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Abstract—The explosive demand for data in wireless devices
has driven mobile carriers and the research community to seek
nearly all intriguing technical and economic solutions to data
demand problem. Content pre-staging is the idea to push content
as close to the device as possible, either at the network edge or
on the device itself in order to reduce bandwidth needs at peak
demand times. We posit an interesting twist on this arrangement,
namely to explore the economic implications if mobile device
storage could be made available either by the user or indirectly
by the wireless operator. We model the interplay between the
mobile service carrier, the content provider, and end users as
a Stackelberg game. Utilizing economic levers, the carrier sets
the price for content providers to pre-stage content on mobile
device storage, and provides monetary reward to compensate
users for the usage of their mobile device storage. Through
analyzing the impact of content localization on the economic
well-being of all players, we demonstrate the improvement in
network efficiency from the social welfare perspective. While the
carrier may set prices strategically to retain a larger share of the
increased profitability of the business, such practice benefits all
the three parties in the game, i.e., users gain QoE and content; the
carrier gains in saved capacity and new revenue; and the content
provider gains in increased revenue and increased content access.

I. INTRODUCTION

The past few years have seen a tremendous expansion in
the demand for wireless data across a wide variety of wireless
devices. Traditionally, meeting this rising demand requires
large investments in wireless capacity. Furthermore, given the
limited wireless spectrum available and the slow process by
which new spectrum is re-purposed, the growth in the supply
of wireless capacity is unlikely to keep pace with the massive
increase in demand. Wireless carriers are faced with the reality
of both trying to improve capacity via efficiency or acquisition
whilst simultaneously considering the economic implications
of allocating said limited resources.

For wireless carriers, techniques that improve the efficiency
of the network without significant infrastructure changes can
be quite appealing. The notion of caching as a fundamental
principle has been a significant driver of efficiency for the
Internet since its original inception. Caches can be widely used
throughout the network to improve the Quality of Experience
(QoE) of end users by reducing the pressure on service
providers throughout the network. Unlike in the wired network
whereby an in-network cache might reduce link bandwidth
needs, the mobile device tends to operate best when it par-
ticipates in the caching process due to changing link quality

and mobility dynamics. Unfortunately, caching tends to be
reactive, saving bandwidth primarily against future accesses
but offering little benefit when the content is first downloaded.

In contrast, content pre-staging is the process by which
content is pro-actively pushed to the device during off-peak
times or secondary access mechanisms (ex. D2D [1]). When
done correctly, content pre-staging can be quite effective [2]
but when done poorly, that bandwidth and energy for said pre-
staging is wasted. In this paper, we step back and look at the
notion of content pre-staging from an economic perspective.
Namely, if there existed mechanisms whereby spare mobile
device storage could be made accessible to the carrier via a
well-understood API [3], how might that change the economic
of pre-staging?

In this paper, we study what would the economic impact
be on wireless Internet service providers (ISPs) and mobile
carriers should operator-accessible mobile device storage be
put into practice. In particular, we seek pricing schemes as
economic levers to lead the mobile network players to a
socially optimal state. Traditionally, ISPs and mobile carriers
have used simple flat-rate broadband data plans for both
wired and wireless network access. With the popularity of
mobile devices and expansion of data demand, carriers around
the world have started to explore various broadband access
pricing, penalty, and accounting mechanisms to manage the
data demand [4]. Pre-staging content on mobile devices owned
by end users introduces new revenue streams for carriers, for
example, content providers may have the incentive to pay car-
riers to localize their content to guarantee advertising income
from smooth delivery of advertisements. Content localization
on user mobile devices imposes at least two more pricing
questions on the carrier: how much to charge the content
provider for localizing their content, and how much to reward
end users for the usage of their mobile device storage.

The carrier’s choice of pricing strategy can impact the
behaviors of the content provider and end users which, in
turn, affect the profitability of the carrier. We model the
interplay between the carrier, the content provider, and end
users as a Stackelberg game, where the carrier is the leader,
and the content provider and end users are the followers.
The carrier has the control over unused storage on mobile
devices owned by end users and manages free storage on
mobile devices as part of its system capacity. The economic
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analysis shows that pushing content to local mobile device
storage is feasible by providing appropriate financial incentives
to various stakeholders in the game. The subgame perfect
Nash equilibrium of the three-way game shows that content
localization increases total social welfare, i.e., the combined
economic well-being of the carrier, the content provider, and
end users. The practice benefits each party in the game. First,
end users receive improved QoE by reducing delay in data
delivering since the content is readily available locally on their
devices. Users may additionally receive reward in return for
renting their relatively cheap and unused storage. Users also
gain in consumer surplus while enjoying more content access.
Second, the carrier saves operational cost for time-shifting
demands. With proper pricing, the carrier can maximize its
profitability through new revenue from the content provider
to optimize its content delivery. Third, the content provider
gains from satisfied users and increased advertising revenue
from more content access by users. We note that the split
of increased profitability from localizing content between the
carrier and the content provider is arbitrary. The carrier, as the
leader in the game, has a range of pricing strategies to charge
the content provider to make the content provider willing to
join the game.

II. THE BASE-CASE MODEL

In this section, we first model the key interactions between
the mobile service carrier and mobile users without content
pre-staging. The framework of the Stackelberg game and the
subgame perfect equilibrium derived from backward induction
are discussed.
The Interplay between the Carrier and End Users Before
content localization is adopted, the interplay is mainly between
the carrier and end users. The carrier is of unity, i.e., there is
one of carrier that can be understood as the representative of
all carriers. The carrier sets a per-byte price to charge end
users their data usage. End users choose how much data to
consume. The best strategies of the carrier and end users can
be modeled in a Stackelberg game. In the game the carrier is
the Stackelberg leader, and end users are the followers. They
make decisions in a two-stage game. In the first stage, the
carrier chooses the per-byte data access rate (denoted by p) to
charge end users. In the second stage, users choose how much
data to consume.
Formulating the Carrier-User Game Consider one carrier
with a set of end users. End users own mobile devices and
use them for web browsing, video streaming, reading e-books,
playing games, taking photos, and running applications of all
kinds. Users save photos, applications, music etc. on mobile
devices so that they have both allocated/used storage (down-
loaded music, applications, saved photos, etc.) and free/unused
storage on their mobile devices. Users value both consumption
of network content and data saved on mobile devices. Let xj
be a representative user j’s actual consumption of Internet
content, and Aj be her actual usage of mobile device storage
(i.e., consumed storage for personal data such as photos).
User j acts so as to maximize her consumer surplus function

denoted by Uj(xj , p, Aj) for each end user j = 1, 2, ..., J for
a unit data access price p.

In particular, we assume all data demand by users comes
from accessing content provided by the content provider.
Each user generates nj (a random number) accesses and
the average size of heterogenous content is θ, thus the data
consumption by user j for accessing content is xj = θnj . Due
to possible network congestion, not all content requests can be
successfully served. The user may give up after certain trials,
and an arbitrary content request is supposed to have a success
probability δ ∈ (0, 1]. Since xj is defined as the actual Internet
content consumption by user j (realized demand as perceived
by the carrier), the user’s real (optimal) demand for content
is xj

δ . δ depends on the total congestion on the network, and
it essentially measures user QoE: the higher δ is, the better is
the content access quality experienced by the user.

We assume that end users’ preferences are additively sep-
arable on content access and usage of mobile device storage
so that Uj = vj(xj , p) + vj(Aj) where user j’s total surplus
is the sum of her user surplus from web content access and
the usage of allocated storage. The two components of user
surplus function vj(xj , p) and vj(Aj) are assumed to have the
same functional form. They are both concave and second-order
differentiable with v′ > 0 and v′′ < 0, consistent with the
economic principles of increasing total utility and diminishing
marginal utility. The simplified assumptions allow for better
illustration of model insights. Relaxing the assumptions will
not affect model conclusions in any essential way.

When the carrier has no access to mobile device storage,
the storage allocation of each user’s mobile device plays no
role in the carrier-user game in the base case.

We now consider the carrier’s problem of choosing link
capacity X and data access rate p so as to maximize profit.
The carrier’s costs are assumed to be linear: b is operating
cost per unit of capacity and β is the constant marginal cost
incurred to the carrier in case of network congestion, such
as rationing cost of having to allocate scarce capacity or the
cost of temporarily acquiring additional capacity. Both b and
β are exogenous to the carrier. Thus, the cost function C(X)
is composed of both capacity operation and capacity failure
components, i.e.,

C(X) = bX + β(D(p)−X) (1)

where D(p) =
∑
j xj is the realized demand for capacity by

end users at a given price p.
According to the cost function, the carrier chooses whether

to maintain sufficient capacity by comparing the two cost
parameters b and β,

X =

{
D(p) if b ≤ β
0 if b > β

(2)

We assume the cost of system failure always dominates the
operating cost of the capacity, i.e., b � β. Thus the carrier
uses the pricing strategy to manage data requests by end users
to prevent network failure from happening.



Equilibrium Analysis in the Base Case We analyze the
game using backward induction and first study users’ optimal
strategy. Since the carrier chooses the value of p, user j takes
the price as given and chooses data access request so as to
maximize her consumer surplus Uj . We denote this optimal
demand for data as x∗j (p)/δ. Realized (or served) user demand
is thus x∗j .

We take an isoelastic utility function, a commonly used
functional form of utility in economics. We assume that
users incur a linear data cost. User j’s realized demand for
online content and mobile storage usage solve the following
consumer surplus maximization problem.

max
xj ,Aj

Uj =
(xj/δ)

1−αj

1− αj
+ γj

A
1−αj
j

1− αj
− pxj

s.t. Aj ≤ sj
(3)

with αj ∈ [0, 1). sj is the total storage capacity of user j’s
mobile device. γj is a scaling factor to differentiate user j’s
self valuation of her consumption of content and allocated
mobile device storage. If the user prefers online content to
data saved on allocated storage, γj < 1. If the user assigns a
higher value on data stored on mobile device than accessing
online content, γj > 1.

We use the underline to denote optimal solutions to the base
model, the first order condition of Equation (3) with respect to
xj provides us with the realized online data demand by user
j,

x∗j = p
− 1
αj δ

1− 1
αj (4)

The quantity of content access by the user is accordingly n∗j =

x∗
j

θ = p
− 1
αj δ

(1− 1
αj

)

θ .
In the base case, how much storage users occupy is inde-

pendent of the carrier’s behaviors. The optimal choice of Aj
can be found from the first order condition of Equation (3)
with respect to Aj ,

A∗j = (
λj
γj

)
− 1
αj (5)

where λj is the Lagrange multiplier associated with the mobile
storage cap constraint.

We now consider the carrier’s profit (π) maximization
problem by setting price p and capacity X so that the price
limits end users’ actual Internet content access to no higher
than its chosen capacity,

max
p,X

π = p
∑
j

x∗j − C(X)

s.t.
∑
j

x∗j ≤ X
(6)

Given a price p, the carrier can find X∗(p), the optimal
link capacity as a function of the price p, so as to maximize
profit. We use S(p) = X∗(p) to denote this supply side
function. When end users and the carrier are at a market
equilibrium, supply equals demand, i.e., S(p) = D(p). At

such an equilibrium price p∗, each end user maximizes her
own user surplus by consuming x∗j (p

∗) capacity, and the
carrier maximizes its profit by providing just enough capacity
X∗(p∗) =

∑
j x
∗
j (p
∗) =

∑
j p
∗−

1
αj δ

1− 1
αj from Equation (4).

The carrier’s optimal profit is π∗ = (p∗−b)
∑
j p
∗−

1
αj δ

1− 1
αj .

Suppose initially there is no contractual relationship be-
tween the carrier and the content provider to pre-stage content.
The content provider thus plays no part in the game between
the carrier and its end users. Assuming advertisements are
inserted in content which generates revenue for the content
provider, and the cost function of the content provider is held
fixed, therefore profit maximization is equivalent to generating
the maximum advertising revenue to the content provider.
We suppose the content provider earns an average revenue
a for a content of average size θ. The advertising revenue
received by the content provider in the base case is hence
a
∑
j n
∗
j (p) = a

θ

∑
j p
∗−

1
αj δ

1− 1
αj .

III. THREE-PLAYER GAME MODEL

The section introduces an extended model in which the
carrier implements the content localization policy to access
unused storage on users’ mobile devices. In the meantime
the carrier forms a contractual relationship with the content
provider to pre-stage selected content on mobile devices. To
facilitate the practice of pushing content to local mobile device
storage, the carrier provides proper financial incentives for the
content provider and end users to follow.
Mobile Storage Access Game Formulation Pushing content
to mobile device storage may save scarce capacity, generate
content pre-staging revenue, improve user QoE, and guaran-
tee stable advertising income. Realizing such gains requires
properly chosen pricing schemes. We add a third party, the
content provider to the Stackelberg game. In this three-party,
two-stage game, the carrier is the leader who sets the data
access price (denoted by p), reward rate to pay end users for
the usage of their mobile device storage (denoted by q), and
the content pre-staging rate charged on the content provider
(denoted by r). All the three prices are on a per-byte basis. To
focus the analysis on the two new prices q and r associated
with content localization, we suppose the carrier keeps the
same data consumption rate as in the base case, i.e., p∗ = p∗,
and chooses optimal q and r. The followers making choices
at the second stage are the content provider and end users.
The content provider responds by determining the maximum
amount of content it is willing to pay to store locally. End
users respond by choosing how much content to consume and
the distribution of mobile device storage between allocated
space and free space. The backward induction process leads
to a subgame perfect equilibrium of the game.
Content Provider’s Best Response In contrast to the base
case, maximizing the content provider’s profit is no longer
equivalent to maximizing its revenue when it can pay a
fee to pre-stage content. Its advertising revenue depends on
end users’ access to content. The content provider’s decision
making is to choose the quantity of content pre-staging on



mobile devices, subject to the maximum available unoccupied
storage.

Consider a hypothetical scenario in which the carrier allows
the content provider to pre-stage content in the device storage
of users. If the content is not pre-staged, it is successfully
accessed with probability δ as in the base case. The content
provider is willing to pre-stage content on mobile devices if the
increased advertising revenue exceeds the cost of pre-staging.
Staging content locally increases the chance the content being
accessed by (1− δ) on average. Thus the gain in advertising
revenue per-byte of pre-staged content is (1−δ)a

θ .
Let g be the units of content that the content provider

chooses to pre-stage on mobile devices. Given the per-byte
pre-stage rate set by the carrier, the content provider’s best
response g∗ is straightforward, i.e.,

g∗ =

{ ∑
j(sj −Aj)/θ if r ≤ (1− δ)a/θ

0 if r > (1− δ)a/θ (7)

The content provider’s profit increases as long as the cost
of pre-staging content on mobile devices stays below the
increased advertising revenue from the increased viewing of
content. In such case, the content provider chooses to pre-stage
its content up to the limit the system capacity allows.

End Users’ Best Response The consumer surplus function of
end users depends on the benefits users obtain from Internet
content access, mobile device storage usage, and cost/income
associated with the two. In contrast to the base case, users
now face a tradeoff between their own mobile device storage
usage and the forgone possible reward for unused storage (to
be incorporated into the carrier’s system capacity). The amount
of mobile device storage that users would be willing to share to
the carrier depends on the reward rate. Therefore, the current
form of the consumer surplus function is Uj(xj , p, Aj(q))
where user j’s choice of allocated mobile device storage
depends on the reward rate q set by the carrier.

Users do not have to be aware of whether a particular
content is pre-staged or not. User j consumes xj amount of
data towards the goal of maximizing her consumer surplus,
of which sj − Aj is served locally with pre-staged content.
The rest is delivered directly from the content provider via
the bottleneck link of the carrier when the content is not pre-
staged, denoted by xj − (sj − Aj). User demand for data
is thus xj−(sj−Aj)

δ + (sj − Aj). User j’s net data cost is
pxj − q(sj − Aj), data consumption fee net off rewards for
mobile device storage.

Take an isoelastic utility function, user j’s consumer surplus
maximization problem is

max
xj ,Aj

Uj =
{xj−(sj−Aj)δ + (sj −Aj)}1−αj

1− αj

+ γj
A

1−αj
j

1− αj
− (pxj − q(sj −Aj))

s.t. Aj ≤ sj

(8)

Given a price p, user j’s optimal choice of data consumption
x∗j is provided by the first order condition of Equation (8) as

x∗j = p
− 1
αj δ

1− 1
αj + (1− δ)(sj −Aj) (9)

At this content access level, the user generates
a
θ {p
− 1
αj δ

1− 1
αj + (1 − δ)(sj − Aj)} advertising revenue

to the content provider. Pre-staging a certain content increases
the probability of successful access by (1 − δ). When the
content provider chooses to take full unused storage on
mobile devices, user j’s actual content consumption increases
by (1 − δ)(sj − Aj) (from Equation 4 to Equation 9) at the
same data consumption rate charged by the carrier.

From the first order condition of Equation (8) with respect
to Aj , we derive the optimal allocated storage usage by

user j as ( q−p(1−δ)γj
)
− 1
αj . Considering the mobile storage cap

constraint, the user’s optimal choice of allocated mobile device
storage A∗j is

A∗j = min{(q − p(1− δ)
γj

)
− 1
αj

, sj} (10)

The Carrier’s Decision When unused mobile device storage
is manageable by the carrier, it becomes part of the system
capacity of the carrier, and may be allocated as seen fit by
the carrier to pre-stage selected content. The carrier’s own
link bandwidth is used to serve users’ online content access
requests that cannot be fulfilled locally.

The carrier has two revenue sources: capacity consumption
payment by end users and content pre-staging payment by the
content provider. The carrier’s costs include the cost of link
capacity and the rewards to end users for the usage of their
mobile device storage. The carrier sets three rates (p, q, r) and
chooses link capacity (X) with the goal of maximizing profit.

max
p,q,r,X

π = p
∑
j

xj + rθg − q
∑
j

(sj −Aj)− C(X)

s.t.
∑
j

{xj − (sj −Aj)} ≤ X

(11)
In equilibrium, the actual capacity consumption by end users

is equal to the link capacity of the carrier, i.e.,
∑
j{x∗j − (sj−

A∗j )} = X . The choice of optimal capacity X∗ and the optimal
data access price p∗ have the following relationship.

X∗ =
∑
j

{p∗−
1
αj δ

1− 1
αj − δ(sj −A∗j )} (12)

We call the triple (p∗, q∗, r∗) the optimal pricing strategy of
the carrier. To solve for the strategy, we turn to social welfare
analysis of how content localization may affect the economic
well-being of the mobile service business.

Social Welfare Analysis & The Carrier’s Pricing Strategy
Combining the economic well-being of all three interested
parties (the carrier, the content provider, and end users), the
social welfare function is of the following form.

W = π + ES + CS (13)



where W = net social benefit, π = profit of the carrier,
ES = end users’ surplus, and CS = the content provider’s
surplus. Since the payments made by one party to another
(such as content pre-staging fee paid to the carrier by the
content provider) do not affect social welfare, the net economic
benefit of mobile services depends on users’ valuation of
mobile services and the usage of mobile devices, the carrier’s
costs of providing mobile services, and the advertising revenue
generated from users’ content access, i.e.,

W =
∑
j

Vj − C(X) + a
∑
j

xj
θ

(14)

where Vj is user j’s total utility received from content access
and the usage of mobile device storage.

Compared to the base case, the change in social welfare is

∆W = ∆
∑
j

Vj +
a

θ
∆
∑
j

xj −∆C(X) (15)

In particular, the change in link capacity cost is

∆C(x) = b(X∗ −X∗)

= −b{
∑
j

δ
1− 1

αj (p∗
− 1
αj − p∗−

1
αj ) + δ

∑
j

(sj −A∗j )}

(16)
and the change in advertising revenue is

a

θ
∆
∑
j

xj =
a

θ
{
∑
j

δ
1− 1

αj (p∗
− 1
αj − p∗−

1
αj )

+ (1− δ)
∑
j

(sj −A∗j )}
(17)

The change in end users’ total utility depends on the change
in utility from accessing content and allocated mobile device
storage where

∆
∑
j

V (xj) =
∑
j

{
(p∗
− 1
αj δ

1− 1
αj + (1− δ)(sj −A∗j ))1−αj

1− αj

−
(p∗
− 1
αj δ

1− 1
αj )1−αj

1− αj
}

(18)

∆
∑
j

V (Aj) = γj
∑
j

{
(min{ q

∗−p∗(1−δ)
γj

)
− 1
αj , sj})1−αj

1− αj

−
(
λj
γj

)
−

1−αj
αj

1− αj
}

(19)
For simplicity, let q∗−p∗(1−δ) = λ for all end users so that

users do not change the way they use mobile device storage,
thus A∗ = A∗ and ∆

∑
j Vj = ∆

∑
j V (xj). Alternatively,

suppose at the initial optimal mobile storage consumption level
A∗, the marginal cost of giving up one unit of storage is equal
to the mobile storage access fee q, thus the user is neutral to
the financial reward of q.

Therefore, if the carrier chooses the same data consumption
price as in the base case, i.e., p∗ = p∗, all of the three compo-
nents of social welfare improves, i.e., user utility increases as
they consume more content; the advertising revenue increases
from increased content viewing by users; link capacity cost
is saved as part of the content demand is met locally, hence
∆W > 0. Localizing content on mobile devices increases the
combined economic well-being of the three parties involved.

However, there is still one question remaining: how are
the gains distributed among the parties? To provide financial
incentives for each party, the distribution of social welfare
must satisfy ∆π ≥ 0, ∆ES ≥ 0, and ∆CS ≥ 0. That is,
no party is worse off than before in the scenario of content
localization.

The change in the carrier’s profit is r
∑
j(sj − Aj) −

q
∑
j(sj −Aj)−∆C(X). Combined with Equation (16), we

get
∆π = (r − q + bδ)

∑
j

(sj −Aj) ≥ 0 (20)

For the content provider, ∆CS ≥ 0 requires that the
additional gain from advertising revenue must be no less than
the pre-staging cost of the content, i.e.,

a

θ
∆Σjxj ≥ r

∑
j

(sj −A∗j ) (21)

Combining Equations (17) and (21), we derive

r∗ ∈ [0,
(1− δ)a

θ
]

which is consistent with the best response of the content
provider in Section III.

For end users, their gain in consumer surplus is ∆CS =
∆
∑
j V (xj) + q

∑
j(sj − Aj) > 0 so that users gain at any

level of reward rate for content pre-staging on their mobile
devices. Therefore, the lower bound on q∗ is zero, and the
upper bound is the reward rate that satisfies ∆π = 0. That is,

q∗ ∈ [0, r∗ + bδ]

Therefore, when the carrier initiates content localization
with no change in service charge on end users, the theoretical
optimal pricing strategy is (p∗ = p∗, q∗ = 0, r∗ = (1−δ)a

θ ). In
this case, users gain from improved QoE, the content provider
is equally well between content pre-staging or not, and the
carrier receives the maximum possible gain in profitability:

∆π∗ = (
(1− δ)a

θ
+ bδ)

∑
j

(sj −A∗j )

Nevertheless, charging the content provider a pre-staging
rate at (1−δ)a

θ may not be feasible since the content provider
does not gain from content pre-staging. To motivate the content
provider, the carrier may lower r to share profit with the
content provider. The extra profitability of the mobile service
business (∆π∗) may be shared between the carrier and the
content provider in an arbitrary manner.

Although users gain from improved QoE and increased
content consumption at q∗ = 0, for customer psychology



consideration, q∗ may have to be positive to overcome psy-
chological hurdles, such as users’ unwillingness to yield part
of the control of their mobile devices out of privacy concern,
etc.

Users may receive financial benefits from content localiza-
tion in two alternative ways: being rewarded a fee for the
carrier’s usage of their mobile device storage, as in the model
setup, or via reduced (discounted) data consumption rate p
based on the level of content pre-staging. The two scenarios
are equivalent at appropriately chosen prices. The difference
is whether the financial benefit to end users is perceived
explicitly. In practice, charge-then-refund has just entered the
pricing model of the mobile industry when it appeared as part
of the pricing structure of Google Fi [5].

IV. RELATED WORK

Content caching and prefetching can significantly reduce
the mobile bottleneck link pressure and improve the QoE of
users. Research shows users are highly likely to view the data
in prefetched videos indicating a promising opportunity to
reduce network load [6]. Technical efforts have ranged from
characterizing data and energy consumption by smartphone
applications [7] to actively examining the efficiency of the
data transfers themselves [1], [2], [8]. More recent research
efforts have explored the extent to which device-to-device
(D2D) communications might be leveraged to share cached
information in cellular networks [9].

Time dependent pricing is one of the economic solutions
towards the goal of time shifting demand in wireless data
networks [10]. By charging users dynamically over time, time
dependent pricing may flatten the temporal fluctuation of
demand by motivating users to shift their usage to off-peak
hours with lower price [11].

A common theme in recent cache economics research is
to seek for service providers’ optimal strategies to monetize
caching, from optimal caching and pricing policies of service
providers [12] to the design of caching contracts between
service providers and content providers [13]. Content caching
can also be combined with dynamic pricing. For example,
users may take advantage of D2D communications to cache
contents during off-peak time and trade cached contents with
each other during peak time to save payments [14].

Another revenue source for mobile carriers is to seek
compensation from content providers. One of recent eco-
nomic proposals is content sponsoring, i.e., charging content
providers instead of users for resources consumed in accessing
the content [15], [16]. The content sponsoring, however, does
not alleviate the problem of matching limited network capacity
with network demand because content sponsoring works on
the supply side of the problem.

V. CONCLUSIONS

One of the largest challenges in wireless communications
has been the dramatic growth in demands for data. In this
paper, we studied the economic impact of pre-staging selected
content on unused mobile device storage. The interactions

among multiple players: the carrier, the content provider, and
end users, were modeled in a Stackelberg game, and equi-
librium solutions were analyzed. We investigated the optimal
pricing strategies of mobile carriers to provide proper financial
incentives for content localization to content providers and end
users while maximizing profitability of carriers themselves.
We showed that content localization via carrier-accessible
mobile device storage is welfare enhancing, i.e., increase
of combined benefit gains for all players and efficiency in
capacity management.
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