
Investigating Network Traffic Through Compressed Graph Visualization
VAST 2012 Mini Challenge 2 Award:“Good Adaptation of Graph Analysis Techniques”

Lei Shi∗ Qi Liao† Chunxin Yang ‡

(a) Uncompressed view (b) Compressed view (c) Manual groups

Figure 1: Overall VAST 2012 Mini Challenge (MC) 2 network traffic graph in 40 hours, under different visualization approaches.

ABSTRACT

Compressed Graph Visualization is a visual analytics method to
scale the traditional node-link representation to huge graphs. This
paper introduces its visualization, data processing and visual ana-
lytics process in solving Mini-Challenge 2 of VAST 2012 contest.

1 INTRODUCTION

Visualizing a graph with more than a hundred nodes faces two fun-
damental challenges. First, the classical force-directed methods
in most cases fail to calculate an optimally aesthetic graph layout
in real time (∼1s). Second, even if a huge graph layout is com-
puted, the visual clutters (mainly the edge crossings) created by
the straightline node-link representation prohibit the user from un-
derstanding the graph in details, which is important for analytical
tasks. For example, in a typical network security scenario, thou-
sands of hosts can get involved. The size of the traffic graph will
grow significantly if the unique endpoint is counted as vertex, by
considering the port number.

In this paper, we introduce a novel method to deal with the scala-
bility issue, namely the Compressed Graph Visualization. We apply
the method in the task of VAST Challenge 2012 MC 2 and demon-
strate its effectiveness in identifying network traffic anomalies and
events. Our method is inspired by the overwhelming broadcast pat-
terns in the network traffic graphs (Figure 1(a)), where the numer-
ous standalone recipients are in the same positions within the graph.
This creates considerable topology redundancies as well as the un-
necessary visual clutters. The idea is to condense the graph by re-
moving the topology redundancy while keeping the whole graph
information intact, rather than the classical modularity clustering
and importance-based filtering which can drop valuable pieces. The
ultimate goal is to create an abstracted and smaller-sized node-link

∗Lei Shi is with State Key Laboratory of Computer Science, Institute of
Software, Chinese Academy of Sciences, e-mail:shil@ios.ac.cn

†Qi Liao is with Department of Computer Science, Central Michigan
University, e-mail:qi.liao@cmich.edu

‡Chunxin Yang is with Department of Computer Science, Northwestern
Polytechnical University, email:chunxinyang@mail.nwpu.edu.cn

representation of the huge graph without losing its topology and de-
tailed graph information, so that both the layout computation com-
plexity and the visual complexity are reduced with little penalty.

2 COMPRESSED GRAPH VISUALIZATION

Figure 1(b) shows the visualization of the compressed graph over
the challenge data set. All the 40-hour data are aggregated and then
abstracted into the compressed network traffic graph within Bank
of Mony (BoM) regional office during the inspected time period.
The tool supports manual grouping of the graph, through which we
create Figure 1(c). The figure indicates three major traffic types in
BoM: Workstation Group I↔ Headquarter DCs & Website Group
I, Workstation Group II & External DNS↔ Regional Domain/DNS
server, Workstation Group III↔Website Group II.

The proposed compressed graph visualization applies a loss-free
graph abstraction method. The main algorithm is to group nodes
with the same neighbor set together as mega-nodes. The node and
edge attributes of the mega-node are aggregated from the underly-
ing original nodes. In most cases, the graph abstraction can reduce
the graph complexity (measured by #nodes) by more than 95%, in
this challenge case 99.5%. It is guaranteed that the compressed
graph preserves many critical features of the original graph: con-
nectivity, shortest path, node affinity, and importantly all the origi-
nal links. The graph abstraction algorithm is deterministic, single-
pass, and scalable to support graphs of a million nodes. For more
details of the graph abstraction method, the reader can refer to [2].
A similar method to create hypernodes from the reordered adja-
cency matrix is proposed in [1].

3 ANALYTICS PROCESS

3.1 Data Pre-Processing
The firewall/IDS logs in BoM network are processed into traffic
flow graphs and per-host anomaly list, and then visualized in our
visualization tool. The data processing takes two steps:

Anomaly parsing: We extract the potential anomalies from the
firewall/IDS logs. A common format is defined for all type of
anomalies:

< Timestamp >,< HostIP >,< AnomalyType >,< DetailedDescription >

To parse firewall logs, we take a white list approach. We manu-
ally write a good rule set according to the interpretation of the BoM
network operation policies and configurations. The resulting fire-
wall anomalies are the traffic not matched by all the rules. Each



Figure 2: The tool interface showing both the compressed traffic
graph and the anomalies on the graph links (flows). The grouped
node (10.32.5.58+) indicating two similar machines (10.32.5.58,
10.32.5.59) is selected in the graph. Their temporal anomaly dis-
tributions are plotted in the bottom-right panel. Details about each
single anomaly is shown as tooltip upon a mouse hovering.

Figure 3: Three group of machines with heavy IRC traffic with the
websites through port 6667. Potential botnet infection.

flow will generate ” s” and ” d” anomaly on the source and destina-
tion host respectively, and a ” s” anomaly on the link. A sample of
the firewall anomalies is given below:

1333789124,172.23.254.80, IRC s,172.23.254.80 : 2275→ 10.32.5.50 : 6667
For the IDS logs, all the records are kept as anomalies, because

IDS already did the filtering process. 6 IDS anomaly types are
present in the data.

Traffic flow graph generation: The traffic flow graphs indi-
cating the live network topology are constructed directly from the
firewall NetFlow data, where each source IP address and port num-
ber has established connection states with a destination IP and port.
For concise purpose, only IP level connections are used as network
edges. Time is partitioned by a preset window size, 3600s by de-
fault. Each flow will be recorded in consecutive time windows ac-
cording to their built and tear down timestamps. Eventually one
flow graph is generated for each time window for flexibility. Dur-
ing the online visualization, the user can select several consecutive
time slots and the corresponding graphs are aggregated on the fly.
Note that caching mechanism is applied to speedup the processing.

3.2 Visual Analytics
We combine the anomaly lists detected in the data pre-processing
part to the graph links. Result is shown in Figure 2. The noteworthy
events from the anomaly graph are detected in a divide-and-conquer
method over each of the isolated connected components. Two of the
key findings are detailed below.

IRC Malware Infection and Botnet behavior
In the first subgraph of the traffic network, as in Figure 3, it is

identified that the I and M icons appeared frequently and almost in
couples in reverse directions. A selection of the IRC−Malware−
In f ection s anomaly (icon I) in the anomaly type list reveals three
group of machines, highlighted in red in the graph. They are all

Figure 4: FTP/SSH connection attempts to websites 10.32.5.50-57.
The related workstation machines are grouped by both the neighbor
set and the node anomaly types.

workstations having enormous IRC connections to a portion of
the 12 websites (10.32.5.*), potentially to be compromised botnet
clients. Further selecting two typical workstations (172.23.123.105,
172.23.231.174) and websites (10.32.5.50, 10.32.5.52) in the graph
filter panel, the temporal anomaly distribution of these four ma-
chines are plotted in the temporal anomaly panel. It is shown that
the IRC traffic with the websites overwhelm the whole inspected
time period. Note that nine of the websites (10.32.5.51-59) reply
with the IRC authorization message (icon M), indicating the estab-
lishment of the potential botnet server-client connection.

A detailed examination on host 172.23.231.174 and
172.23.231.175 (two all-time IRC clients) show fine-grained
patterns: the connections are composed of two stages, indicated by
a small gap in the middle of 172.23.231.174’s temporal panel. A
drill-down analysis on 172.23.231.175 at this gap shows that the
first stage ends-up with a very large port (43325) and the second
stage starts with a relatively small port (1185). After checking the
anomaly file of 172.23.231.175, we deduce that the IRC traffic
from the workstations are probably programmed, with sequentially
enumerated source ports from the systems. It proves our hypothesis
that these hosts have been compromised as botnet clients.

Data and other service attempts
In the same subgraph, we found anomalies on the workstations

indicating FTP/SSH connections to the websites (Figure 4). The
connection attempts concentrate on 10.32.5.50-57, shown by the
grey icon C and S. We split the potential sources into sub-groups
by anomaly types, and select the destination group of 10.32.5.50-
57. The temporal anomaly panel shows that the first stage of the
FTP/SSH connection lies mostly in the first 6 hours, after the ini-
tial IRC connections. In the second stage, synchronized to the sec-
ond stage of the IRC connection, only FTP connections are tried.
This behavior may suggest that the compromised systems (botnet
clients) probe FTP/SSH services at the websites (botnet servers),
probably to upload the sensitive data they steal from the hosts.

We also identify other type of services at another group of 5
workstation machines, identified by A, T and M icons. They mostly
happen in the starting period of the inspected time. Details of the
anomaly description indicate that the connection attempts are po-
tential scans over database (PostgreSQL/Oracle/MySQL), remote
desktop (VNC), mail (Pop3, IMAP) and other (SNMP) services.
The destination IP, 172.23.0.1, is the external interface at the fire-
wall going out of the regional network. None of these connections
succeed, because no reverse traffic is detected.

REFERENCES

[1] J. T. Bjørke, S. Nilsen, and M. Varga. Visualization of network structure
by the application of hypernodes. International Journal of Approximate
Reasoning, 51:275–293, 2010.

[2] L. Shi, Q. Liao, and X. Sun. Graph visualization through collaborative
node grouping. Technical Report ISCAS-VIS-12-1, 2012.


