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Abstract—Big network data analysis has become a challenging 

task not only due to increasing large volume but the 

appearance of dynamic spatial-temporal relationship. Both 

network topologies and their link properties are constantly 

changing as a result of newly established and torn connections. 

Traditional data mining techniques in large-scale dynamic 

networks are either incapable or computationally expensive. 

To that end, we developed a dynamic network analysis and 

visualization (DNAV) tool. One major component of DNAV is 

a dynamic graph in which links are divided according to their 

temporal dimensions.  Each segment on network edges 

represents the dynamic network temporal evolution of graph 

properties, e.g., locations where the communications occur. 

Unlike animation approaches, the proposed static view of 

dynamic networks does not rely deeply on human cognitive 

ability on remembering changes over different time slots, thus 

dramatically simplifying the visual analytic process for 

dynamic networks. To further improve scalability of rendering 

large networks, data filtering modules such as time selection, 

hops settings, entities selection, and edge weight thresholds, are 

adopted in the visualization. Case study demonstrates the 

effectiveness of DNAV tool in understanding the dynamic 

network patterns and trends and the potential to analyze 

anomalies in dynamic communication networks. 

Keywords-dynamic network; spatiotemporal visualization; 

link segmentation 

I. INTRODUCTION 

As we move to big data era, the data is not only getting 
much bigger but more complex and dynamic as well. In 
facing with internet of things (IoT) and mobile social 
networks, as the number of nodes and their connection 
magnitude grow exponentially, their interactions are 
becoming more dynamic. Network connections can be 
established and torn down at any moment. The 
characteristics or properties of the network links can evolve 
with time. Examples of dynamic networks include wireless 
and mobile communication network, social network, IoT, 
sensor network, etc. Dynamic networks [1] are known for 
their temporally changing topology as a result of on/off 
patterns of network connectivity. 
    The challenges in analyzing dynamic networks lie in the 

constantly changing spatial-temporal properties and 

complex event interactions in large networks. While there 

have been data mining approaches [2] to analyze dynamic 

networks, the complexity is usually high to consider all 

possibilities for large networks. Visual analysis [3] of 

dynamic networks can be helpful sometime since patterns 

can be quickly examined by human therefore eliminating 

exhaustive search by data mining and machine learning 

process. Small multiples and animation are two typical 

visualization methods for dynamic network analysis, but it 

is difficult to track changes over time due to limitation of 

human cognition ability. While other visual methods such as 

multiple dimension visualizations [4]-[6] exist, there is 

generally a shortage of visualization readability and 

preservation of mental map [7]. As we transit to the world 

of big data, how to analyze large dynamic networks scalably 

and effectively remains a challenging research area. 
Despite the challenges, we develop a relatively 

lightweight visual analytic tool that allows researchers and 
network operators to analyze patterns in their dynamic 
networks. Notably, some changes in dynamic networks are 
considered normal while other changes are not (i.e., 
anomalies). It is our intention to allow human investigators 
to understand the patterns/trends and detect those abnormal 
changes in highly dynamic networks. One major component 
of the Dynamic Network Analysis and Visualization (DNAV) 
tool is the dynamic graph view. The graph is a node-link 
diagram and we use it by taking advantage of people's 
familiarity with the graph. However, the dynamic graphs 
differ from traditional graphs in that a novel scheme is 
adopted to encode spatiotemporal information on the 
network connections themselves. The links in our dynamic 
graphs are divided into segments by their temporal 
dimension based on users' selection of edge properties. Each 
segment can be further divided if there are multiple status 
values within one time slot. Different colors are utilized to 
show dynamic edge property evolution over time. By 
dividing links into segments, we accomplish the goal of 
showing dynamic network in one single static view without 
requiring users to remember changes as in the animation 
schemes. 

To improve our dynamic graphs' scalability, we have 
implemented multiple interactive functions, such as a time 
selection bar, which allows investigators to analyze the 
dynamic graphs only within certain time period. Another 
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feature is the maximum hop setting, which enables analysts 
to choose how many hops from a selected node in the graph. 
The resulting smaller subgraphs allow scalable visualization 
of large networks. In addition, edge filtering by edge weights 
(e.g., number of connections) is included to address 
scalability issues. We evaluate the DNAV tool over publicly 
available datasets that contain over four million 
communication records. The proposed dynamic graph 
visualization effectively identifies the time and location of 
anomalous changes in network communication patterns.  

II. RELATED WORK 

Understanding the dynamics of large complex networks 
has been a challenging yet important task. Traditionally, 
dynamic networks can be analyzed and visualized through 
animation. For example, GraphDiaries [8] tries to explore 
dynamic networks along three dimensions - time (when), 
graph elements (where) and type of change (what) - through 
interactive staged animated transition that highlights changes 
from one time step to another. However, animation 
approaches are limited by human cognition ability. Our 
approach seeks to analyze dynamic graphs in a static view 
thus is easier for users to preserve mental map. 

Networks are commonly represented as node-link graphs. 
The underlying graph representation, i.e., adjacency matrix, 
however, can be used directly for analysis. The 3D matrix 
cubes [9] resulting from stacking adjacency matrix at each 
time slice are better for analyzing dense networks. In 
addition, Massive Sequence View (MSV) may be used to 
analyze temporal and structural aspects of dynamic networks. 
In this way, time ordering between node connections can be 
clearly viewed. However, as with any MSV, visual clutter 
can be a problem with large graphs. Circular MSV [3] may 
reduce clutter for better scalability. 

Time-varying graphs can also be structured and 
visualized using the parallel edge splatting techniques and 
Rapid Serial Visualization Presentation (RSVP) [10]. The 
technique is a typical representation of juxtaposed 
visualization, in which, a dynamic graph is mapped on a 
sequence of parallel vertical lines with fixed vertical vertex 
positions in all of the graphs. Subgraphs between each two 
parallel vertical lines are used to represent one equal time 
period's data. While the method shows some usefulness in 
dynamic network analysis, it may have a high perceptual 
ability requirement for analysts to explore the whole network 
as there are so many subgraphs, and entities can be shown in 
the graph are also limited: too many vertexes on one vertical 
line will decrease the graph's readability. 

For node-link graphs, research [11] shows that classic 
force-directed layout algorithm is suitable for time-varying 
graphs by using nodes and edges filter based on graph 
hierarchy. However, there exist other layout choices. For 
example, hyperbolic temporal layout method [12] was 
proposed to analyze large sparse temporal social network 
datasets. It uses topology-based-edge-clustering algorithms. 
Another example is TimeRadarTrees [13], [14], which use 
radial tree layout to draw the hierarchy, and utilizes circle 
sectors to represent the temporal dynamics of links in the 
graph. The layout has the benefit of reducing visual clutter 

comparing to node-link graph representation, but is not as 
easy as node-link graphs for people to understand as it does 
not have intuitional topological representation. 

Large ego-centered networks can be divided into small 
graphs [15]. As general graph drawing techniques, different 
shapes, colors and filling may be used for rendering nodes 
and edges. 1.5D visualization design using temporal trend 
glyph for the focus node can be useful in analyzing 
egocentric dynamic network. 2.5D visualization or slice 
technique allows the analysis of both static snapshots of 
networks and their dynamics. Preserving mental map 
between consecutive timeslices is important. 
Multidimensional Scaling (MDS) [16] as a network layout 
method can be used for mental map preservation. 
Furthermore, Degree-of-interest (DoI) functions [17] can be 
defined to direct which areas need to be shown as global 
overview or at individual detailed level. Subgraphs' density 
can be encoded with node glyph. 

Despite the above approaches, Dynamic Network 
Analysis (DNA) remains a hard research field. Such research 
is even more important and challenging when considering 
the unprecedented amount, complexity and dynamics of 
large network communication as we enter the big data era. 
This research looks at embedding spatiotemporal information 
into network links in dynamic communication network 
analysis and visualization. 

III. VISUAL ANALYTIC DESIGN OF DYNAMIC 

COMMUNICATION NETWORKS 

Figure 1 illustrates an overview of the Dynamic Network 
Analysis and Visualization (DNAV) tool. The tool is 
designed to help investigators to understand and identify 
patterns from a dynamic communication network by iterative 
exploration. The main view is the dynamic graph based on 
node-link diagram to intuitively show the relationship among 
entities for communication networks. The dynamic graph 
view presents communication networks' dynamic topologies 
and properties over time in a static view. This is achieved 
through link segmentation with spatiotemporal property 
information, which is to be discussed in detail in following 
sections. 

The dynamic graph view supports zoom and pan that 
allow detailed view and whole network view. The 
mouseover event on nodes will highlight a focus node and its 
surrounding neighbors with changing shape sizes and colors. 
The mouseover event on edges will show information about 
each individual link, i.e., the details of link property value 
changes over time. The color legend above the dynamic 
graph illustrates the color codes used and their meaning for 
easy lookup. 

A. Dynamic Graph 

A dynamic communication network can be represented 
by a time-varying graph   𝐺𝑇  = < 𝑉𝑇 , 𝐸𝑇 > , in which T 
represents the entire time period of analysis, 𝑉𝑇  and 𝐸𝑇 
signify the network entity set and related communication set. 

Due to the nature that most networks are large, we design 
four mechanisms to address scalability. The first mechanism 
is a time selection option through a double-end time slider 
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bar (bottom of Figure 1), with which analysts can choose a 
customized time slice t from T to analyze dynamic graphs. 

The second mechanism is a maximal hop selection 
(dropdown menu next to minimal connection text box) on 
top of the dynamic graph view. In our dynamic graph, each 
selected network entity 𝑣𝑖   (𝑣𝑖   ∈   𝑣𝑡 ) is regarded as root 
entity. Network entities which communicate with the root 
entity directly are considered to be within one hop of the root 
entity, and are referred as first hop entities. Similarly, entities 
which communicate with the first hop entities directly are 
within two hops of the root entity and so on. Once analysts 
set the hops value, the selected root entities along with 
entitles which are within the hops value of each root entity 𝑣𝑖 , 
and their related communications will be added into 
graph  𝐺𝑡  = < 𝑉𝑡 , 𝐸𝑡 > , in which t represents the selected 
time slice; 𝑉𝑡   includes the selected root entities and entities 
which are within the selected hops value of each root entity; 
𝐸𝑡  signifies the related communication set of 𝑉𝑡. 

The third mechanism is a node filtering by node weight 
(degrees) as illustrated in the node selection pool on the 

upper-left of the tool (see Figure 1). The nodes are sorted by 
their connectivity degrees (either weighted by considering 
connection magnitude or unweighted). Node degrees can be 
a relevant metric to measure the importance of nodes with 
which one may begin investigation. With the node selection 
pool, analysts can either type in one particular node ID or use 
mouse to select single or multiple nodes (entity set 𝑣𝑡  (𝑣𝑡  ∈
𝑉𝑡)) to analyze in the dynamic graph. 

The fourth mechanism is to perform filtering based on 
edge weight as shown above the color legend in Figure 1. 
We add a minimal connection threshold input field for 
dynamic graphs. Once analysts input a minimal threshold 
value, we calculate the communication records that each 
merged communication 𝑒 (𝑒 ∈  𝐸𝑡

𝑚)contains. Only merged 
communications whose communication records are more 
than the input minimal threshold value, along with their 
related entities will be added into 𝐺𝑡

𝑤  =  < 𝑉𝑡
𝑤, 𝐸𝑡

𝑤 > , in 
which 𝐸𝑡

𝑤  signifies merged communications whose 
communication records are more than the minimal threshold 
value and 𝑉𝑡

𝑤  includes the related entities. 

 
Figure 1.  Overview of the Dynamic Network Analysis and Visualization (DNAV) tool. Graph links are used to encode temporal dimension to analyze the 

spatial-temporal dynamics of network link properties. 

B. Link Segmentation Algorithm 

The dynamics in large communication networks not only 
reflect in their topology, i.e., entities may come and go and 
links may be created and torn down constantly, but also 
reflect in their communication properties 𝑃𝐸𝑡

 and dynamic 

changes of values for each property 𝑃𝐸𝑡𝑖 ∈  𝑃𝐸𝑡
. To show 

these two types of dynamics, we merge communication 
records (belong to Et) with same entities but different 
timestamps, and divide the related link in a dynamic graph 
into 𝑘 (𝑘 >  1) main segments, each main segment 

represents communication information in one sub time 
period t′, 𝑡′ =  𝑡/(𝑘 − 1). 

Links in our design of dynamic graphs are divided into k 
time segments (Figure 2). Different colors are used to encode 
spatiotemporal information. For example, the first start time 
segment is denoted with black color. For the k-1 segments, if 
communication disconnects during  (𝑖 − 1) ∗ 𝑡′ (2 ≤  𝑖 ≤
 𝑘), the ith segment will be denoted with light gray color. 
Other customizable colors (except black and light gray) are 
used to show the dynamics of communications' property 
values, which also implicitly indicate that the related 
communications are connected during that time period. 
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Figure 2.  Dynamic graph links are used as a time dimensional axis and are 

divided into k segments, which may be further divided by multiple property 
values. Color coding: black (start time), light gray (no activity), others (link 

property values). 

If two entities contact each other in the (𝑖 − 1) ∗ 𝑡′ (2 ≤
 𝑖 ≤  𝑘) time period, and their communication property has 
only one value, then we will denote the 𝑖𝑡ℎ segment with one 
specific color (e.g., the (𝑘 − 1)𝑡ℎ and 𝑘𝑡ℎ segments in Figure 
2. However, if during ( 𝑖 − 1) ∗ 𝑡′ time period a 
communication property has multiple values, we will further 
divide the ith segment into subsegments by the number of 
property values. For example, as shown in Figure 2, when 
 𝑖 =  2 , the second segment is further divided into two 
subsegments denoted with different colors. Suppose the 
property chosen is the location, the two subsegments indicate 
that during this time slice, the communication has occurred 
at two different places. In our design, for simplicity and 
better visibility, the ith segment will be equally divided into 
multiple subsegments no matter how many times each 
property value appears. 

 

As discussed above, we now demonstrate the details of 
our link division algorithm (Algorithm 1). For  𝑒′ ∈
 𝐸𝑡

𝑤  (𝑡𝑥  ≤  𝑡 ≤  𝑡𝑦) , we will iterate each of its 

communication records. Assume one of its communication 
records has a timestamp value of 𝑡𝑖 we will first find out 𝑡𝑖’s 
time_ratio (proportion of t) value by using the following 
equation: 

𝑡𝑖𝑚𝑒 _ 𝑟𝑎𝑡𝑖𝑜 =
𝑡𝑖 − 𝑡𝑥

𝑡𝑦 − 𝑡𝑥

                            (1) 

As we have to keep the first main segment for start time 
notation, there will be only (𝑘 − 1) main segments on each 
link to show topology and property dynamics, so we need to 
normalize the time_ratio value into segment_ratio (1/𝑘 ≤
 𝑠𝑒𝑔𝑚𝑒𝑛𝑡_𝑟𝑎𝑡𝑖𝑜 ≤  1, [0,1/𝑘) is kept for start time) . The 
normalization equation is shown as follows: 

𝑠𝑒𝑔𝑚𝑒𝑛𝑡 _ 𝑟𝑎𝑡𝑖𝑜 = 𝑡𝑖𝑚𝑒 _ 𝑟𝑎𝑡𝑖𝑜 ∗ (1 −
1

𝑘
) +

1

𝑘
     (2) 

Once we get the segment_ratio value for communication 
record with a timestamp of 𝑡𝑖, we will check which segment 
the communication record with 𝑡𝑖  timestamp value belongs 
to, and calculate the number of property values that the 
related communication has in the segment by using binning 
method in data mining. 

During (𝑖 − 1)  ∗  (𝑡𝑦  − 𝑡𝑥) / (𝑘 − 1) (2 ≤  𝑖 ≤  𝑘) 

time period, if one communication link does not have any 
property value (i.e., the communication does not appear), the 
related link's ith segment will be denoted with gray color. If 
one communication appears and has only one property value, 
the ith main segment will be denoted with one specific color 
according to its property value. Otherwise if the 
communication has multiple property values during (𝑖 −
 1)  ∗  (𝑡𝑦  −  𝑡𝑥)/(𝑘 −  1) , we will further divide the 

related link’s ith segment into subsegments according to how 
many property values that communication has during 
(𝑖 − 1) ∗ (𝑡𝑦 − 𝑡𝑥)/(𝑘 − 1). The dynamic graph after link 

division and color arrangement can be represented by 𝐺𝑡
𝑑  =

 < 𝑉𝑡
𝑑 , 𝐸𝑡

𝑑 >. One example of such dynamic graph is shown 
in Figure 3. 

C. Implementations 

We develop the DNAV tool based on the server-client 
model rather than a desktop application by taking advantage 
of scalability, accessibility and convenience. An investigator 
can analyze and visualize his network from anywhere in the 
world with the Internet and a web browser by visiting a URL. 

As for data processing, given a communication network 
dataset, essential attributes are first extracted. Typically, the 
significant attributes that we will look for include timestamp, 
source ID, destination ID, and all relevant property 
information, e.g., location where the communication occurs, 
etc. The well-formatted data are stored in database server. 

On the client side, the views are implemented using 
JavaScript with D3, JQuery and JQrangslides libraries. As 
users switch between views, move the time bar, or make 
filtering and selection, the operation will be transmitted 
under the AJAX mechanism to the server side 
asynchronously. On the server side, web service is set up to 
host user analytic requests from a client machine. When 
users interact with the DNAV tool in their web browser (e.g., 
select certain period of time or certain network entities), the 
request is sent back to the web server, on which the PHP 
processes query the database server and perform the dynamic 
graph construction, communication record merge, and link 
segmentation as discussed in the early sections. The results 
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are then written to JSON files and sent back to the clients for 
their visual analysis in the dynamic graph view. 

IV. CASE STUDY 

For preliminary results, we evaluate the DNAV tool over 
a large communication network dataset from Mini-Challenge 
2 (MC2) of VAST 2015. The data is gathered at a theme 
park (DinoFun World) during 2014-06-06 to 2014-06-08 
(Friday, Saturday and Sunday) to honor a famous soccer star 
(Scott Jones). However, a vandalism occurs sometime during 
the weekend. There is a need to analyze and understand the 
communication patterns in the park and when/where the 
vandalism occurs. MC2 data set contains 9,410 IDs (visitors 
or park services) and 4,153,329 communications. All visitors 

use a mobile application to check in rides and communicate 
with fellow visitors. 

We extract the four attributes, i.e., time, from (sender ID), 
to (recipient ID), and location. Values for location can be 
Coaster Alley, Kiddle Land, Wet Land, Tundra Land and 
Entry Corridor. After loading the data into the DNAV tool, 
we find that the park was open around 8 AM and closed 
around 12 AM on each day. We move the time bar to select 
the whole investigation period (Friday - Sunday), and select 
“weighted degree” as the sorting option for entities. There 
are three IDs which stand out for their large volume of 
communications (highlighted with red rectangle in Figure 1), 
i.e., ID 1278894 (degree of 380254), ID 839736 (degree of 
121630) and external IDs, denoted by -1 (degree of 62076). 
We choose these three IDs as starting points for analysis. 

 
Figure 3.  An example of dynamic graph visualization showing two top IDs communicating with others at different times at various locations. 

 
Figure 4.  Communication patterns suggest ID 1278894 always starts at 

Entry Corridor (purple color) and bidirectional request-reply trend. 

From Figures 3 and 4, communications of ID 1278894 
always starts at Entry Corridor (purple color). This pattern 
implies that ID 1278894 is associated with park services, and 
visitors use the app to check into the park at Entry Corridor. 
Different from ID 1278894, ID 839736 communicates with 
other IDs at different locations but mostly ends at Entry 
Corridor. Similarly, its communication shows forward and 
back trend, i.e., other IDs always communicate with it first 
and it replies back. Based on these patterns, it is reasonable 
to assume ID 839736 may be one of other park services such 
as Information Desk in the theme park located at Entry 
Corridor. 

The investigator moves the time bar to explore the 
dynamic graphs at different time slots. Figure 5 suggests that 
many IDs began frequently communicating with ID 839736 
and external IDs (-1) at location Wet Land (green color) 
since 2014-06-08 11:52:38. Compared with Figure 3, neither 
ID 839736 nor external IDs exhibit similar communication 
pattern during other time periods. The investigator concludes 
that the vandalism was discovered in park around noon on 
2014-06-08, when visitors began to frequently contact ID 
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839736, which may be the information desk in the park that 
visitors tend to consult with, and to contact external IDs that 
can be friends or family members that visitors inside of the 
park can communicate with when something special happens. 

 

Figure 5.  Shift of communications patterns of two IDs (839736 and 

external) with one-hop filter between 2014-06-08 11:27:34 and 2014-06-08 

12:51:10. IDs start to frequently communicate with 839736 and external at 

Wet Land (green color) where the vandalism happens. 

V. CONCLUSION 

With the rapid growth of interconnected devices and 
information exchanged in the big data era, many networks 
such as social, mobile devices, sensors, etc., are not only 
much larger but also more complex and dynamic. How to 
effectively analyze and understand these dynamic networks 
becomes an important yet challenging research topic. This 
work develops algorithms to represent spatiotemporal 
communication patterns for dynamic networks by exploring 
links as temporal dimensions. The encoding scheme in link 
segmentation design allows efficient analysis of pattern 
evolution of generic properties in one static view. A visual 
analytic tool is developed to demonstrate the usefulness of 
the proposed analytic method. 
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