
Visualizing Graph Dynamics and Similarity
for Enterprise Network Security and Management

Qi Liao
Department of Computer
Science and Engineering
University of Notre Dame

Notre Dame, Indiana, U.S.A.
qliao@nd.edu

Aaron Striegel
Department of Computer
Science and Engineering
University of Notre Dame

Notre Dame, Indiana, U.S.A.
striegel@nd.edu

Nitesh Chawla
Department of Computer
Science and Engineering
University of Notre Dame

Notre Dame, Indiana, U.S.A.
nchawla@nd.edu

ABSTRACT
Managing complex enterprise networks requires an under-
standing at a finer granularity than traditional network mon-
itoring. The ability to correlate and visualize the dynamics
and inter-relationships among various network components
such as hosts, users, and applications is non-trivial. In this
paper, we propose a visualization approach based on the hi-
erarchical structure of similarity/difference visualization in
the context of heterogeneous graphs. The concept of hierar-
chical visualization starts with the evolution of inter-graph
states, adapts to the visualization of intra-graph clustering,
and concludes with the visualization of similarity between
individual nodes. Our visualization tool, ENAVis (Enter-
prise Network Activities Visualization), quantifies and presents
these important changes and dynamics essential to network
operators through a visually appealing and highly interac-
tive manner. Through novel graph construction and trans-
formation, such as network connectivity graphs, MDS graphs,
bipartite graphs, and similarity graphs, we demonstrate how
similarity/dynamics can be effectively visualized to provide
insight with regards to network understanding.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network
Operations—Network Management ; H.5.2 [Information In-
terfaces and Presentations]: User Interfaces; K.6.5 [
Management Of Computing and Information Sys-
tems]: Security and Protection

General Terms
Security

Keywords
Visualization, security, enterprise networks, graphs, visual
graph data mining, local context, policy assessment

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
VizSec’10 September 14, 2010, Ottawa, Ontario, Canada.
Copyright 2010 ACM 978-1-4503-0013-1/10/09 ...$10.00.

1. INTRODUCTION
Complex systems such as large-scale enterprise networks

are hard to manage in terms of security and troubleshoot-
ing. In cases of security investigation and performance trou-
bleshooting, tracking down precisely who (users) and what
(applications) are responsible for the generation of this net-
work connectivity is a non-trivial task. Administrators need
a tool that allows them to sift through massive amounts of
traffic logs in a visually appealing and interactive manner
that encourages data exploration with minimum effort.

Traditionally, network monitoring and logging schemes
are focused on point-to-point communications that involve
hosts’ IP addresses and port numbers. Out of the few visual-
ization tools [1–7] that exist, most rely on either per-packet
information or NetFlow data. These visualizations often fall
short in enterprise settings where users and applications are
more important from a security policy perspective than the
particular host IP and/or port [8–10].

Visualizing enterprise networks is challenging due to the
increased number of data dimensions and finer granularity of
information that occurs within enterprise networks. Under-
standing the enterprise networks involving hosts, users, and
applications is especially hard due to the highly dynamic
nature and inter-dependency causality relationships among
users and applications. Although the network connectiv-
ity naturally condenses to well-connected graphs, the nodes
and connection edges are constantly changing, making vi-
sual comparison and classic anomaly detection less effective
due to lack of clean training data.

The key challenge is how to effectively visualize the dy-
namics and similarity (or conversely difference) among the
heterogeneous network graphs consisting of hosts, users, and
applications. Similarity visualization is important because
it is usually the first step in understanding the patterns in
networks and potentially finding abnormal behaviors. The
ability to extract the meaningful knowledge from otherwise
highly dynamic and noisy data and present them in a visu-
ally appealing manner that can provide insights to enterprise
security management is non-trivial.

The security visualization approach that we propose ties
together intelligent data analysis involving graph theory and
data mining algorithms as well as interactive data explo-
ration/querying mechanism to drill down the root cause of
potential security issues. The visual analysis presented in
this paper builds on a hierarchy of similarity visualization
ranging from inter-graph to intra-graph clustering visual-
ization to dynamics visualization in each individual nodes

based on four different types of graphs. Novel graph con-
struction is formalized for host-user-application (HUA) con-
nectivity graphs [10], bipartite (or multi-partite graphs),
multi-dimensional scaling (MDS) graphs, and similarity graphs
based on common properties shared by two nodes. Each
type of graph has been illustrated to show what insight can
provide and how clever algorithms and visualization can help
security management and network monitoring.

2. BACKGROUND
Managing large scale enterprise networks is hard due to

the complexity and dynamics of the context of a connec-
tion, i.e., the user (who) and application (what) responsible
for the network activity, to be known rather than simply
where (address) it came from and went to. The local context
information (4W: who, what, when and where) associated
with each network connection can be collected in a variety
of ways. Tools such as [8–10] describe various mechanisms
to collect the missing context data. The dataset to be visu-
alized, explored, and analyzed by the network operators and
administrators is nevertheless challenging due to the magni-
tude, temporal nature and heterogenous property of network
graphs. Unlike end-to-end flow data, there is a wealth array
of local context information involving hosts, users, applica-
tions and files. However, how to present and convey only
essential knowledge is not easy. Besides the magnitude, the
temporal nature of the network context data also makes vi-
sualizing the time evolution of network activities especially
hard. Moreover, traditional data mining algorithms become
less effective due to the lack of clean, noise-free data, which
is unlikely in the high level of dynamics in user and applica-
tion connectivity. Furthermore, few data mining algorithms
can deal with the heterogenous graphs because the node
types can be either hosts, users or applications. Other fac-
tors such as how to construct the graphs (there are usually
numerous ways to do so) and how to decide the time win-
dows are challenging and also interesting as different types of
graph construction can lead to different interesting problems
in terms of best suitability and most effective visualization.

With the proposed visual analytic framework, the admin-
istrator is presented with an array of connectivity graphs
and statistics on how the network is being used. To as-
sist the user in understanding the many possible visualiza-
tion modes, we utilize a novel meta-visualization which com-
pactly represents and controls how data is represented, as
developed in our prior work [10]. By adjusting the Host-
User-Application (HUA) control, the investigator can easily
expand, contract, and explore a very rich data space in a vi-
sually appealing and highly interactive manner. At the top
level, we have H denoting the host level chaining, which is
similar to NetFlow data map. This is also the most common
scenario, in which all the connectivity between physical end-
host machines is constructed. At the lower levels, we have U
and A, denoting the user and application level chaining; this
is useful when we want to quickly know which users or appli-
cations have been communicating with each other. The user
may switch between views and filter out HUA information
in a customizable level of granularity. An example of HUA
graphs is presented in Figure 1. For example, suppose an
enterprise user jdoe logged onto a host cselab01.domain.edu
and launched the application firefox.exe to visit the web-
server www.cnn.com, a straightforward way of constructing
an HUA graph would be a directed path: [cselab01]→ [jdoe]

H H

U AU A

l b01 l b01

psmith
ssh

ill

cselab01

crc05 psmith

cselab01

crc05

ssh

jdoe

mozilla

condor
bomber jdoe bomber

mozilla

condor

cse‐gw‐06 cse‐gw‐06

Figure 1: Examples involving only two network com-
ponents (i.e., bipartite graphs): HU, HA and UA.

→ [firefox] → [cnn]. In the next few sections, we will de-
scribe other novel ways of graph construction as well.

Our visualization tool suite (ENAVis) allows the network
administrators to view their network activities at the user
and application levels in addition to the topology created
by the host connectivity. The tool allows network opera-
tors to visualize, explore and analyze the network activities
among hosts/domains, users and applications, which is pos-
sible through the gathering of local context information. The
tool offers interesting, ready-to-use, and invaluable functions
for monitoring, visualizing, exploring, investigating and an-
alyzing the activities on a network by real-world network
administrators. The methodology of visual analysis on dif-
ferent graphs can have wide applications in network man-
agement such as security policy audit, forensics, and fault
localization.

While being able to visually examine the network activity
graphs augmented with the above HUA context information
can be helpful, an even more powerful yet challenging task
is how this wealthy set of data can be viewed and converted
into human-understandable knowledge that can potentially
help network operators to gain insights and to make high-
level decisions on their network strategies. How can the an-
alytical methodologies such as graph mining and graph the-
ories can be combined with visualization techniques as well
as interactive data exploration and querying mechanisms
to provide intelligent assistance? Understanding enterprise
networks requires a higher level of visualization since it is
not simply to visualize the data literally, but how to present
the data in a meaningful and insightful manner. Motivated
by this, visual mining capability as an intelligence module
has been built into the visualization tool for analyzing net-
work related local-context data. The intelligence module
quantifies the network changes (and similarities) in a scien-
tific manner, and guides the exploration process by present-
ing only things that need further examination and investi-
gation. We demonstrate how this visual analysis combined
with various novel views and visualization techniques, graph
theories and data mining techniques can aid human opera-
tors to gain such insights and achieve better understanding
on their managed enterprise networks, and can provide ad-

vises for potential problems/anomlies that are otherwise not
so obvious even with effective visualization process.

The next few sections focus on one important direction,
i.e., how to visualize the dynamics and similarities in com-
plex enterprise networks. We ask important questions in en-
terprise network monitoring and security management, such
as how different (or conversely how similar) is from day-
to-day network activities; what are the variance and invari-
ance; what are the patterns; which changes are normal while
others are abnormal ; and how to visualize the evolution and
the dynamics of changes.

3. SIMILARITY VISUALIZATION OF EN-
TERPRISE NETWORK GRAPHS

Enterprise network systems are represented as graphs where
the dynamic interactions between network components such
as hosts, users, applications and data naturally form a com-
plex network. One of the most relevant features of graphs
representing real systems is community structure, or cluster-
ing. Visualizing the community structures and clusters of-
fers significant contributions in understanding the networks
and has applications in network security including traffic
classification and anomaly detection for abnormal user and
application behavior. Therefore, cluster visualization will be
an important component of similarity visualization.

We illustrate how the tool can provide insight for under-
standing and solving practical network management and se-
curity problems through a hierarchical similarity visualiza-
tion. We discuss the similarity visualization in a top-down
manner by starting with the top level, where we want to
visualize the similarity/differences among network graphs
across multiple timelines. Next, we move down one level to
each individual graph and try to identify the similar struc-
ture among groups of nodes. Novel ways were developed
for dealing with the heterogeneous network graphs by trans-
forming them into different types of graphs, i.e., network
connectivity graphs, bipartite graphs and similarity graphs.
Lastly, we show another aspect of similarity visualization at
the bottom level, i.e., how dynamics of neighborhood change
at each individual node.

3.1 Inter-graph Cluster Visualization
The first step of anomaly detection is to understand what

is similar among all days’ traffic pattern and what changes
are abnormal. Visualization of similarity/changes is there-
fore essential to network monitoring and security. However,
visual comparison of similarity/changes even between mod-
erately sized graphs (Figure 2) becomes a challenging task
due to physical constraint of human perceptual and cogni-
tive limitations.

To quantify the changes of network graphs, appropriate
metrics must be defined to suit the need of an organization.
Generally, common graph properties such as graph sizes,
diameters, degree distributions, etc. can be used as a first
step of measuring the day-to-day changes happened in the
managed networks. While these metrics are relatively coarse
(e.g., graphs having exactly the same degree distribution
can be very different), finer granular metrics such as graph
edit distance may be used to quantify the changes at the
nodes/edges level.

In this section, we focus on the top level of the similarity
visualization by comparing the network graphs as a whole.

(a) HUA graph 1 (b) HUA graph 2

Figure 2: Examples of two moderately sized HUA
graphs. Visual comparison of what changed and
what not changed is infeasible.

Each node in an inter-graph cluster will represent one snap-
shot graph taken at a specific time. A concrete example is
given to illustrate how to visualize the inter-graph clusters
based on graph distance visualization.

3.1.1 Graph Distances
While general graph properties such as degree distribution

and graph sizes can be useful in getting a rough idea about
the changes in networks, they are sometimes too coarse to
be useful in the setting of enterprise network management,
where the administrator usually wants to know exactly what
host or what user is causing the problem. Methods based
purely on topological information while not differentiating
node labels are not suitable in enterprise network manage-
ment since even two topologically identical graphs consisting
of two different sets of hosts will rarely be treated the same
by an administrator. While a full description of the dif-
ferences between two large networks is infeasible because it
requires solving the subgraph isomorphism problem, many
graph algorithms become very efficient due to the fact that
each node in an enterprise network is uniquely labeled, ei-
ther by its IP address, user ID or process ID.

While several graph distances are defined in the literature
[11], without loss of generality the following general metrics
are adopted to evaluate the graph similarity (or distance)
between any pair of heterogeneous HUA graphs. However,
it is understood that different weights may be put on the
nodes/edges based on the needs of different organizations.

MCS based distance: The rationale behind this maximum
common subgraph (MCS)-based metric [12] is based on the
portion of subgraph structure that both graphs share, i.e.,

d(g1, g2) = 1− |mcs(g1, g2)|
max(|g1|, |g2|)

Essentially, it is the graph size of the common part divided
by the graph size of original graphs. If two graphs are exactly
the same, then the size of MCS equals the original graphs,
and the distance will be 0. On the other hand, if two graphs
are totally different, the size of MCS will be zero resulting
a distance of 1.

Edit based distance: In information theory, the edit dis-
tance is the number of operations required to transform one
of them into the other. For exact graph matching, graph
edit distance (GED) [13] can be used for this purpose. The

Spikes of changes

Daily graphs 14, 15, 16

Figure 3: Similarity measurement of day-to-day net-
work graphs using various distance functions.

basic idea of graph edit distance is the costs associated to
modify a graph such that it becomes isomorphic to the other
graph. The rationale behind this scheme is the more steps
taken to transform from one graph to the other the larger
the distance. One way to calculate the edit distance is to
compute the deletion cost from g1 to MCS(g1, g2) and plus
the insertion cost from MCS(g1, g2) to g2. If all cost func-
tions equal to one, then the normalized distance function
can be simplified to:

d(g1, g2) =
|g1|+ |g2| − 2|mcs(g1, g2)|

|g1|+ |g2|

Intuitively, if two graphs are matched exactly the same, the
numerator will be zero, resulting a zero distance. On the
other hand, if two graphs do not share a single node, result-
ing a distance value of one.

3.1.2 Case Study
In this example, the administrator opens up the tool,

quickly loads the data of the past month, which automat-
ically generates network graphs involving the connectivity
of hosts, users and applications. The first thing he does
is to plot a graph distance chart (Figure 3) over the entire
investigation period.

Figure 3 shows normalized pairwise distances of network
connectivity graphs between consecutive days using six dis-
tance metrics: MCS-based, GED-based, edge-weighted GED
based, and then for each metric a median graph1 was com-
puted over a sliding time window of five days and was used
to compare against rather than immediate predecessors. It
clearly shows spikes of changes in day 14 and 15. The ad-
ministrator wants to know what are the main causes behind
those big changes and whether all days after day 15 are
converging to earlier states or moving further away, which
cannot be directly derived from Figure 3.

In order to answer the above questions, a distance matrix
composed all pairs of graphs is computed. Now, the admin-
istrator needs to plot and visualize the graphs’ relative posi-
tions to each other. Generally speaking, knowing the exact
locations of points, computing their distances is straight-

1
Median graphs are computed by taking the medians of edge weights

of all graphs.

Transition

High distance implies heavy changes

Figure 4: A multi-dimensional mapping (MDS) vi-
sualization illustrates the cluster evolution of net-
work graphs. Network states transit at day 14 and
15.

forward (e.g., Euclidean distance). However, the opposite
way, i.e., knowing their pairwise distance, finding their ex-
act x/y coordinates is not straightforward, and sometimes it
may or may not be possible to find the exact points in lower
dimensions (2D or 3D), which are the valid spaces for visu-
alization. Multidimensional scaling (MDS) [14,15] has been
proposed to visualize high-dimensional data by mapping the
graph nodes into lower-dimensional space.

Therefore, the administrator chooses the MDS menu from
the visualization tool, which performs a mapping of the dis-
tance matrix into a 2D space, so the administrator can use
the tool to visualize the inter-graph cluster evolution, pre-
sented in Figure 4. Each node represents a network graph
on a specific day, and an edge is drawn to indicate the evo-
lution of movement over one month’s period. Condensing a
daily network graph into just a node in a MDS graph reduces
the dataset significantly for clearer and more effective visu-
alization. While the temporal lines are just for illustration
purpose, the lines can be optionally set invisible if one wants
to examine the past year’s graphs instead of just past month.
The numbers in the node labels reflect the time sequences of
network graphs. Note that such a global MDS view on the
evolution of network graphs shows the relative relationships
between all HUA graphs. The MDS view shows roughly
three clusters: lower left (day 0-8), upper left (day 9-14),
and right (day 15-33). Interestingly, graphs on day 14 and
15 are of particular interest because they act like impor-
tant state transition nodes that bridge between two clusters.
Clearly, the networks after day 15 form a cluster that does
not go back to the original state, but instead moving further
away from the state of previous graphs. This view greatly
enhances administrators’ understanding and insight on their
networks.

One open question still remains as what actually causes
the network state changes starting from day 14 and 15?
In order to drill down to the root cause, the administra-
tor uses the tool’s distance-by-components function (Fig-
ure 5), which provides the top n network graph components
that contribute most to daily changes. Two applications
sge commd and sge execd run by the root user and user 1025

Figure 5: Drill down of the individual responsible
hosts, users or applications through top n list point-
ing to two users: root and 1025, running Sun Grid
Engine (SGE) related applications that contributed
nearly 25% daily network graph changes.

are the top two heavy hitters which contribute almost 17%
and 25% on both days.

Further investigation through dynamic interaction with
the network graph of the 14th day is conducted by selecting
and visually exploring the problem node facilitated through
the sorting capability by node degree and edge weights. A
1-hop view from a node under investigation (user 1025) is
generated on-demand (Figure 6) showing the source and des-
tination hosts and applications associated with that user.
The administrator dynamically interacts with the network
graph by clicking the node and choosing the context-aware
menu with trend option to view the activity (by weighted de-
grees, which takes into consideration the magnitude of con-
nectivity) of a node under investigation. The activity chart
automatically generated next to the node clearly indicates
that this user 1025 emerged on day 14 and stayed on for all
following days. Thus the cause of network state changes is
discovered that new user and new application, i.e., Sun grid
engine communication agent run by this user are responsible
for the shift of network communication patterns.

3.2 Intra-graph Cluster Visualization
In the previous section, we illustrated that the inter-graph

cluster visualization can be a good starting point to find
anomaly from a top-down fashion. Through interactive graph
exploration and queries, the root cause can be quickly iden-
tified to specific users and applications with minimum effort.
In this section, we move the hierarchical similarity visualiza-
tion one level down and focus on the similar nodes within a
graph rather than among graphs, namely why some users,
applications and hosts should be grouped together and what
potential insight of those structure changes can bring to
us. Before visualizing clusters within graphs, graphs need
to be constructed and/or transformed in ways that either

Figure 6: One-hop view from the node under inves-
tigation with automatic user activity view pins down
the cause of transition during the days 14 and 15 to
this user with two new applications.

topological-based or attribute-based methods can be devel-
oped. The graphs we consider here are: HUA connectivity
graphs, HUA bipartite graphs, and HUA similarity graphs.
We illustrate how each clustering method is suitable for dif-
ferent HUA graphs and what information gain over tradi-
tional IP/port connectivity graphs from a cluster visualiza-
tion perspective.

3.2.1 HUA connectivity graphs
We start with grouping similar nodes within an enterprise

network graph involving hosts, users and applications. The
HUA connectivity graphs represent the actual connectivity
among various network components with the augmented lo-
cal context of network connections. It is ideal for provid-
ing an aggregate view and capturing the inter-relationships
among hosts, users and applications. While the tool imple-
ments other alternative graph-based community detection
methods, state-of-the-art graph clustering algorithm: Walk-
trap [16] is chosen for illustration purpose due to the fact
that the similarity measurement of Walktrap is based on a
simple yet effective assumption: a random walk tends to be
trapped in highly connected or dense area. Walktrap has
been widely recognized for the capture of the community
structure in a network [17].

A screenshot of one example of intra-graph clustering is
overviewed in Figure 7, where nodes belong to different clus-
ters are colored differently for easy visualization. Clusters
number one and two are web related communities, where
cluster one shows all external domains connected by fire-
fox, and cluster two shows an internal web server that has
been accessed by a group of clients. Cluster number three
shows seven enterprise users sharing a similar set of appli-
cations that have queried the campus directory server: di-
rectory.domain.edu. The giant cluster number four shows
a well structured condor community formed by a few local
and condor users that have launched batch jobs in the con-
dor enabled computing nodes on campus. The nice thing of
visualizing clusters on the entire HUA graph is the aggregate
view of the grouping of both hosts, users and applications
based on the topological information derived from the actual
network connections.

Visualizing the intra-graph clusters can not only provide
insight on monitoring the network activities occurred in a

2

3

1

4

Figure 7: Intra-graph cluster visualization (different
colors represent different clusters) using Walktrap
algorithm helps understand the communities, e.g.,
firefox users (1) and web related traffic (2), condor-
related research computing community (4), or enter-
prise users running a set of desktop applications that
exhibit similar patterns of connectivity (3). This in-
formation has potential to identify anomalous user
behaviors.

busy enterprise network, but also naturally find anomaly.
For example, by observing the cluster evolution over a cer-
tain time series, it is possible to detect users who changed
their cluster memberships due to either shift of application
usage patterns or changes of source/destination machines on
which they conduct their network activities.

The visualization of cluster evolution involving the hosts,
users and applications reveals the shift of usage pattern that
can be readily spotted by the administrators. To facilitate
the process, there must be a way to compute the distance be-
tween two sets of clusters. The normalized cluster distance
function is defined as

dist(C1, C2) = 1− SS + DD

SS + SD + DD + DS

where SS and DD represent the number of nodes staying
either in the same cluster or in different clusters in both C1

and C2, SD and DS represent the number of nodes that are
in the same cluster in C1 but belong to different clusters in
C2, and vice versa. This simple yet effective way to measure
the changes of clusters is based on an idea similar to the
Rand Index [18]. Once the similarity/distance between any
two sets of clusters C1 and C2 can be computed, visualizing
the cluster changes/evolution becomes straightforward.

3.2.2 Bipartite graphs
Visualizing clusters in the context of heterogeneous graphs

that have different types of nodes (hosts, users and appli-
cations) is similarly challenging due to its complexity. An
alternative approach to find such structures in HUA graphs

Biclique community two

Biclique community one

Figure 9: Example of biclique communities consist-
ing of enterprise users running similar sets of net-
work applications. The user JDoe migrating from an
exclusive community (top) to overlapping communi-
ties (bottom) indicates possible violation of network
usage policy.

is thus desirable. The idea we present here is to separate
the general graph into bipartite graphs, which breaks down
the heterogeneity property as well as the complexity of HUA
connectivity graphs by considering each pair of hosts, users
and applications at a time. Normally, a general graph is not
guaranteed to transform into a bipartite graph, equivalent
to the graph coloring problem. A graph is bipartite if and
only if it does not contain an odd cycle, or in other words a
bipartite graph cannot contain a clique of size three or more.
However, the heterogeneity properties of HUA graphs allow
vertices to be divided into disjoint sets H, U, and A. Possi-
ble types of bipartite graphs are host-to-host, user-to-user,
application-to-application, host-to-user, user-to-application,
and application-to-host, etc.

Visualizing network connectivity in bipartite or multi-
bipartite graphs can provide a clearer view of the roles that
either a host, user, or application plays in the network flow.
The augmented HUAH quadripartite view shown in Figure
8(b) demonstrates an expanded view over the HH bipartite
in Figure 8(a) since Figure 8(b) involves the finer details of
the connectivity paths involving users and applications.

It is important to notice the information gain from Fig-
ure 8(a) to Figure 8(b). For example, by clicking on a user
node, all machines that the user has logged on and all ap-
plications that the user has launched will be highlighted.
In this specific screenshot in Figure 8(b), one questionable
application ssh is selected, and four users who ran ssh are
highlighted, together with all source hosts those users have
logged on and all destinations hosts connected via ssh are
also highlighted. This is equivalent to showing the critical
paths of investigation after a compromise or attack. It also
helps to understand and find the patterns in the network,
e.g., which users or applications usually connect to which set
of machines. Multi-bipartite graphs are useful for modeling
the matching problems and finding the bonds between hosts

(a) Bipartite View: Traffic flow between local
hosts (left) and remote hosts (right).

(b) Quadripartite View: Gain insight information by expanding
host-host relationship and visualizing continuous HUAH bipar-
tite graphs.

Figure 8: Rather than having a relatively simple point-to-point view (left), administrators can expand the
dimensions of network connectivity with multi-bipartite view with extra information gain in users and ap-
plications (right) for elevated insight. Clicking on a questionable node will highlight the critical paths of
investigation that go through that node.

and users, users and applications, etc.
The biclique communities detection algorithm [19] is used

in our visualization tool to find all bicliques of hosts, users
and applications in the above bipartite graphs. Biclique
communities detection algorithm is based on k-clique com-
munity detection algorithm. Essentially, k is subdivided into
two values: ka,b meaning the clique (a complete graph) con-
sists of a of left nodes and b of right nodes. A ka,b community
is defined as a union of all ka,b cliques that are adjacent. The
communities detected by clique detection are strong commu-
nities because they are the maximal connected graphs that
one can ever get. One uniqueness of biclique clustering is
that distinct communities can overlap by sharing nodes. The
concept of overlapping communities is usually not available
in most other community detection algorithms, and is in-
teresting in the context of enterprise network management
and security. For example, a user can belong to multiple
communities due to different tasks required by job functions.
Visualizing these network of communities linked by bridging
nodes can be of particular interests from policy compliance
perspective.

Figure 9 provides a hypothetical example of biclique com-
munity visualization. The view shows two biclique commu-
nities for a user-application type of bipartite graph. The top
community is characterized by the usage pattern of typical
enterprise users, which involves primarily desktop applica-
tions that have network connections. The bottom bipartite
community includes a set of applications that according to
the policy can be accessed only by employees in human re-
source (HR) and finance department. The enterprise user
JDoe who has a role of normal enterprise user changes his
exclusive cluster membership to an overlapping community
with the HR and financial cluster. Furthermore, the ad-
ditional file sharing applications (bittorrent and john-the-
ripper) are clearly against the network usage policy.

While this example only shows the user-application bipar-

tite graph, many other options are available. For example,
we can observe the bicliques that involve the hosts and users
and tell which users change usage behaviors by logging onto
a different set of machines. Another example would be an
application-host type of bipartite graph. This type of bipar-
tite community visualization can easily tell the evolution of
the set of target machines that each application contacts.
This would be helpful to investigate the virus/worm infec-
tions, botnet activities or other maliciously abnormal appli-
cation behaviors. Insights can be derived through observing
the evolution of biclique communities. The intelligence be-
hind visualization makes network monitoring a more scien-
tific approach.

3.2.3 Similarity Graphs
While network connectivity graphs are ideal for visual ex-

ploration of what is going on in the network, another in-
teresting type of graphs we can visualize is called similarity
graphs. Similarity graphs break down the heterogeneity by
constructing a homogeneous graph in a novel and interest-
ing way: edges representing the common properties that any
pair of nodes may share. For example, users A and B would
be connected if they share the same applications or logged
onto the same machines. Note that the edges between nodes
are no longer the network connections but the degrees of sim-
ilarity among them. It is called a similarity graph because
we essentially push the similarity level into the edge weights.
ENAVis performs the visualization of homogeneous similar-
ity graphs in the following manner.

Host graphs: The nodes represent the hosts while the weight
of the edge between any pair of host nodes represents one
or more of the following:

• Hosts: the number of same destination hosts to which
the two hosts connected;

• Users (local): the number of same users who logged on
and had network activities on both hosts;

(a) Similarity graph of applications by users (b) Group selection of application
nodes, and highlights of similar users

(c) Bridges between clusters (d) Similarity graph of users by applications

Figure 10: Visual exploration of clusters of similarity HUA graphs provide an interesting alterative view of
network graphs and provide insights of how similar and what relationship among hosts, users, or applications.

• Users (remote): the number of same users who con-
nected to both hosts;

• Applications (local): the number of same applications
running on the two hosts;

• Applications (remote): the number of same remote ap-
plications that connected to both hosts.

User graphs: The nodes represent the users while the weight
of the edge between any pair of user nodes represents one or
more of the following:

• Applications: the number of same applications run by
the two users;

• Hosts (local): the number of same local hosts on which
the two users logged and made network connections;

• Hosts (remote): the number of same remote hosts to
which the two users contacted.

Application graphs: The nodes represent the applications
while the weight of the edge between any pair of application
nodes represents one or more of the following:

• Users: the number of same users who ran both appli-
cations;
• Hosts (local): the number of same hosts on which both

applications ran;
• Hosts (remote): the number of same hosts to which

both applications connected.

3.2.4 Case Study
Figure 10 shows examples of similarity graphs, e.g., an

application similarity graph with the edges representing the
degrees of similarity based on the users who ran those ap-
plications (Figure 10(a)). If two applications do not have
an edge connecting them, that means they have two disjoint
sets of users. The higher the edge weights (and thicker the
edges), the more common users they share and therefore
the more similar the nodes are. At a zoom-in view (Figure
10(b)), multi-selection is enabled to allow an administrator
to select a group of nodes (whose labels automatically high-
lighted in a bold font) under investigation and to perform

context-aware, on-demand queries. A table view shown on
top of the investigated nodes displays all overlapping users
(highlighted in grey colors) that the two applications (SSH
and firefox) share. Furthermore, a normalized distance score
(e.g., 0.6842) is shown on the table’s title. The score is com-
puted based on edit distance of two feature vectors to mea-
sure the similarity quantitatively among the two selected
nodes.

As shown in Figure 10(a), clearly there are well connected
clusters. Zoom-in view provided in Figure 10(c) shows the
upper-left cluster is the applications mainly run by the root
users while the lower-right cluster is the applications used
by the condor users. Interestingly, there are two types of
bridges connecting these two clusters: one through the edge
(parrot–condor shadow), and the other through the node
(java). A further exploration suggests that the bridging edge
between the two applications parrot–condor shadow is made
possible by one enterprise user: rmckexx, who ran both ap-
plications that resulted in network connections. Not only
application parrot serves as the bridge node between the
root cluster and the condor cluster, parrot also serves as the
gateway to the rest of graph as it was run by many other
users as well.

The converse part of an application similarity graph by
users is a user similarity graph by applications (Figure 10(d)),
which is a quite different view since instead of measuring how
similar of applications, it measures how similar of users. A
focus view of such a graph (Figure 10(d)) shows user rm-
ckexx and user condor share one common application con-
dor shadow. The fully connected upper-left cluster is the
firefox community, in which all users used firefox at least
once that connected to somewhere. A further investigation
can easily continue by generating a similarity graph of ap-
plications by the destination hosts, so what common desti-
nations that applications such as firefox connected to can
be visualized.

The interactive exploration interface provided by this vi-
sualization tool allows an administrator to quickly extract
insightful information from his/her network that is otherwise
obscure in network connectivity graphs. By removing the
heterogeneity of HUA graphs (i.e., only homogeneous nodes
of either hosts, users, or applications remain) and using the
novel graph construction method via pushing similarity de-
grees into edge weights, it becomes easier to visualize the
inter-relationships and similarities among the host, user, or
application nodes in network graphs.

3.3 Node Similarity Visualization
In the previous sections, we discussed the similarity visu-

alization on the evolution of between graphs (inter-graphs),
and group structures within graphs (intra-graphs). We present
the bottom part in the hierarchy of similarity visualization:
the dynamics/similarity of each individual node.

The challenging part of the data visual analysis is the
highly dynamic properties of the enterprise network graphs.
The network components of graphs such as the host, user or
application nodes tend to be different at every moment. We
need an efficient way to visualize the neighborhood changes
over time.

A natural process of analyzing these dynamics is to exam-
ine how the nodes’ neighborhood changes over time. Given
a HUA graph, the following metrics are used to investigate
the dynamic properties of nodes:

firefox-bin

parrot
chirp_distrib

chirp_server condor_shadow

Figure 11: Dynamics of node degrees over a three-
month period. Each line represents a node. Ap-
plications are among the top nodes having largest
standard deviations of degree changes.

• Hosts: How does the composition of users change over
time? How consistent is the set of users logging on the
machines?

• Users: How does the composition of hosts on which
they logged change? How does the set of network ap-
plications they run change over time?

• Applications: How does the group of users who run
those applications change over time? How do the tar-
get machines contacted by these applications change?

Manual comparison of each element in two sets is time
consuming and error prone. Visualization can make this
process much quicker and easier. To that end, another visu-
alization function is developed in our tool that can assist a
network administrator to quickly browse through each node
and easily get the answers for each of the above questions
with just a few mouse clicks.

Figures 12 and 13 show screenshots of visualizing the dy-
namics of nodes. There are four components for each view.
First, the upper left is the options for filtering and ordering
nodes. Administrators can select whether to view host, user
or application nodes, and select whether to sort the nodes
by labels or by the dynamic scores (explained later). Sec-
ond, the lower left part is the list of node names. By clicking
on any node in the list, two additional views are rendered
automatically on the right panels: a table view (lower right)
and a chart view (upper right). For example, if a host node
in the left list is selected, all users that have logged on that
host during the past month are shown on the lower right
table. The exact date and day-of-week are also listed in the
table column headers to help identify any potential usage
pattern over weekdays vs. weekends. If the users appear ev-
ery day during the inspection period, the table cell elements
are highlighted in gray color indicating they are overlapping
across all sets of nodes. Finally, for easier visualization, a
scatter view is plotted (upper right), where each dot of differ-
ent shape and color represents a unique node of specific type
(e.g., user). The x-axis represents the time while the y-axis
represents the total number of unique neighbors appeared
over the entire time period. Through this visualization, what
hosts, users or applications that appear consistently all days

Figure 12: Nodes dynamics/similarity visualization.
Selecting a questionable user node (sorted by dy-
namic scores) in the left list automatically plots all
the applications that user ran over an entire month’s
period. Dots of different shapes and colors repre-
sent unique applications. New applications emerged
from day 17 to 20 (highlighted).

are easy to observe as well as the outliers which appear only
once or twice over the entire month. Moving the mouse
pointer over the dots in the chart reveals the host addresses,
user identities or application names. For easy correlation,
the shapes and colors used in the charts are also prepended
to the identity names in the table view, much like legends.

While the visualization provides a straightforward way of
examining how dynamic each node is, in order to quantify
the degree of dynamics, a dynamic score is computed for
each node to rank them in an ascending order in the node
list on the left. By this way, a busy administrator can simply
rank the nodes by the scores and look at the top dynamic
nodes for possible anomalies. The dynamic scores of nodes
are normalized as DS(n) = 1− Na

Nu∗T , where Nu is the num-
ber of unique labels of neighbors of node n spanning over the
entire time T (e.g., days) and Na is the actual appearance
of all nodes over T .

3.3.1 Case Study
We start by visualizing the dynamics of node degrees across

a three-month period in a regular fall semester (Sep.1 - Dec.
1, 2009), as shown in Figure 11. The rest experiments in this
section are consistently based on the same data. Each line
in the chart represents one unique node. While most nodes
(at bottom) have small variations as expected, there exist
a few nodes exhibiting highly dynamic behaviors. These
nodes mainly belong to web browsers and condor -related
applications such as parrot and chirp. For example, firefox-
bin can have as high as 500 neighbors on one day and have
only 75 neighbors on some other day. The dynamics were
mainly due to the number of unique external domains that
the firefox-bin had visited on each day. A distributed system
like condor [20] is also highly dynamic due to the nature of
the scientific computation jobs being queued, scheduled and
dispatched to run on a pool of cooperative research comput-
ing nodes. For example, application condor shadow was run

Figure 13: Changes of the source hosts on which
the same user have logged and had network activi-
ties. The significant increase of the number of dif-
ferent hosts from day 17 to day 20 is caused by the
new applications (condor, hexdoku, etc) highlighted
in Figure 12.

by only three users and connected to 19 destination hosts,
but on the next day 11/4/2009 (Wed), it had six users and
connect to as many as 290 hosts covering nodes from ccl,
cvrl, iss, sc0, helios, cheg, and netscxxx machines.

Figure 12 shows the change of the set of applications
that users launched to make network connections over one
month’s period. The view clearly shows the patterns for each
user’s activities over time. Among the most used applica-
tions by a selected user hwanxx are firefox-bin, gweather-
applet, and ssh. Some applications used for a short pe-
riod of time (day 17, Mon, Nov 30,2009 to day 20, Thu,
Dec 03, 2009) are batch job related, i.e., condor exec, con-
dor shadow, sh, hexdoku. Similarly, Figure 13 shows the
source hosts on which the same user hwanxx has logged.
The user hwanxx ’s office computer cse-gw-02.domain.edu is
consistently listed everyday. Suspiciously, from day 17 to
day 20 there are much more number of source hosts on
which hwanxx had run programs than any other days. The
anomaly indicates further investigation. By comparing Fig-
ure 12 and 13, there is reason to believe the new applications
(condor exec, condor shadow, sh, hexdoku) on days 17 to 20
caused the abnormal activities. Examining the original log
data files further confirm this. Further visual exploration on
the changes of the users who ran the application (LifePar-
allel) shows this application has been run by the root user
consistently, except by one user psempoxx on day 2 and 3.
Three target machines to which the same application have
contacted are consistent over time except on day 2 and 3,
which coincides the time frame with the new user psempoxx.
It is verified from the data that the new additional target
hosts were caused by this user. These above examples show
that how such a simple visualization for the node dynamics
can help human investigators quickly browse through each
node, find activity patterns, detect potential anomalies, and
find the underlying correlations of activities and causes.

4. RELATED WORK
Visualization is useful for enterprise network management

and security [21–23]. However, existing solutions have in-
volved tie-ins of network flow data or packet analysis. For
example, src/dst IPs and ports can be analyzed in 2D scat-
ter plots (PortVis [24]), 3D scatter plots (InetVis [25]), and
stacked histograms [26]. Fields of packet headers can be vi-
sualized from libpcap data (TNV [1], Rumint [2], etc). Crit-
ically, these existing systems are not geared towards real-
world system administration. Packet-based and network
flow data will only detail the where of a connection, but not
who (users) and what (applications). Out of existing visual-
ization and data exploration tools (NetFlow Visualizer [3],
NFlowVis [4], ISIS [5], NVisionIP [6] and VisFlowConnect-
IP [7]), they primarily rely on chaining together network
connections based on the NetFlow or sFlow data. How-
ever, multiple hop connections are typically obfuscated due
to the nature of network flows; the level of detail supplied is
traditionally limited to the IP addresses and port numbers
involved. As stated earlier, the key weakness of packet/flow
data is the missing user and application information, which
is critical for enterprise network management [8–10].

The network data can be naturally converted into graphs.
Graph-based network traffic visualization [27] has been used
to monitor host behavior. Detection of intrusion and net-
work anomalies can be analyzed and visualized through graph
drawing and graph clustering [28], pixel luminance based
histographs (IDGraphs [29]), or animated glyphs [30]. While
some of graphs can be replayed via animation, they are
still statically generated and both interactive exploration
and intelligent analysis modules are missing. The proposed
visualization intends to provide insight through both au-
tomatic intelligent analysis and manual interactive visual
exploration and queries to understand host, user and ap-
plication behaviors. Additionally, administrators usually
do not know what type of anomaly expected to see, mak-
ing definition in advance impractical. Rather than focusing
on specific threat model based on the magnitude of attack
(e.g., port scanning, SYN flood, worm outbreaks, etc.), we
seek a general visualization framework with no restriction
in any specific anomaly or thread model on enterprise net-
work graphs that can convey important knowledge of simi-
larity/difference patterns of network activities.

In this paper, we focus on one important aspect of intel-
ligent visualization, namely the similarity and dynamics vi-
sualization in the context of heterogeneous graphs involving
hosts, users and applications. In a primitive stage, ASCII-
based visualization [31] uses a series of different symbols such
as ‘.’, ‘+’, to indicate the up/down states of IP addresses
for efficiency consideration. To quantify network changes,
graph edit distance [13] has been suggested to measure the
topological evolution. We illustrate how patterns of similar-
ities can be effectively visualized on a hierarchical structure
ranging from inter-graphs clustering to intra-graphs cluster-
ing to dynamics visualization on individual nodes. Most im-
portantly, how network connectivity graphs can and should
be transformed into various forms in order to achieve this
goal.

Finally, tools such as Cytoscape, Pajek, Gephi, and Ti-
tan/VTK exist for general graph visualization and analysis.
While these programs are designed to visualize and analyze
the general networks, there exist several differences. First,
we focus on the dynamics of enterprise networks with het-

erogeneous graphs involving hosts, users and applications.
Many generic graph algorithms would fail to produce mean-
ingful results in this setting. Our tool is tailored toward
solving practical network security and management prob-
lems faced by busy administrators. For example, the above
general graph visualization tools will not show the evolu-
tion of clusters by comparing different graphs and cleverly
suggest which changes are abnormal and need further inves-
tigation. Second, we provide dynamic visualization in which
the interactive exploration part (e.g., by clicking on nodes,
performing query on demand, etc.) is essential to pin down
the root cause of anomaly quickly. Static graph plots and
visualization fall short in this case. Lastly, although Pa-
jek and Cytoscape have extensive graph analytic functions,
the analysis strictly focuses on pure graph properties and
topological information while neglecting node labels. In the
enterprise network settings, nodes are uniquely identified by
either their network addresses, user IDs or process names.
Since there are also many ways to construct graphs, what
are the most suitable ways of transforming and interpret-
ing various types of graphs needs careful study. Therefore,
general graph visualization is not enough in this case.

5. CONCLUSION
Traditionally, the network monitoring and visualization

consists of end-to-end flow or per packet information that
involves primarily IP addresses and/or port numbers. In en-
terprise network setting, two other important and most dy-
namic network components, i.e., the enterprise users and ap-
plications, provide a rich set of local context information as-
sociated with each network flow. The increasing dimensions,
complexity, dynamics, and causality inter-relationships cre-
ate a challenge in network visualization and analysis. In
this paper, we study how to effectively visualize the network
activities that involve hosts, users and applications. We
demonstrate the important role that similarities/distance
metrics and visualization can play in our understanding of
networks and practical network management and security
problems. Novel ways of transforming context data into dif-
ferent types of graphs focusing on network connectivity, bi-
partite, multidimensional scaling and similarity graphs are
also discussed. Through a hierarchal structure of similarity
visualization ranging from inter-graph, intra-graph cluster-
ing to node dynamics visualization, this visual analytical
framework provides significant insight to researchers, net-
work operators and administrators.

6. REFERENCES
[1] J.R. Goodall, W.G. Lutters, P. Rheingans, and

A. Komlodi. Focusing on context in network traffic
analysis. IEEE Computer Graphics and Applications,
26(2):72–80, March/April 2006.

[2] Gregory Conti. Rumint – open source network and
security visualization tool. http://www.rumint.org.

[3] P. Minarik and T. Dymacek. Netflow data
visualization based on graphs. In Proc. of 5th
International Workshop on Visualization for
Computer Security (VizSec’08), pages 144–151,
Cambridge, MA, September 15 2008.

[4] F. Fischer, F. Mansmann, D.A. Keim, S. Pietzko, and
M. Waldvogel. Large-scale network monitoring for
visual analysis of attacks. In Proc. of 5th International

Workshop on Visualization for Computer Security
(VizSec’08), pages 111–118, Cambridge, MA,
September 15 2008.

[5] D. Phan, J. Gerth, M. Lee, A. Paepcke, and
T. Winograd. Visual analysis of network flow data
with timelines and event plots. In Proc. of Workshop
on Visualization for Computer Security (VizSEC ’07),
pages 85–99, Sacramento, CA, Octoboer 29 2007.

[6] K. Lakkaraju, W. Yurcik, and A.J. Lee. NVisionIP:
netflow visualizations of system state for security
situational awareness. In Proc. of the 2004 ACM
workshop on Visualization and data mining for
computer security (VizSEC/DMSEC), pages 65–72,
New York, NY, 2004.

[7] W. Yurcik. Visualizing netflows for security at line
speed: The SIFT tool suite. In Proc. of 19th Large
Installation System Administration Conference (LISA
’05), page 16, San Diego, CA, December 4-9 2005.

[8] P. Hertzog. Visualizations to improve reactivity
towards security incidents inside corporate networks.
In Proc. of the 3rd international workshop on
Visualization for computer security (VizSec ’06),
pages 95–102, Alexandria, Virginia, November 3 2006.

[9] D. Lalanne, E. Bertini, P. Hertzog, and P. Bados.
Visual analysis of corporate network intelligence:
Abstracting and reasoning on yesterdays for acting
today. In Proc. of Workshop on Visualization for
Computer Security (VizSec’07), pages 115–130,
Sacramento, CA, October 29 2007.

[10] Q. Liao, A. Blaich, A. Striegel, and D. Thain.
ENAVis: Enterprise network activities visualization.
In Proc. of the USENIX 22nd Large Installation
System Administration Conference (LISA ’08), pages
59–74, San Diego, CA, November 9-14 2008.

[11] A. Schenker, M. Last, H. Bunke, and A. Kandel.
Comparison of distance measures for graph-based
clustering of documents. In Graph Based
Representations in Pattern Recognition, Springer
LNCS, volume 2726, pages 187–263, 2003.

[12] H. Bunke and K. Shearer. A graph distance metric
based on the maximal common subgraph. Pattern
Recognition Letters, 19(3-4):255–259, March 1998.

[13] H. Bunke, P.J. Dickinson, M. Kraetzl, and W.D.
Wallis. A Graph-Theoretic Approach to Enterprise
Network Dynamics (Progress in Computer Science and
Applied Logic (PCS)), volume 24. A Birkhäuser
Boston book, 2007.

[14] T.F. Cox and M.A.A. Cox. Multidimensional Scaling,
Second Edition. Chapman & Hall/CRC, September
2000.

[15] H. Bunke, P. Dickinson, A. Humm, Ch. Irniger, and
M. Kraetzl. Applied Graph Theory in Computer
Vision and Pattern Recognition, volume 52, chapter
Graph Sequence Visualisation and its Application to
Computer Network Monitoring and Abnormal Event
Detection, pages 227–245. Springer Berlin /
Heidelberg, 2007.

[16] P. Pons and M. Latapy. Computing communities in
large networks using random walks. Journal of Graph
Algorithms and Applications, 10(2):191–218, 2006.

[17] S. Fortunato. Community detection in graphs. Physics
Reports, 486(3-5):75–174, February 2010.

[18] W.M. Rand. Objective criteria for the evaluation of
clustering methods. Journal of the American
Statistical Association, 66(336):846–850, Dec. 1971.

[19] S. Lehmann, M. Schwartz, and L. K. Hansen. Biclique
communities. Physical Review E, 78(1):016108, 2008.

[20] D. Thain, T. Tannenbaum, and M. Livny. Distributed
computing in practice: The condor experience.
Concurrency and Computation: Practice and
Experience, 17(2-4):323–356, February-April 2005.

[21] R. Marty. Applied Security Visualization. Addison
Wesley Professional, 2008.

[22] R. McRee. Security visualization: What you don’t see
can hurt you. Information Systems Security
Association (ISSA) Journal, June 2008.

[23] D. Schweitzer and W. Brown. Using visualization to
teach security. Journal of Computing Sciences in
Colleges, 24(5):143–150, May 2009.

[24] J. McPherson, K. Ma, P. Krystosk, T. Bartoletti, and
M. Christensen. Portvis: a tool for port-based
detection of security events. In Proc. of the 2004 ACM
Workshop on Visualization and Data Mining for
Computer Security (VizSec/DMSEC’04), pages 73–81,
Washington DC, 2004.

[25] B.V.W. Irwin and J.P. Riel. Inetvis: a graphical aid
for the detection and visualisation of network scans. In
Proc. of Workshop on Visualisation for Computer
Security (VizSec’07), Sacramento, CA, October 29
2007.

[26] K. Abdullah, C. Lee, G. Conti, and J.A. Copeland.
Visualizing network data for intrusion detection. In
Proc. of the 2002 IEEE Workshop on Information
Assurance and Security, pages 30–38, United States
Military Academy, West Point, NY, June 17-19 2002.

[27] F. Mansmann, L. Meier, and D. Keim. Graph-based
monitoring of host behavior for network security. In
Proc. of Workshop on Visualization for Computer
Security (VizSec’07), pages 187–202, Sacramento, CA,
October 29 2007.

[28] J. Tolle and O. Niggemann. Supporting intrusion
detection by graph clustering and graph drawing. In
Proc. of RAID 2000 Third International Workshop on
the Recent Advances in Intrusion Detection, pages
51–62, Toulouse, France, October 2-4 2000.

[29] P. Ren, Y. Gao, Z. Li, Y. Chen, and B. Watson.
Idgraphs: Intrusion detection and analysis using
histographs. In Proc. of the IEEE Workshops on
Visualization for Computer Security (VizSec’05),
Minneapolis, MN, October 26 2005.

[30] R.F. Erbacher, K.L. Walker, and D.A. Frincke.
Intrusion and misuse detection in large-scale systems.
IEEE Computer Graphics and Applications,
22(1):38–47, Jan/Feb 2002.

[31] A. Stewart. Efficient visualization of change events in
enterprise networks. In Proc. of IEEE Workshop on
Enterprise Network Security, pages 1–6, Baltimore,
MD, Aug.28-Sep.1 2006.

