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Abstract

While other authentication methods exist, passwords are still the dominant way for user authentication and system security.
Over the years, passwords have become long and complex thanks to security policy and awareness. However, the security of
user passwords remains unclear. Therefore, understanding users passwords is vital to improve the strength of passwords and
system security in general. In this paper, we investigate one specific pattern, i.e., the prefix and postfix of user passwords. To
facilitate password prefix and postfix (P3) analysis, we propose both hierarchical segmentation / optimization algorithms and
password prefix/postfix graphs (P3G) construction and P3G visualizations. Through case study over real-world user passwords,
we demonstrate P3 analysis and visualization are effective in identifying unique patterns for different user categories. The
results suggest strong correlations between prefix/postfix and their context in user passwords.

Keywords Computer security - Password analysis and visualization - Prefix and postfix graphs - Hierarchical segmentation -

Dynamic programming

1 Introduction

We use passwords and keys in every aspect of daily life, e.g.,
logging into computer systems, purchasing items from online
retailers, accessing bank accounts, encrypting local hard
drives and messages, etc. The strength of passwords is criti-
cal to protect the security of modern systems, whether they
are personal financial accounts, corporate servers, databases,
or IoT devices. While there have been applications of other
forms of authentications such as biometrics and graphical
passwords [11], text-based passwords are still the dominant
method of authentication, which will be unlikely to change
in the foreseeable future [14]. Therefore, understanding user
passwords has become increasingly important in order to
assess the strength of passwords and security policies, and
ultimately to build more secure systems [15].

With the benefits of understanding passwords, there has
been previous research on analyzing password patterns and
their structures. For example, keyboard patterns have been
analyzed and visualized [9,18]. Dates are another pattern
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of interest for analysis [4,22]. Organizations have adopted
increasingly complex password policies [13] with manda-
tory combination of characters. The security outcome of
such policies, however, remains unknown. Research suggests
longer passwords do not necessarily mean more security and
there exist significant repetitive patterns of both directions in
user passwords [28].

We have observed the trend for organizations to adopt
changes that more closely reflect recommended best security
practice as defined in NIST 800-63-3. In particular, para-
phrases must have a minimum length, an expiration time, and
patterns involving mixture of uppercase, lowercase, numbers,
special characters. Recently, research has suggested using
long, sentence-based passwords [26] (e.g., “my daughter is
12 year old.”) that are presumably easy to remember but still
relatively secure while other research suggests the strength of
long sentence-like or phrase-like passwords does not increase
uniformly with length [17]. To that end, in this paper we try to
understand user passwords by analyzing the prefix and postfix
patterns and their structures. Some questions include “given
aknown plaintext, e.g., “love,” can we guess the words before
and after “love” that users may choose in their passwords?”,
“are there any unique patterns of prefix and postfix words
associated with users from different backgrounds (culture,
language, or religion)?” etc.
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To analyze password prefix and postfix (P3) patterns, there
exist several challenges. First, how to segment user pass-
words in a meaningful way for analysis. For example, a pass-
word “password123” may be divided as “pass,word,1,2,3”
or “password,123”. Which one makes more sense and also
is more scalable for analysis? We developed new hierarchi-
cal segmentation algorithms ranging from greedy to dynamic
programming algorithms. We studied methods of hierarchi-
cal segmentations and their impact on the P3 analysis in terms
of granularity and scalability issues.

One major contribution of our paper is to propose a novel
algorithm for the construction of password prefix and post-
fix graphs (P3G) and P3G interactive visualizations. Nodes
in P3Gs are relative prefixes, postfixes and keywords, and
paths along nodes indicate the relationships of words chosen
to compose the final user passwords. Efficient algorithms
have been designed and implemented to compute relevant
subgraphs based on user interactions so that the unique pat-
terns may be analyzed effectively. In particular, we developed
a web-based visualization tool that combines multiple views
such as P3G, P3 context (P3C), and P3 relationship (P3R)
that together provide more insight toward understanding user
passwords than from just one angle.

Through case studies over a real-world dataset (RockYou
[10]) that contains 14 million user passwords, our findings
suggest strong correlation between the prefix and postfix in
user password construction. P3 analysis reveals numerous
important patterns. For example, people’s names are com-
mon components of passwords, and the prefix and postfix in
such passwords often exhibit “name + name” and “emotion
verb + name” patterns. We identify common substitutions of
prefix/postfix patterns involving similar sounds, as well as
not so obvious substitutions involving cultural and linguistic
backgrounds. For example, Chinese speaking users tend to
make one unique substitution of prefix in their passwords.
We find users tend to use numbers as their password postfix.
Consequently, we study the length distributions as well as
unique patterns for these numerical postfixes, from the more
general “word + digits” to the more specific “name + dates”
patterns, in which dates are more uniformly distributed for
people’s names than location names. Other findings include
patterns for users of diverse backgrounds (e.g., religious) and
social roles (e.g., husband vs. wife), etc.

The rest of the paper is organized as follows. Section
2 discusses related work on password analysis. Section 3
introduces the hierarchical segmentation algorithms and opti-
mizations using dynamic programming. Section 4 formally
defines password prefix postfix graphs (P3Gs) and explains
how to construct such graphs. Algorithms to compute sub-
graphs of P3Gs are also discussed. The visualization tool is
presented in Sect. 5 to illustrate the design and implementa-
tion of P3G, P3C and P3R. Usage cases of P3 analysis are
demonstrated in Sect. 6 over real user passwords. A num-
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ber of unique patterns of prefix/postfix are identified in this
section. Finally, we conclude our research paper in Sect. 7.

2 Related work

Passwords are the predominant way to authenticate users and
to ensure security of information and systems. Understanding
how passwords are constructed is useful to assess the strength
of passwords [15]. Therefore, the analysis of patterns of user
passwords has been the interest of security researchers. For
example, approximately 70 million passwords of Yahoo!
users [3] were analyzed and guessing difficulty of skewed
distribution of passwords was evaluated.

Among the analyzed password patterns, dates have been
significant components of passwords. Studies suggest that
most of the dates that users choose to be part of their pass-
words are birthdays [22]. In particular, customers commonly
choose 4-digit PINs based on sequence similar to MMDD
[4]. In addition, dates in passwords have been visualized
[22]. Another important pattern in user passwords is the key-
board pattern, which has been analyzed [9] and visualized
[18]. While some passwords may appear random, they use
certain keyboard combinations, e.g., “azsxdcfvg” for consec-
utive keys in “vvvv” shape.

With stricter policies and by enforcing password meters,
users are forced to create longer passwords [13]. While
entropies have been used to measure the security of pass-
word creation policies [25], such password strength has also
been studied by an empirical analysis of real-world pass-
words [12]. An online experiment conducted by Carnegie
Mellon University [20] evaluates the password policy for
a security/usability trade-off. The study reveals that adding
requirements to policies on longer passwords can reduce the
number of easily guessed passwords and that certain com-
binations of requirements can increase both security and
usability than the traditional complex policy. In addition,
research suggests there have been significant repetitive pat-
terns in user passwords from both directions, even though
the passwords satisfy the length requirement [28].

Online password guessing algorithms such as TarGuess
[24] use users’ personally identifiable information (PII) and
sister passwords leaked from users’ other accounts. Personal-
PCFG [16] analyzes the correlation between passwords and
personal information (birthday, name, gender, etc.), and
specifically investigates one Chinese railway ticket website
(12306) dataset. The study shows that personal information
can make password cracking much faster.

There has been research to discuss the semantics of pass-
words. Semantic patterns of passwords and the security
impact on the model can be evaluated by segmentations
using natural language processing (NPL) techniques [23] and
N-gram frequencies. This research proposes segmentations
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with dynamic programming as well as a hierarchical segmen-
tation approach, e.g., characters, dictionary words, merging,
etc., for the password prefix/postfix analysis. Researchers
found that most users create their passwords regarding them-
selves, and the primary elements of the passwords are
composed of names and dates through surveys [6]. The
research of grammatical structures [17] of passwords also
suggests that long passwords and sentence-based passwords
are not taken as strong passwords.

As for the hierarchical graph analysis, Google researchers
have studied a distributed balanced partitioning problem [1],
which is to partition graph vertices into k pieces by mini-
mizing the total cut size. In addition, OnionGraph [21] has
been proposed to examine large graphs by grouping and
expanding nodes by topological and semantic categories.
Similarities between user passwords can be analyzed in pass-
word graphs using edit distances [29]. In this paper, we design
hierarchical segmentation algorithms based on dynamic pro-
gramming. Most notably, we analyze a different pattern, i.e.,
the prefix and postfix of user passwords, using password pre-
fix postfix graphs (P3G) combined with other visualization
techniques.

3 Segmentation algorithms of passwords

Segmentation of user passwords is the key for password
prefix and postfix analysis. Since different methods lead
to different results, in this section, we discuss in detail the
algorithms we develop to divide passwords into meaningful
substrings in a hierarchical approach. In particular, we focus
on how to achieve optimal segmentation using dynamic pro-
gramming techniques.

3.1 Dynamic programming

Dividing passwords into meaningful words (prefix and post-
fix) is non-trivial. One way is to check whether any part
of each password has known dictionary words. A greedy
algorithm may work in most cases by reversing the iteration
direction from end to front until matching a known word.
However, such an algorithm may not be the optimal solu-
tion in some cases. For instance, a password “rockyoul23”
will be divided into “rocky,0,u,123” by using the greedy
method. Apparently, the result makes little sense to humans.
We make a crucial observation that further division is always
based on the previous optimal result. Based on the observa-
tion, we develop a dynamic programming solution to get the
optimal segmentation of each password. Before we discuss
the details of the algorithm, we first introduce the rules of
optimization.

Each Looping Rule

Retrieve nonword, word,
preindex from the new rule

new.nonword <
temp.nonword

new.nonword=temp.nonword
and new.word < temp.word

new.nonword=temp.nonword
and new.word < temp.word and
new. preindex < temp.preinde

temp rule=new rule

Fig. 1 Rules of selecting optimal segmentation results

3.2 Rules of optimization

We formulate a set of rules, which define how to choose
the ideal segmentation. A result set R is defined as a three-
tuple, i.e., {nonword, word, preindex}. The “nonword” is the
quantity of substrings that are not taken as meaningful words
(i.e., dictionary based or common words), while the “word”
represents the number of meaningful words. The “preindex”
records the index position, where a string or substring is seg-
mented. During each iteration, the result set is recorded. The
best solution r,p; € R is then selected. The process of iden-
tifying the optimal solution is illustrated in Fig. 1.

The primary rule of selecting the optimal solution is to
choose a result tuple r that contains the minimum nonwords
so that each password can be partitioned into as many words
as possible. However, if the nonwords in both new and tem-
porary (i.e., holding current best solution) result tuples are
same, the result with fewer words is considered as a bet-
ter solution. The reasoning behind this rule is that had we
taken the result with more words as a better solution, words
would have been further segmented into even more words.
For example, a substring “heart” will be further divided into
“he” and “art.” In this case, the prefix and suffix of keywords
are losing their meanings. Furthermore, if the nonword and
word in both results are same, the smaller preindex, which
means the parsed substring is longer in the new result than
that in the temporary result, is preferred.
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Algorithm 1 Password Segmentation using Dynamic Pro-
gramming

1: procedure SEGMENT

2:  read passwords from file

3 d < Add dictionary words and names

4 for each password do

5: N <« the length of one password

6: Add initial value to result[0]
7
8

fori < 1toN + 1do
: result append (0, i, i-1)
9: if isSAWord(d, password[:i]) then

10: result[i] < (1,0,0)

11: continue

12: for j < ito0do

13: if isAWord(d, password[j:i]) then
14: tmpresult < result[j]

15: tmpresult.dd+ =1

16: tmpresult.d6 = j

17: else

18: tmpresult < result[j]

19: tmpresult.d5+ =1

20: tmpresult.d6 = j

21: if needChange(result[i], tmpresult) then
22: result[i] = tmpresult

23: DIVIDE(result[N])

24: end procedure

Algorithm 2 Divide Password
1: procedure DIVIDE(result[N])

2: word = result[N].d1

3:  nonword = result[N].d2

4: preindex = result[N].d3

5: fori <~ N—1to0do

6: if nonword = result[i].d2 & result[i].d1 = word-1 & preindex
> result[i].preindex then

7. word = result[i].d1

8: position append result[i].d3

9: preindex = result[i].d3

10: L < length of position
11:  fori <~ L —2to0do

12: startpos = position[i+1]

13: endpos = position[i]

14: res append password|startpos:endpos]
15:  if res is not NULL then

16: D1 append res

17: end procedure

3.3 Segmentation algorithms using dynamic
programming

The entire process of password segmentation using dynamic
programming is explained in Algorithm 1. Among the param-
eters, password represents each password string; d is a map
of dictionary words; result is a list storing each position’s
optimal solution; result(d1, d2, d3) contains d 1 (number of
words), d2 (number of nonwords), and d3 (preindex); tmpre-
sult(d4, dS, d6) is the list of temporary results that contain
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d4 (number of words), d5 (number of nonwords) and d6
(preindex).

Through iteration from index 1 to the length of each pass-
word, each outcome is recorded in result tuple. The initial
values of result[i] are set, i.e., word = 0, nonwords =i,
and preindex = i — 1. If the substring from position 0 to i is
a word, result[i] equals “{*“word”:1, “nonword”:0, “prein-
dex”:0}”. Otherwise, a nested loop is applied with index
Jj ranging from i to 0. If password[j : i] is a word, the
word value in result[j]is increased by 1, and the preindex
records the j position. If it is not a word, the nonword value
in result[j] is increased by 1, and the preindex records the
current position. After the computation, the optimal result
of the current position is retrieved, and the value is saved in
result[i].

DIVIDE procedure in Algorithm 2 is used to divide a pass-
word after iterating all positions in a password. Among the
parameters, res is a result list for storing each divided pass-
word; position is alist for saving the positions of preindice
that are chosen from the previous dynamic programming
results; D1 is the output list storing all the divided pass-
words. In this procedure, the last value represents the best
value after the whole analysis.

The time complexity of Algorithms 1 and 2 takes O (M
N?) steps, where M is the total number of passwords for anal-
ysis and N is the average length of passwords. N is usually
small for each password, i.e., < 26. The space complexity
of this segmentation algorithm is O (N), which is for storing
the optimal result in every position in each password.

3.4 Segmentation example and comparison

Figure 2 demonstrates one example of how to get the opti-
mal segmentation result using dynamic programming. In the
dynamic programming table, there are 4 main columns. The
first column, named Index, is for recording the exact position
where the substring is observed. The indices are prepared for
later revision as well. The Observed String column shows the
substring that has been processed so far. The column of Opti-
mal Segment explains how the string is divided in the best
way in current stage. The Optimal Result column includes
the three-tuple result set, which includes sub-columns: word,
nonword, and preindex. These sub-columns store the tempo-
rary optimal solution in the current stage. The idea is that
if one of the previous results has 0 nonword, 1 fewer word,
and the smaller preindex, the position is where the password
should be segmented. The segmentation is traced from back
to front. After that, the substrings within these positions are
stored into D1 array, which stores the final segmentation of
the password.

The result of each step of “ihear” segmentation is shown in
Table 1. The same analysis can be applied to other observed
strings as well to get each segment result. According to Algo-
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Fig.2 Example of password

‘ | . . . Optimal Result
segmentation algon_thm using Index Observed String |Optimal Segment - nonword |preindex
dynamic programming. Table 1 1 - ; 1 0 0 100
illustrates the segmentation : :
steps of one observed string 2 ih i,h 1 1 1
“ihear”
3 ihe i,he 2 0 1
4 ihea i,hea 3 0 3
5 ihear i,hear 2 0 1
6 |iheart i,heart 2 0 1 201
7 ihearty i,hearty 2 0 1
8 iheartyo i,heart,yo 3 0 6
9 iheartyou i,heart,you 3 0 6 3 06
10 iheartyou8 i,heart,you,8 4 0 9
11 iheartyou88s i.heart,you,88 4 0 g 4 09

Table 1 Segmentation steps of one observed substring “ihear” (index
5in Fig. 2)

Division Based result Current result
ihea,r 303 314
ihe,ar 201 213
ih,ear 111 212
i,hear 100 201
ihear 000 010

“i,hear” is the best segmentation in the current stage with the optimal
result 3-tuple (201)

rithm 1, each substring is iterated from back to front. The
first observed result is “ihea,r”, and the segmentation posi-
tion, recognized as comma position in the string, is 4. Since
‘r’ is not recognized as a word, the word part is still same,
the nonword part increases by 1, and the segment position
(preindex) is 4. The result tuple becomes 314. The optimal
result set for the substring “ihea” is already computed as 303.
From the “Current Result” column in Table 1, according to
the rule defined earlier, we know that 201 is the optimal result
of “ihear,” where 2 means there are two words, 0 means there
is no nonword, and 1 means the segmentation position is after
the first character, which is “i.” Therefore, the optimal seg-
ment in the current round now becomes “i,hear”.

As illustrated in Table 2, the solution searching direction
is from the 11th step back to the first step. A highlighted
row is the final position of each substring. In the 11th step,
the optimal result is 409, which means that the best result
of the segmentation of the password is to divide it into 4
words, 0 nonwords, and the last segment position is after the
9th character. The third word is defined at the 9th position,
at which 306 is retrieved, and the last word is “88.” Based
on 306, we know that the previous word should be defined

at the 6th index, and 201 is retrieved, and the third word is
from the 7th character to the 9th character, i.e., “you.” The
same logic applies to get the second word “heart” and the
first word “i.” Therefore, the resulting optimal segmentation
of the password “iheartyou88” is “i,heart,you,88”.

Compared to an existing segmentation library WordSeg-
ment (WS) derived from Natural Language Corpus Data
chapter in the book Beautiful Data [19], both WS and our pro-
gram perform roughly the same on most cases. For example,
“statefarmisthere” will be divided into “state, farm, is, there.”
WS performs better sometimes, e.g., pokemon and Samsung
are considered one word in WS. We do not consider this is
a fundamental limitation of our algorithm since our system
uses a smaller dictionary that does not contain the game and
company names. On the other hand, our program performs
better in some cases. For example, password “iheartyou88”
is treated as a whole word in WS, but is divided as ““i, heart,
you, 88" (see Fig. 2) in our program. The other limitation
in WS is that it removes all special characters during seg-
mentations. For example, “iloveyoul23!567” is divided into
“i, love, you, 123567 using WS, but “i, love, you, 123, !,
567" in our program. In our password prefix/postfix analy-
sis, special characters are indeed important, especially for the
passwords that contain feeling/emotional words and substitu-
tions. Again, we do not view this is a fundamental limitation
of WS implementations since the code can be easily modified
to retain all special characters.

We note that sometimes the algorithm designed to take
the fewest number of words may not always be the ideal case
for human analysis. Even with the same number of words,
e.g., “andad,” sometimes it is difficult to decide which one
is better, “an, dad” or “and, ad”. In our implementations, we
used Python Enchant library. Choices of dictionaries with
different sizes may also affect the results of segmentations.
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Table 2 Trade-off of

L Pros
hierarchical password prefix and ayer 108

Cons

postfix (P3) analysis Layer 1

Layer 2
Layer 3
Layer 4

Layer 5

Best scalability

Comprehensive segmentation. Can be used to
investigate hidden patterns

More scalable. Focused and humanized
segmentation

Comprehensive segmentation. More scalable.

Most scalable. Focused and humanized
segmentation

Dense mesh-like layout reducing
insights

Less scalable. May decouple
relational words

Bias, incomplete segmentation.
Lost hidden patterns

Limited analysis of digits and
symbols

Limited analysis of digits and
symbols

Table 3 Comparison of the magnitude of substrings (graph nodes) with various segmentation options, i.e., layer 1 (character), layer 2 (dictionary),
layer 3 (common words), layer 4 (layer 2 + aggregation) and layer 5 (layer 3 + aggregation)

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5
Non-word node 96 6,917,503 9,273,483 5,172,368 7,395,428
Word node 96 307,374 193,782 40,899 10,260

Rather than evaluating which segmentation algorithm or dic-
tionary is superior, we focus on the study of different methods
of hierarchical segmentations with dynamic programming
approaches and their impact on the P3 analysis in terms of
granularity and scalability issues, as discussed in the next
section.

3.5 Hierarchy of segmentations

In this section, we compare and discuss the impact of a hier-
archical design of password prefix and postfix (P3) analysis
based on various segmentation algorithms. The visualization
(discussed in the next section) that we develop is able to ana-
lyze the password prefix and postfix graphs (P3G) that result
from the hierarchical segmentations.

Table 2 summarizes the trade-off among the layers of
segmentation algorithms. Since the magnitude of passwords
for a large-scale system is commonly huge, an important
research question is how to scale down the data size while pre-
serving meaningful granularity for the accuracy of analysis.
Table 3 compares the quantity of segmented substrings under
various schemes. The sample size of passwords is 14,344,391
in this comparison study. “Non-word node” means seg-
mented passwords may include one or more non-words,
while “word node” means segmented passwords contain only
meaningful words. Since the substrings are used as prefix and
postfix nodes in P3 graphs, the sizes of graphs are impacted
accordingly.

Layer 1 (Character): In the simplest form, each password
is divided by characters. There are 96 displayable char-
acters (letters, digits and symbols) leading to the smallest
graphs. Therefore, there are only 96 graph nodes in this layer.
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Although the graph size (in terms of number of nodes and
edges) is the smallest, the edges tend to be uniformly dis-
tributed among all nodes, forming a mesh-like topological
layout, thus reducing analytic insight significantly. This layer
is suitable for the analysis of frequency of characters in user
passwords for large graphs since the size does not scale in
terms of the number of passwords.

Layer 2 (Dictionary): Layer 2 and above use our dynamic
programming approach with options. In this layer, each pass-
word is divided into substrings according to the dictionary
database. After segmentation with dynamic programming
algorithms, there are 6,917,503 meaningful substrings. In
addition, we match each substring of passwords against a
dictionary database, and only dictionary words are chosen.
The reason for taking this measure is that it is unlikely
we can retrieve meaningful semantics from non-meaningful
words (or non-words). By filtering the non-words, the result
contains 307,374 words. This layer indicates the most com-
prehensive segmentation with meaningful substrings and can
potentially be used for investigating hidden patterns. How-
ever, it also means that the segmentation of passwords may
sometimes obfuscate the relationships among words. This
layer is suitable for private information investigation, where
prefix and suffix information includes birth dates, such as a
string of digits, national culture.

Layer 3 (Common): In contrast to Layer 2, Layer 3 uses a
smaller dictionary, i.e., the top 5,000 frequently used words.
Within this layer, each password is divided into substrings by
comparing to so called common words database. Since many
combinations of digits and symbols are not among the com-
mon words, this option results in the most unique substrings,
i.e., 9,273,483 substrings are produced by the segmentation.
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By filtering passwords that contain at least one non-word,
193,782 words are staged in the final analysis. Unlike Layer
2 which is more general and broad, Layer 3 is more focused
and scalable. The segmentation in this layer is closer to rou-
tine words in human society because the database is from
the summarization of the most frequent words. However, this
segmentation also brings some effects, such as bias in choos-
ing common words, which leads to incomplete segmentation
and lost hidden patterns. This layer is suitable for investiga-
tion of the relationship between digits’ suffix and frequent
words.

Layer 4 (Layer 2 with aggregation/merging) and Layer
5 (Layer 3 with aggregation/merging): Layers 2 and 3 pro-
duce excessive number of nodes of digits or symbols. For
example, “1,” “12,” “21,” “1234,” 234, <17 “11.” etc., will
be all considered as different nodes. For most analyses, it is
not important to distinguish these digits or symbols. Based
on this, we aggregate all digits, symbols and anything else
that are less important as mega-nodes, denoted as “DIGIT,”
“SPECIAL,” and “OTHERS,” respectively. Layer 4 divides
each password by comparing it to the dictionary words, while
Layer 5 segments passwords by comparing them to common
words, both encapsulating the digits, the symbols and other
nodes at the same time. Layers 4 and 5 produce 5,172,368
and 7,395,428 substrings, respectively. After removing pass-
words that contain non-words, there are 40,899 and 10,260
nodes left. The advantage of Layers 4 and 5 is that they inherit
the pros of Layers 2 and 3 while making them much more
scalable to larger datasets. The resulting graphs’ sizes for
visualization are reduced significantly, making it easier to
reveal the patterns in password prefix and postfix graphs.
The disadvantage is that any pattern within digits and special
characters is lost since these nodes are aggregated. There-
fore, Layers 4 and 5 are suitable for the analysis of semantic
patterns of a large number of passwords but not for finer
granularity of special words (e.g., birthdays, encoded phrases
using special characters).

As discussed above, different layers have their own merits
and shortcomings. There exists trade-off between scalability
of analysis and granularity of patterns. Some focus on gen-
eral dictionary words, while others focus on common words
and special words that contain digits and symbols. Different
patterns of password prefix and postfix compositions may be
derived by applying suitable hierarchical layers for analysis.

4 Password prefix postfix graphs (P3Gs)

In this section, we define our password prefix postfix graphs
(P3Gs) based on the segmentation algorithms presented in
previous sections and illustrate the algorithms for construct-
ing such graphs. In particular, we discuss the hierarchical
design of P3Gs by node aggregation resulting from various

layers of segmentation algorithms. Additional implementa-
tion details are also discussed.

4.1 P3G

A password prefix postfix graph (P3G) can be represented
by a directed, weighted node-link graph G p3 = (Vp3, Ep3),
in which Vp3 represents prefix and postfix words; Ep3
represents the relationship of prefix and postfix words; direc-
tions (denoted by arrows) signify the relative order of prefix
and postfix words that are used to compose the final pass-
words. A path in P3G is defined as a sequence of adjacent
vertices {vi, vy, ..., v;} such that these word nodes form a
valid user password. For each edge property Pg, € Pg,
two node indices are defined for two attributes, i.e., order
and magnitude of connecting prefix and postfix words in
user passwords. For example, if a link object is “source:5,
target:213, LinkTimes:100,” it means the fifth node is the
previous substring of the 213th node and that relationship
appears 100 times in all the passwords.

Algorithm 3 Password Prefix Postfix Graph (P3G) and Prop-
erties Construction

1: procedure GRAPHCONSTRUCT
2:  wordSet < set

3:  subHash < HashMap

4:  connectHash < HashMap

5:  for password < passwords do

6: wordsArray = password.split()

7: length = len(wordsArray)

8: for i < range(0,length) do

9: add wordArray([i] to wordSet

10: source < Index(wordArrayli])

11: target < Index(wordArrayli + 1]

12: if subHash[source,target] then

13: subHash[source,target]+=1

14: else

15: subHash[source,target]=1

16: if length > 1 then

17: for i < range(0,length) do

18: for j < range(0, length) do

19: if wordArray[i] ! = wordArray[j] then

20: if connectHash does not contain key wordAr-
ray[i] then

21: connectHash[wordArray|[i]] = wordArray][j]

22:  store node and link information to a file
23: end procedure

4.2 P3G construction algorithms

After having segmented passwords, we construct P3Gs for
visualization and analysis by building and connecting the
prefix and postfix words and their underneath properties. The
details of P3Gs and their property construction are explained
in Algorithm 3. Initially, it is necessary to make each word
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Fig.3 Password prefix postfix (P3) analytic and visualization process

unique through the usage of a word set. For each keyword,
the words that appear in the same password with the keyword
are put into two groups, i.e., prefix and postfix. The source—
target connection of adjacent word nodes in every password
needs to be classified, and the connection magnitude of the
same source—target pair is recorded. Then, for each word,
it uses source and target variables to record the relationship
information. Two hashmaps are used to record the link fre-
quencies and store all other words that appear in the same
password as the keys. The graph is then outputted to a file
for visualization. The time complexity of P3G and its prop-
erties construction algorithm is O (M x N 2), where M is the
total number of passwords and N is the average length of
passwords.

4.3 P3G interaction algorithms

Interactive visualization is an important design factor in our
P3G analytic tool, whose interaction process of visual ana-
lytic model is illustrated in Fig. 3. One important problem
with any interactive visualization design is how to improve
the efficiency of analysis and decrease the time lapse between
user interactions, especially when analyzing large datasets.
The P3G is designed as an interactive graph, in which users
can select any one or more specific nodes to visualize all
other nodes that directly or indirectly connect to the selected
node. In other words, by selecting multiple k£ words in the
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interactive P3G, the problem is to automatically generate a
password context subgraph G p3 € G p3 that contains all pre-
fix and postfix words of the selected & words that together
form the final passwords. Such interaction is the key feature
of the P3G visualization tool.

The first step of interactive P3G visualization is to prepare
the node dictionary, link dictionary, and node index dictio-
nary for faster lookup later. The node information is an array
of multiple objects, each of which has node name, connected
nodes, and group properties. For each node object, the node
name is used as the key of the node dictionary, and the value
is an object that contains connection and group information.
Within the loop, each node is also matched to one index. The
link information is an array of objects including source word,
target word, and link frequency properties. The link dictio-
nary is applied to record the target node index and the link
times to each source node. The above node and link hashmaps
significantly reduce the response time of user interactions.

When a user selects one or more word nodes from the
drop down list, results will be generated automatically, which
includes the nodes that directly or indirectly connect to the
selected node, as well as the links that record the source
node index, the target node index, and link times. Utilizing
the dictionaries built earlier, the nodes in the connect list
are retrieved and stored in data structures, from which new
indices are assigned to each node. Then, the link information
is separated into target and link times, and each link object is
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Fig. 5 An example of a P3G context subgraph, which represents five
user passwords

produced. Finally, the resulting subgraph Gps is generated
and stored in a local file ready for the input of front-end P3G
visualization.

4.4 P3G construction examples

Figure 4 illustrates an example of relative prefix and postfix
in P3G construction. The red, blue and green lines represent
prefix, keyword and postfix, respectively. In each password,
the word before the keyword is taken as the prefix if it exists,
and the word after the keyword becomes the postfix. The
recursive process continues on the relative prefix and post-
fix. For example, a password “loveyouhateme” is segmented
into four groups. In the first group, “love” is a keyword and
“you” is its postfix. In the next group, “you” is a keyword
and “love” is a prefix, while “hate” is a postfix. In the third
group, “hate” is a keyword, “you” is a prefix, and “me” is a
postfix. In the last group, “me” is a keyword and “hate” is
a prefix. It is the same for password “sexygirl123,” in group
one, when “sexy” is a keyword, “girl” is a postfix. In group
two, “girl” is a keyword, “sexy” is its prefix and “123” is its
postfix. Finally, in group three, “123” is a keyword and “girl”
is its prefix. If a password is composed of two words, these
two words are alternatively prefix and suffix. For instance,
password “March15” can be treated as two groups. In group
one, “March” is a keyword and “15” is its postfix. In group
two, “15” is a keyword and “March” is its prefix.

In addition, Fig. 5 illustrates an example of an actual P3G
context subgraph. With the “love” node selected as a relative

keyword, a subgraph is constructed to represent all relative
prefix and postfix that are involved to make up the final user
passwords. There are five real passwords which are listed to
the right. A smaller, on-demand subgraph like this allows a
much more scalable and focused view for an investigator to
analyze the complex relationships of prefix and postfix in
user passwords.

5 Password prefix and postfix visualization

To facilitate the password prefix and postfix (P3) analysis
process, we designed and implemented an interactive P3
visualization tool. In this section, we introduce the compo-
nents of P3 visualization consisting of the P3 graph (P3G)
view, P3 context (P3C) view, and P3 relationship (P3R) view.

5.1 Interactive P3G views

Figure 6 shows an overview of the P3 analysis and visual-
ization tool. There are five views for the P3G visualization
by implementing the hierarchical P3 segmentation design as
described in Sect. 3.5. View 1 corresponds to Layer 1 seg-
mentation, i.e., passwords are divided by characters. View 2
corresponds to Layer 2 segmentation, i.e., using dictionary
words with dynamic programming algorithms. View 3 corre-
sponds to Layer 3 with common words to divide passwords.
Views 4 and 5 are graphs based on Layers 2 and 3 but after
aggregating digits and special characters. We implemented
P3G using D3 libraries and applied classic force layout to
build graphs that have node and link properties.

For iterative on-demand analysis as well as better scalabil-
ity for large graphs, a multi-section list and a slider are also
implemented in the tool. The list allows users to select any
combination of word nodes. As aresult, anew P3G graph will
be automatically generated and rendered for analysis. The
generated subgraph of the original P3G graph will include
password paths consisting of selected prefix, postfix, and
keyword nodes. The algorithms are described in Sect. 4.3.
As illustrated by the visualization analysis module in Fig. 3,
the interaction begins when a user selects a word from the
list, as shown in Fig. 6. Nodes, links, index hashmaps, and
subgraphs are constructed to produce data that include infor-
mation concerning the selected word node and all prefix and
postfix nodes and links that are related to the selected node.
If a user clicks one specific node in P3G, the node and its
link will be highlighted. The server will call a PHP script
to search the words that contain the selected node and the
clicked node. The node information is then sent to P3G for
tooltip display.

In addition, a filtering slider bar is implemented to further
reduce graph size by the link frequencies. Prefix and post-
fix words that appear less frequently will be filtered out of
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Fig.6 Overview of password prefix postfix (P3) analysis and visualization using P3 graphs (P3Gs)

the final graph. For example, if the link frequency thresh-
old is set at 1000, then the graph only shows the subgraph
in which each pair of nodes connects more than or equal to
1000 times. A threshold of one will show the original graph.
Different coloring schemes are used in P3G visualization for
better understanding. For example, the black ones denote the
relative keywords, the blue ones are prefixes, and the green
ones are postfixes.

5.2 P3 context (P3C) views

While P3G offers an intuitive approach to visualize the
complex relationships of prefix and postfix used in user pass-
words, the node-link nature of P3G limits the analysis to the
exploration of the connecting information. It is nevertheless
cumbersome to visualize the magnitude of each prefix and
postfix being used in passwords. To that end, password P3Cis
implemented using D3 word cloud to compare top prefix and
postfix words of particular keywords. The words with higher
frequencies will be shown in bigger sizes. An example of
P3C is shown in Fig. 10.

It is important to note that the words in P3C are not pass-
words but the particular prefix and postfix words used to make
up the final passwords. P3C views are particularly useful to
analyze the patterns of prefix and postfix related to a cer-
tain category of keywords under user-specific contexts (e.g.,
location, culture, religion, etc.). For example, are there any
patterns (e.g., words used frequently) for users that live in a
particular country?

We utilized the color dimension to encode the pre-
fix/postfix information by adopting D3’s “PuOr” diverging
color scheme. Given a number p in the range [0,1], the func-
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tion returns the corresponding color as an RGB string. Since
each keyword may be either prefix or postfix in different
passwords, we calculate probabilities and use dark orange
to indicate high probabilities to be prefix and dark purple to
indicate high probabilities to be postfix. Light colors indicate
somewhere in between.

5.3 P3 relationship (P3R) views

P3R view is implemented using D3 heatmaps to visual-
ize the patterns of pairwise prefix/postfix and keywords.
There are various ways to organize the combination of x /y-
coordinates for analyzing different patterns. Each axis can be
either keyword, prefix, or postfix. The cells denote the ties or
relationships among the keywords and prefix/postfix. Color
schemes are applied to indicate the magnitude of such rela-
tionships, e.g., lighter colors mean less frequent while darker
colors mean more frequent of such combination. The color
legend at the bottom of P3R visually illustrates the value
range. Each color in the legend represents an interval/range
of values. The color spectrum starts at light yellow and ends
at black.

Figure 11 shows one P3R view. In this particular example,
the y-axis represents dictionary keywords of different lengths
(from 1 character to 16 characters) and the x-axis represents
the keywords’ numeric postfixes (also from 1 to 16 char-
acters). The P3R views offer intuitive visual distributions of
relationships among the prefix, postfix, and keywords. Diver-
sity is a feature of P3R views as they can be customized to
analyze patterns of almost any combination of properties of
P3G nodes and edges. We will show more examples of the
above views in the case study section.
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6 Case study

In this section, we demonstrate usage cases of P3 visualiza-
tion tool and summarize findings through evaluation over a
real-world user password dataset. In particular, the P3G, P3C,
and P3R views, when combined, provide insights into the
relational patterns of prefix and postfix compositions when
users from different backgrounds compose their passwords.

6.1 Data source and preparation

For the case study, we utilize real user passwords from leaked
sources. After Rock You.com was hacked, a list of passwords
became publicly available [10]. The RockYou dataset con-
tains around 14 million unique passwords from users around
the world. For data preparation, we remove noise in the raw
data file since the original data include things such as uniform
resource identifiers that have more than 26 characters in aline
or html code. Considering the purpose of this research study
is to analyze the prefix and the postfix of passwords, pass-
words that contain only the same character in one password
(e.g., aaaaaaaa) are not included in the analysis.

In addition, we use data that contain popular names [2] and
common names [27]. The names are merged into a name set
that has 90,453 unique names. As for the dictionary words,
the American English Dictionary is imported into Python
Enchant, which checks the input string with the words in
the dictionary. In addition, we use the common words [8§]
that are the top 5,000 most frequent words in the human
language. Furthermore, the name set and the dictionary words
are combined and saved to a dictionary database; while the
name set and 5,000 common words compose a common word
database.

6.2 Prefix and postfix of people’s names

Often when making up passwords, users incorporate their
personal information. Names are commonly chosen by users
to compose their passwords since they are easy to remember.
We discover there are thousands of names that are taken as
keywords in the password data. Our finding suggests that
prefixes and postfixes of people’s names often involve users’
private information, such as other people’s names, birthdays,
feelings.

The prefixes of people’s names are often other names.
There are several variations, i.e., it can be the first name
followed by the last name, or it can also be user’s name
followed by his/her important person’s name (e.g., spouse,
child, best friend, pet, etc.). In either case, we refer to it as
“name + name” mode. Some users prefer to express their
private feeling to another person by setting their passwords
with “emotional verb + name,” e.g., “hate + name” or “love
+ name,” which we refer to as “feeling + name” mode. In
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Fig. 7 A P3G showing the prefix and postfix relationship of people’s
names in the “name + name,” “feeling + name,” and “name + date”
modes. Black nodes are keywords, blue nodes are prefixes, and green
nodes are postfixes (color figure online)

contrast to the prefix of people’s names, we observe that most
of the postfix of names are numbers in date format, which we
refer to as “name + date” mode.

Figure 7 shows a P3G of such prefix and postfix relation-
ships to names. In this example, “johnny” and “michelle”
are taken as keywords, whose color is black. The blue nodes
are prefixes, while green ones are postfixes of keywords.
“OTHERS” node denotes other nodes that also appear in
the same passwords as in “name + name” mode, “feeling +
name” mode, or “name + date” mode. It is obvious to observe
these modes. For instance, prefixes (blue nodes) are either
names or feeling expressions, such as “nancy — michelle”
for the “name + name” mode, “love — michelle” or “hate —
johnny” for “feeling + name” mode. On the other hand, most
postfixes (green nodes) of names are digits, most of which
may be divided into date format. For instance, “michelle
— 150390” can be interpreted as “March 15th, 1990, and
“010778” may be interpreted as “January 7th, 1978, which
could be the birthday. By cracking passwords using these
three modes, an attacker may significantly reduce the crack-
ing space for most passwords.

6.3 Substitution of password prefixes and postfixes

One interesting finding using P3G analysis is that people
use special characters and digits to substitute words (usually
similar in sounds) that may be culturally specific. Some of
these phenomena are similar in people’s online chatting or
short messaging. For example, “4” substitutes “for”; “u” is
used for substitution of “you,” etc. As a result, we find it very
common that “ever” is the postfix of “4” in user passwords.

Another common substitution is for dates. For instance,
after a month, dates can be represented in different forms.
Taking postfix “15” of “March” as example, there may be
multiple forms: “marchl5,” “march15th,” “marchfifteen,”
and “marchl5.” “marchl5” is composed of “march,” “1” (use
letter “1” to substitute digit “1”), and “5.” Digit “0” is also
a popular choice for letter “0.” The date substitutions hap-
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Table 4 Substitutions of dates are common in user passwords

Month 0 =0/0 1=1L 2="7 3=E 4 =h/A 5=S 6 =b/G 7="T/ 8§=X 9=g/]
January X X X X X X X
February X X
March X X X X X X X X X X
April X X X X X X X X X
May X X X X X X X
June X X X X X X X X X
July X X X X X X X X
August X X X X X X
September X X X X X
October X X
November X
December X X X
® camen @ guowei (which means “baby” in Chinese), “weiwei,” “miaomiao,’
@ mizo @ otrers @ gucoi ) “vivian,” “tiffany,” etc. Based on the assumption that users
yumi . .
@ most likely speak Chinese, we deduce “5201314” must mean
‘ “I love you forever” since they have similar sounds. Not
. baobei . calvin soffie .. .
) surprisingly, most of the name prefixes of the substituted
@ weivei ® yourns %5201314 keyword are Chinese names as well.
ol Ores @ @ xn The myth about choosing password using substitution
@ vvian @ hong @ mizomizo (e.g., “0” for ’0’) making it safer yet easy to remember may
© jisien 0 ey or may not be valid. By knowing the context of users’ cul-
@ sujian @ tiffany @, o ture, geography location, language preference, etc., one may
) aunch focused substitution attacks based on these context.
® .'uv.wenwen launch focused substitution attacks based on th text
@ i ® @ On the other hand, the diversity of users’ background may
tingting

Fig. 8 One example of culture-based password substitution, where
“5201314” stands for “I love you forever,” and the prefixes are usu-
ally names for Chinese speaking users

pen in every month (see Table 4), e.g., januaryb13, julyo4,
augustEl, novemberx, etc.

However, some substitutions are not clear to be recog-
nized. Interestingly, we find some of these substitutions have
deep roots in the users’ cultures and languages. For example,
“88” may be substituted for “byebye” in Chinese language
because of the sound similarity. When segmenting digits from
the passwords, most of them are long numeric strings. Some
of the passwords we analyze are “e2345,” “e234567890,” etc.
As far as we know, “e” is neither at the beginning of some
keyboard rows, nor the initial letter in 26 letters. Actually,
“e” has similar sound to “1” in Chinese, which probably is
the reason why “e” is usually followed by the numeric series.

Figure 8 shows another example of substitution from real
user passwords using P3G analysis. At first, it is hard to find
what special meaning a substring “5201314” contains. How-
ever, from the neighboring nodes, almost all prefix nodes

connecting to “5201314” are names, particularly “baobei”
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be a good thing in terms of balancing security and usability.

6.4 Contextual prefixes and postfixes

A few other questions we like to know are “are there cor-
relations between positive and negative connotations in user
passwords?”, “will religious users tend to use words related
to god than non-religious users?”, etc. In general, do prefix
and postfix exhibit different patterns for users in different
context? Figure 9 shows a comparison of P3Gs using two
contrasting keywords, i.e., “heaven” vs. “hell.” The visual-
ization (Fig. 10a) clearly shows that the commendatory prefix
(blue nodes), e.g., “good,” “love,” “sweet,” “like,” “smile,”
etc., is constantly associated with passphrase “heaven.” In
contrast, Fig. 9b shows people constantly use bad words,
such as “bitch,” “fuck,” “bloody,” “damn,” “shit,” and “kill,”
as the prefixes and postfixes if their passwords contain “hell.”

In the P3C views demonstrated in Fig. 10, we choose a few
positive connotative words found in user passwords that are
related to faith and religion such as “god,” “faith,” “jesus.” In
addition, we choose a few negative connotative words. Then,
we generate P3C views to compare if the prefixes and post-
fixes of positive and negative connotative keywords reveal
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(b) Prefixes/postfixes under negative connotative context

Fig. 10 P3C views comparing the prefixes (orange) / postfixes (purple) in user passwords under contrasting context (color figure online)

distinct patterns. Dark orange indicates high probability of
being prefix, while dark purple indicates high probabilities
of being postfix. The result confirms our hypothesis and is in
line with the results from Fig. 9. The top prefixes and post-
fixes for positive connotative words are highly likely to be
positive as well (Fig. 10a), while the top prefixes and post-
fixes for negative connotative words tend to be negative too
(Fig. 10b). There is, however, one more subtle pattern that we
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discover. Although both cases have “1” and “you” connected
as prefix and postfix, the size of “i” in positive connotative
case is larger than “you,” while it is the opposite for negative
connotative case. In accordance with Fig. 10a, the subjective

words, such as “i,” “my,” “me,” more frequently connect to

the words that relate to the religious words. A plausible expla-
nation could be that in Bible, Jesus Christ keeps conveying
atonement and salvation in the subjective side to Christians.
As Emil Brunner [7] said, “It is only in this subjective expe-
rience, in faith, that the Atonement becomes real.”

The results suggest that the prefix and postfix are highly
correlated with the context of keywords in user passwords.
Hence, if an attacker knows the context of a possible word
used in user passwords (as from certain groups, e.g., religion
of users), he/she can minimize the guess range of prefix and
postfix forming a password. The finding may be useful to
customize stronger policies through specific cases based on
the users’ types.
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Fig. 11 The length distribution of keywords (y-axis) vs. their numeric
postfix (x-axis). Majority is from P5 to P8 and from D2 to D6 with long
tail distribution

6.5 Distribution of numerical postfixes

One of the dominant patterns in user passwords is that users
prefer to set numbers at the end of passwords. There are
1,733,838 out of 11,484,552 unique passwords, or 15.1%,
that have the format of “keyword + number.” Among them,
313,477 passwords, or about 18.1%, have the form “name +
date.” The numbers are limited to the size of name dictio-
nary we used and we only look for one specific combination
of date format. We find there are several common phenom-
ena. First, many users compose their passwords by using
first name or last name plus date. The dates are usually their
birthdays [5,22]. This is probably the most common pattern
when users set their passwords. Second, some users just add
digits at the end of names or some other meaningful words,
for instance, “password1,” “red123,” or “animal123456789.”
Some words may represent the event that people experi-
enced at particular time, e.g., “adventure99,” “affairs07,”
“airassault69.”

Figure 11 shows the P3R view illustrating the length dis-
tribution of passwords that involve numeric postfixes. In the
P3R view, the y-axis (P1 to P16) represents the length of
keywords, and the x-axis (D1 to D16) denotes the number of
digits that follow the keywords. Blocks of dark brown areas,
which edges are from P5 to P8 and from D2 to D6, represent
higher frequency of usage. Intuitively, the longer the word,
the shorter of digit postfix, and vice versa. The visualization
suggests the total lengths of the majority of passwords in this
“word + digits” mode are from 6 to 12. There are diminishing
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long tails with increasing digit lengths. Another observation
is that for “word + digits” passwords, the minimum length of
words starts at 4. One exception is P1, in which it is also com-
mon to have just one letter at the beginning, then followed
by a series of digits (peaked at the length of 6). A popular
date format mmddyy may be contributed to the digit length
of 6.

Although passwords with digits are common and easy for
users to remember while satisfying the length requirement of
passwords, the revealed patterns suggest such practice is not
secure as the time complexity of brute-force attacks can be
significantly reduced by following the demonstrated “word
+ digits” distribution in Fig. 11.

6.6 Patterns of date postfixes of names

Figure 12 uses P3R views to analyze one specific type of post-
fix, i.e., dates. As discussed in the previous section, here we
examine one special case of “word + digits” distribution, i.e.,
“name + dates,” which is also a very common pattern in user
passwords. In particular, Fig. 12a examines the distribution
patterns of date postfix after people’s names and Fig. 12b
examines the date distribution after location/place names.
There exist distinctive patterns in both cases. First, for peo-
ple’s names, the date postfixes are uniformly distributed. This
implies that people tend to use birthdays after their names
since different people have different birthdays. However, for
locations such as city names, we do not observe equal dis-
tribution as in the people’s name case. We acknowledge that
we do not look at all combinations of date formats but only
a small subset of possible dates. It is also possible that some
digits could be keyboard patterns or even zip codes. With fur-
ther investigation on the concentration of areas, we find that
some of the clusters are around special days such as holidays.
For example, there is one cluster at the end of December,
one at the beginning of January, and one near Thanksgiv-
ing day. In addition, dates of places are more often in the
middle of months than at the beginning or end of months.
Compared to people’s names, dates associated with locations
may have special meanings for the users such as traveling
events like vacations, many of which happen during holi-
days. The results suggest the prefixes/postfixes such as dates
exhibit distinguishable patterns depending on the types of
names.

6.7 Prefix and postfix of locations and social roles

We further study the prefix and postfix patterns for different
categories of keywords in user passwords. The first category
we look atis the location/place names. Figure 13 shows a P3G
of city names (Detroit and London). It can be observed that
directional words (e.g., “east,” “west,” “south,” and “south-
west”) and emotional words (e.g., “love,” “luv,” “hate,” and
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(a) Date postfixes following people’s names.
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(b) Date postfixes following place’s (city) names.

Fig. 12 P3R views of distinctive distribution patterns of date postfixes in user passwords. Dates are represented by months (y-axis) and days

(x-axis)
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Fig. 13 A P3G graph showing the prefixes and postfixes of one type of
location words (city names). Directional words (e.g., “‘southwest”) and
emotional words (e.g., “love”) are the common prefixes while symbols
such as sport teams are usually the postfixes

“miss”) are the common prefixes of city names. The city sym-
bols such as landmarks, local organizations, sport teams, and
digits are usually the postfixes of city names, for example,
“bridge” as the postfix of “london,” “lions” and “pistons” as
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the postfix of “detroit.” We do notice there are many more
diversities in prefix/postfix if a location word is a country
name.

The second category we examine is people’s social roles,
e.g., family and occupation. In family roles, husband, wife,
son, and daughter are observed. Figure 14 compares P3Gs of
husbands and wives. Most of the prefixes and postfixes of the
social roles are feelings and emotions. Specifically, in Fig.
14b, “love” (and variations of “love” such as “luv,” “lovely”
and “loving”), “dear,” “hate” are frequent prefixes connect-
ing to “husband.” Interestingly, we observe there are unique
prefix and postfix for “husband” such as “dirty,” “cheat-
ing” and “cheater.” In comparison, the prefixes and postfixes
for “wife” (Fig. 14a) share common characteristics such as
“love.” However, the predominant prefixes for “wife” include
men’s names. The results suggest that the users’ psycholog-
ical associations about their spouses are possibly conveyed
when creating passwords.

. dear
A. fred

@ oeiT
b coz

love
" .' i >. luv '. him

(b) Husband

‘ lovly
6 loving QYOU

Fig. 14 P3Gs showing prefix and postfix of social roles (husband vs. wife)
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7 Conclusion

With the increasing length and complexity of passwords,
understanding user passwords is important for designing
secure systems. In this paper, we investigated the prefix and
postfix patterns of user passwords. Since dividing passwords
is not a trivial task, we designed novel hierarchical seg-
mentation algorithms using both dynamic programming and
optimization techniques. We analyzed the impact of each
layer on the trade-off between scalability and granularity of
password prefix and postfix (P3) analysis. To facilitate P3
analysis, we proposed novel password prefix postfix graph
(P3G) construction algorithms. P3Gs intuitively encode the
relationships between prefix and postfix of user passwords. In
addition, we developed a P3 visualization tool that integrates
views of P3G, P3C, and P3R. Through case study over real-
world user passwords, we were able to identify a wide array
of distinctive patterns of prefix and postfix of various cate-
gories of words such as people, locations, roles, digits, dates,
religions, culture-specific substitutions. The results suggest
strong correlations between prefix/postfix and the context
in user passwords. The findings provide useful insights for
security practitioners to better understand user passwords and
ultimately design a stronger system by considering human
factors. Our future work will apply further graph theoretical
analysis to the P3G graphs.
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