
1

Lockdown: Distributed Policy Analysis and
Enforcement within the Enterprise Network

Andrew Blaich, Qi Liao, Aaron Striegel, and Douglas Thain
Department of Computer Science and Engineering

University of Notre Dame
Email: {ablaich, qliao, striegel, dthain} @cse.nd.edu

Abstract— Security policy is a multi-faceted problem that needs
to be enforced at different levels of a system. Attempts to
resolve the problem of how to enhance network connectivity
with information for better security based decision making while
keeping an emphasis on simple deployment and management
have been insufficient. Existing solutions take the approach
of hammering network-centric mechanisms towards the policy.
These solutions are not simple to deploy or manage, some-
times requiring reconfiguration of the network resources or a
completely new structure. Some of the solutions in the form
of intrusion detection systems are passive, only notifying of
an intrusion after the fact. Our project, Lockdown, looks to
simplify the deployment and management issues of enhancing
network connectivity information while improving upon intrusion
detection by providing an active intrusion prevention system.

I. INTRODUCTION

IT is often said that the most secure computer is one that has
no connection to the network. Unfortunately, access to the

Internet is an essential component of day to day operations
for the workforce, especially in today’s fast-paced highly
connected world. Traditional methods for maintaining system
security (firewalls, intrusion detection, etc.) face continued
pressure from both benign and malicious entities that seek
to circumvent the prescribed policy for the network.

Take for instance the humble firewall such as iptables
under Linux policing traffic based on foreign/local port/address
tuples. While the intention of a rule to allow outbound port
80 may be to only allow web traffic, the coarseness of the
mechanism can be exploited to introduce protocol-abiding but
undesirable behavior (ex. Gnutella over HTTP). Conversely,
consider legitimate but rarer cases, ssh to a remote site
on port 2020 or telnet to port 9005 to check a service.
While approaches such as proxy-wise inspection of packets
or extremely sophisticated firewalls can attempt to close these
gaps, the approaches are a band aid for symptoms of the larger
enterprise control problem.

Our work in development, Lockdown, seeks to bring appli-
cation and user-awareness into network traffic from a top-down
perspective rather than hammering network-centric mecha-
nisms towards the policy. We view Lockdown as enhancing
network connectivity with information for better decision
making while keeping an emphasis on simple deployment and
management. To illustrate one small but non-trivial example,
rather than silently discarding a packet leaving the application
to timeout, the actual network call would return with a security
failure.

Fig. 1. Lockdown System Architecture

In some sense, Lockdown can be viewed as a practical
version of SANE [2] for today’s Internet, trading assurance
gained from the clean slate approach for deployment capacity
with extensive auditing and analysis components.

Lockdown wants to do away with the notion of traditional
firewall rules, by adding an additional layer of security on top
of them to stop or allow such applications that try to bypass
firewall restrictions by following the exact firewall rule and
not the intended spirit of it. The end goal is to have a policy
in place on the hosts running within an enterprise network that
would allow rules written in English to be fully supported on
the host. An example of such a rule would be as follows: Floyd
is allowed to access the company intranet server using only
Internet Explorer from machines installed in room 302, and
may not copy data to removable media. From the example rule
above the Lockdown policy for network connectivity contains
the notions of user id, group id, application used, foreign/local
port/IP address, network protocol, and everything in between.
With all of this additional information the Lockdown policy is
much more robust and capable in preventing/allowing network
connectivity and is easier to deploy and manage that pre-
existing systems.

The rest of the paper is outlined as follows: Section V
discusses the related work in this area. Section II discusses
the different parts of the system. Section III presents some of
the open ended research questions the designers have come
across. Section IV provides an update on the current status of



2

Lockdown and the remaining work. Section VI concludes this
proposal.

II. SYSTEM COMPONENTS

The Lockdown system consists of five different parts: data
collection, data analysis, data visualization, policy translation
(English to computer usable), and finally policy enforcement.
See Figure 1 for Lockdown’s overall system architecture. Cur-
rently work has been focused on the data collection/analysis
with recent progress being made on the visualization and
policy enforcement.

A. Data Collection

The data collection is done via an agent script1 that is
installed on approximately 200 hosts within our department.
The agent gathers at regular intervals all network connectivity
taking place on that particular host: the user(s) involved, the
files they are touching, and the processes responsible. This
data is then sent out from each host to a central server where
a collector sits, sifting through the data and logging it into a
SQL database. The collector keeps track of when hosts last
checked in and presents the details on an internal web-page
for the system administrators to monitor.

The agent running on the linux hosts is a bash script using
the common tools netstat, lsof, and ps to gather data. In
addition when the agent starts up it sends out the linux kernel
version, version numbers for each tool, /etc/passwd, /etc/group,
cpuinfo, meminfo, uptime, and iptables in a startup file. The
agent is currently distributed via our system-admins up-to-
date script. After each iteration of the tool there is a series
of awk, sed, and diff commands to formulate and size down
the data to reduce the amount of network bandwidth used
when uploading the data.2 For example, with netstat, a diff
is performed comparing the data collected from the previous
netstat command with the current data just collected. With this
information we are able to determine if a connection is new
and needs to be added to the data file to be sent to the server,
or if it has finished and needs to be sent to the server as well.
If the same connection appears in the new and old temp files,
diff will not add redundant connections to the file. Data is
uploaded roughly every 15 minutes.

The agent has evolved over its development to include
several safe-guards and checks. Since our campus and the
hosts are using AFS3 the agent has immediate access to
certain g̈loballyävailable files on the network. For example,
at a configurable interval the agent script checks a signal file
stored in one of the admin’s AFS spaces. The file is readable,
but not writable, and contains a value that when set will cause
all hosts checking it to sleep and then recheck the value when
the sleep is finished until the value in the signal file returns
to zero, in which case everything is green and the agent can

1The agent script is currently a linux only bash script. Future work is
focusing on creating a Windows service to gather data from a local cluster of
Windows hosts on campus.

2The agent in performance testing consumes very little resources, roughly
2-5percent of CPU usage.

3Andrew File System

Fig. 2. Top applications by number of connections across all monitored
hosts.

Fig. 3. Network Visualization

continue collecting. There has also been built into the agent a
way to, disable any combination of the three tools monitoring
a specific host in case that the tool becomes unstable. 4

B. Data Analysis and Visualization

The data that has been collected and inserted into the
database can be mined through using traditional datamining
techniques. The results are displayed visually in the form of
graphs showing the number of connections per host, the top
users per host, the top processes per host/user, etc. Almost
any combination of the data can be pulled out and displayed
on the system’s web-page. In essence given a graph that
simply shows the number of connections per host we can
drill down to a level of more detail revealing the users and
applications involved. Overtime this creates a great snapshot
of what is going on within the network. The current results
that our internal website displays for us include Node Status
(the start time and last check in time in the database),
Distinct Fields (Fields other than the unique hosts listed in
Bipartite Matching 1, i.e. local/foreign port numbers, uid/gid,
application names, etc.), Bipartite Matching 1 (list of unique
local / foreign addresses), Bipartite Matching 2 (Local vs

4A cluster of machines had been running fine for upwards of 40 days until
lsof began to cause issues.



3

Fig. 4. Sample Global Policy Language

Foreign Identity for the connections established on each host),
Graphical Visualization of Data 1 (average file sizes, top hosts
/ users / applications, etc), and Graphical Visualization of Data
2 (Instantaneous number of connections, etc). Figure 2 shows
the number of connections across all hosts for the top 19
applications.

Through our data-mining we are also able to infer a certain
amount of host-level chaining and trust inference. This is
currently displayed in the form of a directed graph, created
with the Social Network Image Animator. SONIA allows us
to play back snapshots of the system over time to see how
connections form and are shutdown between all of the hosts
within our web of monitoring. Figure 3 shows an example of
the directed graph we have produced for all the hosts being
monitored.

C. Policy Language and Distribution

Figure 4 demonstrates a sample global policy that could be
enforced with Lockdown with the English translation above
the actual description required for the computer to interpret
the rules. The symbol * means to allow or deny all.

D. Policy Enforcement

Policy Enforcement is handled via the Linux Security
Module framework, standard in the 2.6 kernel, but available
as a patch for the 2.4 version. The LSM framework has
several hooks placed within an assortment of system calls.
See linux/security.h for a complete listing of the hooks.
The Lockdown LSM module can be inserted dynamically at
anytime, without the need for a kernel re-compile, and is
responsible for enforcing the policy that is pushed out onto
each of the hosts. The primary focus of our LSM is with the
socket hooks, since we can determine whether certain sockets
should be created before they are, or if an incoming connection
on a listening host should even be established before it does,
then either pass or fail the connection. If it is passed, returning
a zero, then the normal firewall rules can apply; however, if
it is failed, then that attempt has been prevented.

LSMs provide a terrific amount of auditing in addition to
policy enforcement without the need to alter the actual linux
kernel in anyway. Via the Lockdown LSM a decision can
be made to allow or deny a socket create call with as much
information as possible to make an informed decision on the
validity of the call.

III. OPEN RESEARCH QUESTIONS

There are still some open research questions in regard to
policy enforcement that need to be answered. There are still
some open research questions in regard to policy enforcement
that need to be answered. Applications such as firefox that
allow users to load plug-ins and extensions would appear
undetectable to an LSM. As the web-browser migrates toward
the most commonly used application for users and with web-
applications gaining dominance, it is likely to think that
everything may migrate over to a browser in the form of web-
apps or even modules and/or extensions of the browser. From
a user standpoint this is nice, but from a security viewpoint it
is tricky to deal with since even the extensions and/or modules
run within the browser process as that process.

• Plug-ins: Can these be identified successfully at the OS
level? In applications such as firefox can it be detected
that a certain plug-in is being used?

• Scripts: Is the appropriate enforcement point on the script
or on the individual executables? Does the combination
of a set of executables need policy?

• Java/Interpreted Languages: What about applications
written in Java or Python or Perl?

• Network ACL: Is there a need for the concept of an ACL
for network activity? Is that network ACL directional
(in/out), is it dependent on the application, does it change
with application arguments?

• Security to application obscurity: To what sense should
the configurations of the host and/or network be kept
obscure to the application? Is it a black box to probe
and timeout leaving distributed systems debugging in its
current state akin to something of a black art? Conversely,
if information is exposed, how verbose should it be and
should it be dependent who or what sent the query?

IV. CURRENT STATUS

Lockdown is currently in development, but portions of it are
deployed within our department’s computing clusters. The data
collection/analysis which had been the early focus still remains
the most complete portion of the system. The agent script is
constantly reporting data to the database and our web-server
is feeding us up-to-date results on what is going on based on
the most recently parsed data-set. The visualization portion of
Lockdown, which is simply producing static images currently,
will in the future be producing interactive movies allowing
the administrators to roll-back over time and observ network
connection behavior during any point of the monitoring period.
The policy enforcement LSM is in the middle stages of
development. As the appropriate hooks are being determined,
logging is taking place to determine what information we can
collect from the LSM’s point of view to enforce our global
policy. Finally, the policy distribution component needs to be
developed so as to allow simple and efficient distribution of
the global rules to all of the hosts running within the intranet.

V. RELATED WORK

In a broad sense, the work in this paper touches on the
vast array of research already being conducted with regards



4

to firewall/policy analysis and intrusion detection. The MAC
portacl module in FreeBSD is used to limit binding to ports
and in essence is close to what Lockdown can accomplish with
the LSM enforcement module. A project out of the University
of Italy [10] is attempting a similar distributed approach, but
based theirs on the 2.4 linux kernel and in addition they allow
for an anomaly detection engine to be plugged in to help
establish the policy, resulting in passive detection. Whereas
in Lockdown the policy is established beforehand and the
analysis is used to determine the rule(s).

Lockdown relies on the LSM framework [12] [11] to do
the policy enforcement because of the speedup resulting from
working in kernel space rather than user-space. LSM work
is also good in that it does not require writing a module to
do system call interception which can be costly in terms of
CPU time as well as buggy in terms of stability, relying on
the programmer to implement each system call properly [6].
There is also LOMAC [7] , which was recently wrapped into a
Linux Security Module. LOMAC works on the basis of jailing
application that try to access resources they shouldn’t be, but
is more geared for monitoring memory rather than network
connectivity.

There exist several commercial solutions produced by El-
emental Security, Cisco, and Endforce to name a few. The
commercial solutions, which may be robust, remain costly in
terms of deployment and management.

The closest related academic work, SANE [2], grew out of
the Clean Slate program. The idea for SANE is nice, but it is
impractical to have an enterprise re-do their entire network in-
frastructure and have everything relying on a centralized server
to handle all routing and access control decisions. By making
a trade off between the Clean Slate approach and extensive
auditing/analysis, Lockdown is able to achieve a similar result
to that of SANE without requiring any restructuring of the
network and/or its resources.

Lockdown focuses on auditing to look at the richness of the
data, showing a deeper understanding of what is taking place
on the network so that the rule designers can make better
informed decisions on how to enforce the policy given that
rules are not limited by simply the standard four-tuple of the
traditional linux iptables.

VI. CONCLUSION

Using a system such as Lockdown global policy on an
enterprise network can be distributed to the hosts to respond
to various threat levels. When policy is pushed out onto the
hosts the analysis engine can determine if the policy is in
fact being followed or if there is a further need to lock down
users or applications that might be misbehaving. While there
do exist commercial alternatives that solve a similar problem.
Lockdown relies on using commonly available tools and
features of linux to create and deploy an intrusion prevention
system that is easier to maintain and less costly in terms of
maintenance fees and/or subscription fees. Where Lockdown
is conceived to provide robust security in the form of more
accurate firewall rules it also has the advantage of being able
to do the trust-inference and host-chaining that exists among

a monitored network to give designers and administrators
an interactive visual of what is happening over time on the
enterprise intranet. Lockdown’s beauty is in its simplicity of
not having to re-work a network’s infrastructure and by using
commonly available tools and techniques inherent to linux to
enhance network connectivity information allowing for better
policy mapping within an enterprise.

ACKNOWLEDGMENT

The authors would like to acknowledge the research under-
graduates Greg Allan and Brian Sullivan for their work with
the data visualization and web-based query components.

REFERENCES

[1] E. Al-Shaer and H. Hamed, Discovery of policy anomalies in distributed
firewalls, in IEEE INFO- COM, Mar. 2004, pp. 2605 2616.

[2] Martin Casado, Tal Garfinkel, Aditya Akella, Michael J. Freedman, Dan
Boneh, Nick McKeown, Scott Shenker. SANE: A Protection Architecture
for Enterprise Networks. 15th USENIX Security Symposium. Vancouver,
Canada, July, 2006.

[3] Suresh N. Chari and Pau-Chen Cheng. BlueBoX : A Policy-Drive. Host-
Based Intrusion Detection System

[4] Crispin Cowan, Steve Beattie, Greg Kroath-Hartman, Calton Pu, Perry
Wagle, and Virgil Gligor. SubDomain: Parsimonious Server Security.
LISA 2000

[5] Thomas E. Daniels and Eugene H. Spaffor (CERIAS Purdue University).
A Network Audit System for Host-based Intrusion Detection (NASHID)
in Linux. CERIAS Tech Report.

[6] Tal Garfinkel. Traps and Pitfalls: Practical Problems in System Call
Interposition Based Security Tools. Network and Distributed Systems
Security 2003

[7] Jinhong K. Guo, Stephen Johnson, David Braun, and Il-Pyung Park
(Panasonic Information and Networking Tech Lab). Applicability of
Low Water-Mark Mandatory Access Control Security in Linux-Based
Advanced Networked Consumer Electronics . Consumer Communication
and Network Conference 2004

[8] Jeffrey Horton and Rei Safavi-Naini. Detecting policy violations through
traffic analysis. ACSAC 2006

[9] Moody, James, Daniel A. McFarland, and Skye Bender-deMoll. 2005.
Visualizing Network Dynamics. American Journal of Sociology, (January
2005). http://www.stanford.edu/group/sonia/ .

[10] Pier Lica Montessor and Davide Pierattoni. Towards effective Intrusion
Prevention: developing an open framework for integrated network security
. (Tech Report)

[11] Markus Quaritsch and Thomas Winkler. Linux Security Modules Enhac-
nements: Module Stacking Framework and TCP State Transition Hooks
for State-Driven NIDS. Secure Information and Communication 2004

[12] Chris Wright, Crispin Cowan, James Morris, Stephen Smalley, and
Greg Kroah-Hartman. Linux Security Module Framework. Ottawa Linux
Symposium 2002


