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Figure 1: An overview of the Structural Equivalence (SE) based graph anomaly visualization tool. The left panel is the SE
grouping options and node/edge selection and filtering; the middle panel is the compress graph view; and the right panel is the
timeline plot with network anomaly icons based on the selection of nodes in the graph.

ABSTRACT

As we move into the big data era, the magnitude of inter-connected
systems has grown significantly. However, understanding and vi-
sualizing such large-scale networks become challenging due to two
major reasons. First, rendering extremely large networks with over
millions of nodes/edges is infeasibly slow and requires tremendous
computing resources. Second, even if it is technically feasible, hu-
mans are usually unable to understand the patterns and insights
from viewing a smaller graph with only a hundred nodes due to
human cognition limitation. Our research targets at reducing the vi-
sual complexity of large networks through reducing the graph size
while seeking a balance between the information loss and readabil-
ity. As a supplement to community-based approaches, we apply
both strong and relative structural equivalence (SE) to group simi-
lar nodes. We have developed interactive visual analytic tools based
on SE, and the preliminary results show they are effective in ana-
lyzing large graphs.

1 INTRODUCTION

The original ARPANET connecting just a few key laboratories in
the 1970s has expanded to over four billion interconnected comput-
ers. The future Internet will consist of not just computers but also
objects (such as smart phones and sensors) or things, known as In-
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ternet of Things (IoT). In addition, other types of networks such as
social networks and biological networks have also evolved rapidly.
For example, one popular social network has exceeded one billion
users.

Understanding and visualizing the above large networks and
their connection patterns is vital in many research domains, but is
very challenging. As computer scientists, we must find efficient
ways of visualizing these large-scale networks. Therefore, we ask
the question “Is there a way we can reduce the graph size to help
human understanding while keeping the key network topological
structure intact”? One possible way is to group nodes by clustering
or community detection [2]. Though communities can be useful
in analyzing networks, the community-level view hides the impor-
tant context and critical topological details (e.g., edges among the
nodes) within the community. Another challenge for community
detection is how to group heterogeneous nodes, i.e., nodes of differ-
ent types, in a more meaningful way. We note that many networks
are indeed heterogeneous as long as there are at least one semantic
attribute on the nodes, e.g., the author-paper-conference network in
academic collaborations, the host-user-application network in com-
puter communications, etc.

To that end, we study an alternative node and edge grouping
strategy based on the concept of structural equivalence [1,3]. Rather
than detecting proximity-based communities from a network, struc-
tural equivalence (SE) classifies the network nodes into several cat-
egories by positions taken in the network, or similar network struc-
tures. We implement this idea with a Strong Structural Equivalence
(SSE) grouping algorithm completed in linear time for large net-
work traffic graphs. To further control the granularity of visual-
ization, we also develop a fuzzy version called Relative Structure
Equivalence (RSE) grouping method according to the similarity of
neighbor sets through an interactive control. Nodes with the ex-
actly the same or similar neighbors are rendered as one larger mega-



Figure 2: Illustration of Strong Structural Equivalence (SSE) based
network abstraction.

node and a network with mega-nodes will regenerated for a com-
pressed version of the original graph for visualization and analysis.
An overview of the developed visualization tool based on structural
equivalence is shown in Figure 1.

2 STRUCTURAL EQUIVALENCE

Let G = (V,E) be a directed and weighted heterogeneous network.
V = {v1, ...,vn} and E = {e1, ...,em} denote the node and link set.
The adjacency matrix W can encode bidirectional connections for
each node, where wi j > 0 indicates a link from vi to v j, with wi j
denoting the link weight. For each node vi, R+

i = {wi1, ...,win}
denotes the outbound vector, R−i = {w1i, ...,wni} denotes the in-
bound vector, both representing its connection pattern. Similarly,
N+(vi) = { j|wi j > 0} and N−(vi) = { j|w ji > 0} indicate the out-
bound and inbound neighborhood set. Let P = {P1, ...,Pt} be a par-
tition or grouping over the network G into t sub-group of nodes.
P(vi) indicates the partition index of node vi.

The Strong Structural Equivalence (SSE) [1] requires the net-
work node to have exactly identical neighborhood set. For any node
vi and v j in network G, SSE partition network that satisfies:

P(vi) = P(v j)⇔ P0(vi) = P0(v j) and
N+(vi) = N+(v j) and N−(vi) = N−(v j)

(1)

The SSE-based grouping (SSEG) is a deterministic algorithm in
that for the same original graph, it always produces the same com-
pressed graph. We implement the SSEG algorithm, which com-
pletes in linear time for large network graphs.

In the real scenario of interactive visualization, users may want
the flexibility of controlling the compression rate for tradeoff of the
visual complexity and precision. We also develop a fuzzy version
SE, i.e., Relative Structural Equivalence (RSE). RSE relaxes the
requirements of SSE so that we may group nodes with not exactly
the same but similar neighbor set. The compression rate can be
increased with bounded compensation on accuracy. The key is to
define the pairwise similarity score between graph nodes. Here we
adopt the standard Jaccard Coefficients between two sample sets A
and B for the similarity measure, i.e., J(A,B) = |A

⋂
B|

|A
⋃

B| .
Level-of-detail (LOD) control allows users to access more de-

tails beyond the compressed graph. By interacting with the graph
through clicking on nodes, users may explore the different group-
ings and switch among SSE, RSE and the original graph. The ma-
jor gain is to maintain the mental map of users to a certain kind of
graph topology. LOD is achieved after the SEG algorithm by re-
splitting the aggregated mega-node into smaller mega-nodes of the
same size.

3 PRELIMINARY RESULTS

We evaluate the structural equivalence based visualization on mul-
tiple datasets. Figure 3 shows the effect of visualization on the orig-
inal, uncompressed graph (3(a)) and transformed graph (3(b)). The
data is from VAST 2011 Mini Challenge-II dataset which includes a
computer network architecture of a shipping company - All Freight
Corporation (AFC) and all the necessary traffic data for the tool,
including three days of Netflow-like firewall log. We also apply
it to VAST 2012 Mini Challenge-II dataset from a financial com-
pany’s network (Bank of Money) that consists of approximately

(a) Original (b) Compressed

Figure 3: Corporate network traffic overviews from the VAST Chal-
lenge 2011 dataset. User interface for SSE-based graph visualiza-
tion. Left: SSEG controllers. Right: main panel for traffic visual-
ization.

(a) Original (b) Filter to 50 nodes (compressed graph)

Figure 4: Data center flow graph visualization in the original tool,
with the node filter and after integrating the SSEG method.

5000 machines. We achieve similar performance in terms of com-
pression rate. Smaller network means reduced visual complexity
for the user. The visualization too can easily detect network attacks
and anomalies from network traffic data. For example, in Figure 1,
it is easy to observe that the IRC traffic exchanged with the web-
sites overwhelms in the whole inspected period. The IRC traffic
from the workstations are programmed, with sequentially enumer-
ated source ports. It verifies the hypothesis that these hosts have
been compromised as botnet clients. We also experiment the tool on
the traffic flow graph among data centers. The traces are collected
from a large corporate in the Netflow format, containing statistics
of the flows, i.e., timestamp, flow sequence, src/dst IPs and ports,
duration, packets, flags, etc. Figure 4(a) shows the original flow
graph with 6509 nodes and 18347 edges. A smaller graph contain-
ing only 50 nodes is displayed through the node filtering over the
compressed graph (4(b)), preserving most of the important topolog-
ical structure of the original graph.

4 CONCLUSION

Analyzing large-scale networks is challenging but may have great
potential in many research domains. We applied the Structural
Equivalence based grouping method to reduce the visual complex-
ity of large network graphs in an effort to seek a balance of amount
of details and ease of understanding. Strong and relative structural
equivalence methods can effectively reduce the scale of many real-
world graphs such as network traffic graphs while still preserving
critical topological features of the original graph.
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