(thin full line); the image-reconstruction technique (broken line
with symbols).
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Fig. 13. Reduced RDFs for Cag17Aly sSip sO; glass obtained by: direct
Fourier transformation of the experimental data of Fig. 11 (thin full
line); application of a corrective procedure based on repetitive
Fourier transformations (symbols; upper part); introduction of a
modification function in the direct Fourier transformation (broken
line with symbols; lower part).
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reduces the amplitude of the false oscillations but the
loss of resolution is so severe that the fine, physically
relevant features of G(r) are no longer recognizable.
Application of the repetitive Fourier transformation
correction procedure (Kaplow et al., 1965) removes the
false oscillations at small values of r only and, therefore,
one is unable to discriminate between the false and real
features of the RDF for Cag17AlysSigsO- glass at higher
values of r. By contrast, application of the image-
reconstruction technique (A =20, u =50, y=5and §=5)
successfully removes the false oscillations from the G(r)
data without spoiling their resolution (see Fig. 12). As a
result one can see that the splitting of the first peak in
G(r) for Cag17AlysSigsO; glass is unlikely to be an
experimental artifact and, hence, one can conclude that
well defined Si—O and Al-O coordination units do exist
in this disordered material. It is worth noting that the
first Si-O coordination number has been estimated to be
3.76 (15) and 3.95 (15) when the first peak of the
conventionally obtained and the reconstructed G(r) for
silica glass, respectively, have been fitted with Gaussian-
like functions. This finding demonstrates the potential of
the image-reconstruction process in improving the
accuracy of all structure-relevant information contained
in experimental structure functions for disordered
materials.

3.5. Reconstruction of Gge(r) for (Rb,0).2(Ge03)os
glass

Recently, anomalous wide-angle X-ray scattering
(AWAXS) has become more and more popular thanks
to the widespread availability of synchrotron radiation
sources. AWAXS involves the measurement of a few
diffraction spectra near the absorption edge of some of
the atomic species constituting the material under study
and a derivation of the so-called difference structure
factor reflecting the atomic arrangement only around
that species (Shevchik, 1977; Waseda, 1984). The
difference structure factor is, however, highly suscep-
tible to the quality of the individual total S(g) and may
turn out to be considerably distorted unless highly
accurate AWAXS experiments have been carried out
(Fishburn & Barton, 1995). As an example, a difference
structure factor Sge(q) of (Rb,0)02(GeOs)os glass,
obtained by recent AWAXS experiments carried out at
Stanford Synchrotron Radiation Laboratory, California,
USA (Stachs et al., 1998), is shown in Fig. 14. As one can
see in the figure, this structure factor is considerably
distorted as a result of some deficiencies in the experi-
mental and/or data-reduction procedures. As a result
the corresponding RDF G(r) exhibits large-amplitude
spurious oscillations that render it almost unusable (see
Fig. 15). Application of the image-reconstruction tech-
nique (A = 5, u =50, y = 10 and § = 10), however, seems
to have successfully removed most of the errors from the
experimental data and yielded an RDF with quite a
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reasonable behaviour (see Fig. 15). In fact, the recon-
structed Sg.(q) and Gg.(7) are rather similar to those
obtained by another independent AWAXS study on a
glass of the same chemical composition (Price et al.,
1997). In order to achieve this result we forced the
reconstructed RDF to behave strictly as —47rp, at small
values of r.

In general, our test calculations clearly demonstrated
that the image-type reconstruction of RDFs has real
advantages over the direct Fourier inversion of S(g) data
and may be applied with confidence to real data.
However, the success of this approach in yielding reli-
able RDFs, even when the S(g) data available are not
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Fig. 14. Germanium difference structure factor Sg.(g) of

(Rb;0)02(Ge0,)os glass. Experimental AWAXS data (thin full
line); reconstructed data (broken line with symbols).
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(Rb,0),2(Ge0,), 5 glass obtained by: direct Fourier transformation
of the experimental data of Fig. 14 (thin full line); the image-
reconstruction technique (broken line with symbols).
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quite accurate, does not lessen the importance of
experimental efforts to improve the quality of the latter.
In this respect, the program IFO could be used to
control the quality of the experimental S(g) data and
reveal the presence of errors which are to be corrected
by carrying out complementary measurements or
adjusting the raw-data-reduction procedures. When all
possible experimental improvements have been made
IFO could be again applied for removing the small
residual experimental and computational artifacts and
improving the accuracy of the final RDF and S(q) data.
Such structure functions of improved accuracy are
highly desirable for extracting reliable structure para-
meters for disordered materials and for successfully
carrying out computer modelling such as reverse Monte
Carlo simulations.

4. Implementation of IFO

The program /FO has been written in Borland C++ and
its present version consists of about 1000 statements.
The program has been designed for IBM-compatible
personal computers equipped with a VGA/SVGA
graphics card. /FO runs under MS-DOS or as a DOS
application under Windows95 and occupies 330 kbytes
of core memory. To apply the program to a particular set
of S(q) data, one needs to prepare two input data files,
one containing the original experimental data them-
selves [g, S(q); two columns in free format] and the
other containing the values of the parameters guiding
the Monte Carlo sampling procedure. These parameters
are as follows: the step, Ar, in which G(r) is calculated
(usually Ar = 7/qax); the maximal real-space distance,
Tmax, t0 Which G(r) is calculated (usually 7., < 7/Aq);
the Lagrange-type multipliers A, i, ¥ and § involved in
the functional Q; the amplitude of the change of a given
G(r) data point; the constant o determining the
percentage of accepted Monte Carlo trials; the number
of accepted changes which is to be reached in order to
stop the reconstruction process; the average atomic
number density p, of the material whose RDF is sear-
ched for (optional); an on/off flag determining whether
the reconstructed RDF should behave as —4mrp, below
a given r, limit; and the 7, limit itself.

During running of the program, the current percen-
tage of accepted Monte Carlo trials and the values of the
functional Q and its four constituents, x?, I, |S1™°"—
$1°'| and |$2™°°" — §2°!%, are dumped on the screen in
order to help the user judge how the Monte Carlo search
converges. By the press of a key, the starting and the
current S(q) and G(r) data as well as the corresponding
differences [S(q)start_ S(q)current; G(r)start = G(r)current]
may be displayed on the screen by means of built-in
graphics routines. When a particular reconstruction
process is complete, the program [FO automatically
creates two files containing the G(r) data calculated
according to (17) and their Fourier associate, a corrected
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S(q) function, respectively. When necessary, the recon-
struction process could be further continued by using
these stored data files as input files. If proper values for
the parameters guiding the Monte Carlo search have
been selected a successful reconstruction of an RDF
takes approximately half an hour on an IBM PC with
166 MHz Pentium processor. The most important of
these parameters, the Lagrange-type multipliers A, i, y
and 8, are always automatically renormalized after
having been supplied by the user so that their relative
magnitudes, reflecting the actual quality of the S(q) data
being processed and the available prior information
about the RDF being sought, are, in practice, involved in
the functional Q. With this described architecture the
program [FO is easy to use and no special knowledge of
computers is required on the part of the user. A copy of
the program [FO is available from the authors upon
request (email petkov@phys.uni-sofia.bg) or may be
downloaded from www.phys.uni-sofia.bg/dsspm/users/
petkov/.
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