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1.5D Egocentric Dynamic Network
Visualization

Lei Shi, Chen Wang, Zhen Wen, Huamin Qu, Chuang Lin and Qi Liao

Abstract—Dynamic network visualization has been a challenging research topic due to the visual and computational complexity
introduced by the extra time dimension. Existing solutions are usually good for overview and presentation tasks, but not for
the interactive analysis of a large dynamic network. We introduce in this paper a new approach which considers only the
dynamic network central to a focus node, also known as the egocentric dynamic network. Our major contribution is a novel
1.5D visualization design which greatly reduces the visual complexity of the dynamic network without sacrificing the topological
and temporal context central to the focus node. In our design, the egocentric dynamic network is presented in a single static
view, supporting rich analysis through user interactions on both time and network. We propose a general framework for the 1.5D
visualization approach, including the data processing pipeline, the visualization algorithm design, and customized interaction
methods. Finally, we demonstrate the effectiveness of our approach on egocentric dynamic network analysis tasks, through case
studies and a controlled user experiment comparing with three baseline dynamic network visualization methods.

Index Terms—Graph Visualization, 1.5D Visualization, Dynamic Network, Egocentric Abstraction.

F

1 INTRODUCTION

D YNAMIC networks are networks that exhibit time-
varying relationships as well as node and edge at-

tributes that change over time. Important insights can
be obtained through the overview, browsing and analysis
of a dynamic network in the visual form. For example,
in a telecom service provider, domain experts routinely
check the dynamic communication network to validate
the misbehavior of suspected mobile spammers [1]. In an
academic scenario, a new researcher wants to study the
dynamic collaboration network of a visualization fellow to
discover the most influential people in her recent research
activities. Though there are always analytical methods that
can automatically uncover specific features, the unique
strength of the visualization method is to synthesize large
amount of data and reveal interesting patterns that warrant
further analytical investigation. On dynamic networks, the
need for novel visualizations is more critical due to the
heterogeneity in the topology and temporal aspect of the
network data [2][3].

Historically, the visualization of large dynamic networks
is a well-known hard problem [4]. First, new visual designs
should probably be invented beyond the traditional node-
link graph representation [5][6][7][8] to incorporate the
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additional time dimension. Second, scalability issues of the
visualization must be considered as the size of a dynamic
network can increase significantly over time. Existing meth-
ods often introduce data reductions in the time dimension,
and snap together multiple temporal views into network
movies [2]; however the animation approach to display
network movies is shown to be ineffective for network
analysis tasks [9][10]. Third, over the visualization design,
the interaction methods to explore a dynamic network, e.g.
filter and drill-down to obtain local features, are extremely
valuable in the analysis process.

In this paper, unlike previous works that consider the
network structure in full scale, we target a subset of
dynamic network analysis tasks that take one network node
as the focus and require looking at only the dynamic
network central to the focus node, also known as the
egocentric dynamic network. According to the taxonomy
of network visualization tasks [11], this work is motivated
by two types of low-level tasks frequently observed on
egocentric dynamic networks: 1) checking the dynamic
adjacencies between the focus node (aka the ego) and
non-focus nodes (aka the alters) over time, including their
strength, frequency, periodicity and directionality; 2) di-
agnosing the connectivity among non-focus nodes with
respect to their dynamic adjacencies to the focus node, e.g.
the dynamic community structure, bridges and hubs among
non-focus nodes. In contrast, the method proposed here is
not designed for the attribute-based, overview and browsing
tasks of the entire network, though our method supports the
overview and browsing of the egocentric dynamic network.

In more detail, we propose a new visualization design,
namely the 1.5D dynamic network visualization (1.5D),
based on the egocentric data reduction of the dynamic
network (Section 3). As shown in Figure 1, the key visual
metaphors are the temporal trend glyph in the center to
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Fig. 1: The dynamic short-message communication network cen-
tral to a mobile phone spammer. The spammer broadcasts mes-
sages in a continuous and constant rate, highly suspected of
being the advertising behavior. Each non-focus user receives only
one message from the spammer during the process, without any
message sending to the spammer or among the non-focus users.

replace the trivial representation of the focus node, and
the glyph’s affiliated multiple edges carrying temporal
information. All the other non-focus nodes and the edges
among them remain the same as those of a simple node-link
graph. The resulting visualization inherits the intuitiveness
of a graph representation, while accommodating both topo-
logical and temporal information in the traditional 2D view
space. Notably in this design, we encode “time” into one
dimension of the view space (along the trend glyph) but
do not impose a strict layout mapping on non-focus nodes.
In other words, 1.5D freedom is provided for a visually
aesthetic network layout, hence the name of the approach.
More description of the 1.5D design is given in Section 4.

Despite the conciseness of our design, it is nontrivial to
compute and accomplish a 1.5D visualization. In addition
to a preliminary version of this approach [12], we further
introduce three kinds of trend glyphs to be integrated into
the visualization, and we discuss their selection criteria. An
optimized, force-based algorithm is proposed to calculate
the layout for the egocentric dynamic network, along with
another radial layout model suitable for the larger event-
centric dynamic network. Several customized interactions
are introduced in the context of egocentric dynamic network
analysis tasks. We describe two case studies in Section
5 and report one controlled user experiment in Section 6
comparing the 1.5D approach to baseline dynamic network
visualization methods. The results on both objective task
performance and subjective user feedback show a clear
advantage of the 1.5D approach in the egocentric dynamic
network analysis scenario.

2 RELATED WORK

Traditionally, dynamic network visualization was studied
on the problem of incremental node-link graph drawing,

especially on specific types of graphs such as trees [13],
series-parallel graphs [14] and directed acyclic graphs [15].
In DynaDAG [15], the research problem was summarized as
how to maintain stability across consecutive views, i.e., pre-
serving the user’s mental map [16][17]. Two categories of
stable graph drawing algorithms had been developed. In the
first category were online drawing approaches [18][19][20]
which computed the graph layout of one time slot from the
layout of the previous time slot and the delta graph change.
In the second category were offline stable graph drawing
algorithms, which took all the graph sequences along
the timeline into consideration [21][6][22]. Meanwhile in
SoNIA [5], two methods to display network dynamics, i.e.
the static flip book and the dynamic movie, were proposed
for the usage in different contexts.

While the above mentioned methods drew the dynamic
network in a 2D node-link representation, more versatile
visual metaphors had also been proposed in the literature.
Brandes and Corman described a method to unroll the
dynamic network into a 3D graph visualization [23]. Yi
et al. proposed TimeMatrix [24], which visualized the
temporal metrics of a dynamic network in the adjacency
matrix by incorporating the TimeCell glyph. Hao et al.
applied treemaps to visualize time-varying data over static
hierarchies [25]. A similar hybrid approach combined the
hierarchical tree layout with the timeline visualization to
present the dynamic hierarchical data [26]. TimeRadarTrees
[27] is another novel visual metaphor to visualize general
dynamic networks. Parallel Edge Splatting [28] introduced
the parallel coordinate design to the dynamic network
visualization problem. Farrugia et al. [29] studied the sim-
ilar problem of temporal ego network visualization. They
proposed an interesting tree-ring layout in which the time
was encoded into multiple concentric circles from the ego
node. The alters were replicated at each active time slot
and placed equidistantly on the ring. Compared to our 1.5D
approach, the tree-ring layout is more compact so that each
temporal ego network can be drawn as a motif to construct
small multiples for the visual comparison of different ego
nodes. In contrast, the 1.5D design requires more space, but
is more intuitive because of the non-replicated node-link
graph metaphor. Moreover, our design can better illustrate
the network structure due to the 1.5D freedom on the
layout. In this sense, the 1.5D approach is more suitable
for the in-depth analysis of one single egocentric dynamic
network.

Scalability is another key issue in visualizing dynamic
networks. In the literature, only a few methods proposed
to visualize the large dynamic network in full scale under
the node-link representation. One exception was the small
multiple display [30, p. 67-80] which juxtaposed networks
at each time slot in the same view. Essentially a large screen
is required to dilute the visual complexity, which limits
their usage. In contrast, most other methods looked at the
data aspect and employed some kind of data reduction to
alleviate the visual complexity. Hadlak et al. gave a tax-
onomy of the data reduction method on dynamic network
visualizations [2]. The first class of methods considered
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the time domain, either selecting a portion of time slots or
abstracting the time into aggregated slots. Only the network
of one single/aggregated time slot was drawn at each view.
Multiple views were snapped together into a network movie
and displayed by animations. The animation approach
[31][32][5] offered a pleasant viewing experience for the
audience, but in general its effectiveness was challenged
in the recent research [33]. Experiments comparing the
animation approach with the static multiple displays [9][10]
revealed that users required more time to understand the
dynamic network with the animation approach. The root
cause of this slower performance was ascribed to the large
degree of node movements and target separations during the
animation [34]. The second class of data reduction methods
started with simplifying the network structure. HiMap [35]
clustered a large network hierarchically and displayed only
important nodes and edges above a certain hierarchy. Van
Ham and Perer proposed a method to construct a sub-
graph of the large network from one or multiple nodes of
interest [36]. However, very few of the structure-based data
reduction methods targeted dynamic networks.

While the aforementioned methods focus on designing
visualizations to interpret dynamic networks, there are
fewer studies on improving their effectiveness for analytical
tasks. The animation-based approaches were shown to
be inadequate for analysis purposes; most other works
managed to optimize the capability of static displays. One
class of methods kept the analysis requirement in mind
when designing visualizations. In [37][38], temporal charts
of network metrics (e.g., degree and size) were plotted
together with the network graph as coordinated multiple
views. Analysts can examine detailed network structures
and their high-level temporal trends simultaneously. On the
comparison of dynamic networks along the timeline, frame-
works such as VisLink [39] can be applied. Archambault
proposed a useful method to directly construct a hierarchy
graph from the network difference [40]. This difference
map approach was shown to be effective for many dynamic
network analysis tasks [41]. Another class of methods
introduced novel interactions to facilitate specific dynamic
network analysis tasks. VisLink allowed manipulating (e.g.,
rotating) the 2D plane hosting the network at each time
slot to switch among comparing visualizations. Federico
et al. introduced two kinds of highlight interactions [42]:
one to feature the node trajectory on network layouts over
time; the other to help discover the node connectivity on all
time slots of the dynamic network. In in-situ visualization
[2], the user chose a base visualization at first to gain an
overview of the dynamic network, and then selected one
part of the network to show details in another embedded
visualization. The embedding can be zoomed and filtered
iteratively, and again displayed with another visualization.

3 DYNAMIC NETWORK PROCESSING

In this section, we describe the process used to transform
the general dynamic network data into a format suitable
for the 1.5D visualization. The raw dynamic network is

Fig. 2: An example of the egocentric dynamic network generation.
The raw dynamic network is first sliced into three time slots t0,
t1 and t2. Egocentric graphs are then extracted and combined.
The focus node A is highlighted in red; the adjacent nodes to A
and their edges are drawn in pink. The edge label identifies the
corresponding time slot.

represented by a time-varying graph G = (V,E) spanning a
time period [0,T ). The graph consists of a node (vertex) set
V and an edge (link) set E. Each node v ∈V (edge e ∈ E)
is associated with a time set T (v) (T (e)), which defines
the active time period of the node (edge). An example
is given in the top-right part of Figure 2. The time set
can be composed of multiple time intervals for continuous
dynamic networks or multiple time points for discrete
dynamic networks. It is assumed that the underlying graph
G is simple, i.e., no multiple edges between two different
nodes and no loop edges. Both directed/undirected and
weighted/unweighted graphs are allowed. For simplicity,
we refer to an undirected and unweighted graph in the
description below.

3.1 Egocentric Dynamic Network
The egocentric dynamic network D(A) = (V (A),E(A)) cen-
tral to the focus node A is defined by a discrete sub-graph
of G. Formally, D(A) is generated from G in two steps, as
illustrated in Figure 2.

Slotting: The first step is to discretize the dynamic
network. Given an ordered time series [t0, t1, · · · , tk] where
t0 = 0 and tk = T , the slotted dynamic network graphs
GS(ti) = (VS(ti),ES(ti)) are computed by

VS(ti) = {v|v∈V ∧T (v)∩ [ti, ti+1) 6= /0} i= 0, · · · ,k−1 (1)

ES(ti)= {e|e∈E∧T (e)∩ [ti, ti+1) 6= /0} i= 0, · · · ,k−1 (2)

Normally, the slotting of the dynamic network is defined
uniformly by setting the same interval on the time series.
Certain granularity and network complexity control can
be achieved by tuning the interval value, e.g. setting to
a minute, an hour or a day.

Extraction: The second step is to extract D(A) from the
discrete dynamic network. By definition, the corresponding
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node set V (A) is exactly the union of {A} and the nodes
in V adjacent to A. The edge set E(A) is a little different
in that each edge is replicated at each time slot in which it
exists. We denote the edge in E(A) by e = (v1,v2, t) where
v1 and v2 are two endpoints and t represents its time slot.

V (A) = {A}∪{v|v ∈V ∧ (v,A) ∈ E} (3)

E(A) = {(v1,v2, t)|v1 ∈V (A)∧ v2 ∈V (A)

∧(v1,v2) ∈ ES(t)} (4)

The resulting egocentric dynamic network D(A) is essen-
tially a multigraph in that there may exist multiple edges
between two endpoints, as shown in Figure 2.

3.2 Event-centric Dynamic Network
In an extension of the 1.5D visualization, we consider the
dynamic network central to a group of events with the same
type. This is done by inserting a node representing this
group of events as the focused node, which is further drawn
as the central trend glyph. For example, in a paper co-
authorship network, the papers in the same conference can
be grouped together as one event type. There will be one
edge between an author and the central event (conference)
if she published a paper on that. The edges between the
authors remain as the co-authorship relationship.

Formally, the raw dynamic network data is processed
into an event-centric graph D(Γ) where Γ denotes the
event type. Each single event in this type is represented
by Evt(Γ,ψ, t(ψ)), where ψ denotes the unique event ID,
t(ψ) denotes the event time. A node v involved in an event
Evt(Γ,ψ, t(ψ)) is denoted by v∼ Evt(Γ,ψ, t(ψ)). D(Γ) is
generated in three steps where the last two steps largely
follow the process in Section 3.1. The first step is given
below.

Insertion: On the input time-varying graph G, Γ is added
to the node set V as the focus node, which spans the entire
time period of G. For the edge set, edges are added from
every non-focus node in G to the focus node Γ. Each such
edge indicates that an event in the type of Γ involving a
non-focus node has happened. The graph insertion step is
defined by

V =V ∪{Γ},T (Γ) = [0,T ) (5)

E = E ∪{(v,Γ)|v ∈V ∧ v 6= Γ},
T (e = (v,Γ)) = {t(ψ)|v∼ Evt(Γ,ψ, t(ψ))} (6)

4 1.5D VISUALIZATION
4.1 Design
An example of the proposed 1.5D visualization is given in
Figure 3. The main idea is to introduce a temporal glyph
to represent the trend of the focus node. As a result, the
multiple edges between each non-focus node and the focus
node can be decoupled by design. The time information
of each of these edges is encoded by the location of
the edge’s endpoint on the trend glyph, exactly at the
brim of the corresponding time slot. We call these edges

Fig. 3: 1.5D dynamic network visualization design. The data is
synthesized only for the illustration purpose.

time-dependent. On the other hand, between the non-focus
nodes, the multiple edges are combined into a single edge
in the view, which is called time-independent. Basically the
1.5D design follows the traditional network visualization
paradigm with nodes and straight-line edges, so that the
visual network theme can be easily identified by a user.

In Figure 3, the graph illustrates a dynamic email
network of the focus node (person). The focus node is
drawn in a vertical glyph, showing the trend of email
communications (send + receive) of this person through a
whole year. The width of the trend at each monthly-slotted
sub-glyph encodes the number of emails in a particular
month. The non-focus nodes, which represent the contact
persons having email communications with the focus per-
son, are placed on either side of the central trend glyph.
For example, the non-focus node “Michelle” in the top-right
part of Figure 3 connects to the focus node in four separate
months. The central trend glyph uses a stacked drawing to
visualize the ratio of send/receive in the personal email
communications. The inner stack in dark blue indicates the
number of emails sent by the focus person in each month.
Correspondingly, the outer stack of the trend glyph in light
blue indicates the number of receives. In this graph, the
majority of the email communications of the focus person
are inward.

On the edge coloring, unidirectional communications
are drawn in blue, while bidirectional communications are
drawn in orange. Edge thickness indicates the number of
emails. Upon mouse-hovering, the selected node (e.g., Van
Ham in Figure 8(a)) is drawn in a red outline, and all the
neighboring nodes are drawn in pink outlines. The sending
edges of the selected node are drawn in green, and the
receiving edges are drawn in red. The corresponding time
slots on the trend glyph turn red for the receiving stack and
green for the sending stack.

Trend Glyphs and Selection Criterion: We have im-
plemented three kinds of trend glyphs to represent the
timeline of the focus node, as listed in Figure 4. Other
visual encodings are also possible, e.g., the recursive pattern
[43]. Our first design is a double-sided trend glyph placed
vertically (Figure 4(a)). This choice applies a symmetric
design so that a non-focus node can be placed on either
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Fig. 4: Alternatives for the focus node representation: (a) The ver-
tical double-sided trend. (b) The horizontal single-sided trend. (c)
The spiral glyph. In this case, each ring in the glyph corresponds
to a day and each sector (block) in a ring corresponds to an hour
in a day. The filling of a block indicates there is at least one
activity happening at the focus node in the corresponding hour.
The brightness of the fill color encodes the number of activities.

side of the central glyph. The layout space is utilized better,
which allows us to accommodate more non-focus nodes
in the view. Also, the temporal network patterns of the
non-focus node are better illustrated in this design. It is
especially helpful when the number of time-independent
edges among non-focus nodes is low. However, an obvious
drawback, the placement of non-focus nodes on either side
of the trend glyph can introduce unnecessary ambiguity
in the data encoding. In some cases, the crossings of the
time-independent edge over the trend glyph lead to a poor
graph readability. On the other hand, the single-sided trend
glyph (Figure 4(b)) employs a horizontal design and lays
out non-focus nodes only above the glyph. This avoids
edge crossings of the time-independent edge with the trend
glyph, however provides less flexibility to maximize the
overall graph readability. This design works better in the
scenario where the network is small in size but complex
in structure. In a third choice, a spiral glyph [44] can be
applied in the case where periodic patterns in the focus
node’s network activity are significant, as shown in Figure
4(c), where the focus node’s timeline is drawn in a spiral
line. Each ring in the glyph can represent a month, a week,
or an hour, and in this graph, a day. Each sector (block)
in the ring corresponds to a finer granularity, e.g., in this
graph, an hour in a day. Each filled block indicates there are
network-related activities in this hour. The color brightness
of the filling encodes the number of such activities, the
darker the blue, the larger the number. Labels in the center
of the spiral glyph show the active period of the focus node
measured in days, and also mark the hour of each block on
the ring. Time-dependent edges are connected to the brim
of the outermost block in this design. Note that since the
spiral design occupies more space than the other two glyphs
when a longer time period is considered, it generally works
better for small egocentric graphs with periodic patterns.

4.2 Graph Layout
In this part, we describe the layout algorithm for the 1.5D
dynamic network visualization. Without loss of generality,

Fig. 5: An illustration of the proposed stable force-directed layout
model with the sub-node split and re-projection processes.

the trend glyph adopts the vertical double-sided design
throughout the algorithm description. The layouts with the
other two trend glyphs have little difference from the stan-
dard process. In a default setting, the vertical trend glyph is
reasonably placed at the center of the view space, partially
mapping the Y axis to the time dimension in the dynamic
network. The ultimate goal for the layout algorithm is to
place all the non-focus nodes in appropriate locations so
that both their temporal affinities to the focus node and the
topological characteristics of the dynamic network can be
revealed. We introduce two layout algorithms to serve the
smaller egocentric dynamic network and the larger event-
centric dynamic network respectively.

4.2.1 Force-directed Layout Model
The egocentric dynamic network is generally small in size.
For example, though the friends/followers of an online
SNS user can reach a thousand or more, the number of
users she interacts with, is often much smaller (e.g., below
a hundred). We apply the classical force-directed layout
model [45] on the egocentric dynamic network, which can
compute an aesthetic layout for small graphs in real time.

There are three major challenges in directly applying
the force-directed model. First, the classical force-directed
algorithms assume an infinitely small size of the node,
while in the 1.5D visualization, the shape of the trend glyph
in the center is nontrivial, which can lead to a severe node
overlapping problem. Second, the 1.5D graph is essentially
a multi-graph, due to the multiple edges between each non-
focus node and the focus node. Given the nontrivial shape
of the focus node, the standard force-directed algorithm
can not take the multiple edges into account in the layout
process. Third, as the time is mapped to the Y axis of
the trend glyph (vertical setting), there is a desire for non-
focus nodes to follow this visual mapping. In this paper,
we propose a customized force-directed model for the 1.5D
graph layout. It works in three steps:
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Split: We first virtually split the focus node A by the pre-
defined time slot into several sub-nodes {p0, p1, · · · , pk−1},
as shown in Figure 5. Then each time-dependent edge
between the non-focus node and the focus node is de-
coupled into several time-independent edges between the
non-focus node and the sub-nodes, making the resulting
graph a simple graph. Another gain is that each sub-node
has a much smaller size, favoring the force-directed layout
assumption. The new graph after the split is denoted as
L = (VL,EL).

Stable Layout: Over the simple graph after the split,
we apply a stable layout algorithm to compute the node
placement. In the literature, most force-directed algorithms
[45][46] define energy functions over the graph and solve
the energy minimization problem to compute the final
optimized layout, which maximizes the layout aesthetic. To
introduce the temporal information to the dynamic graph
layout, we extend from the classical Kamada-Kawai (KK)
layout model [46]. Our energy function consists of two
terms. The first term implements the KK layout’s energy
function and the second term works as a stable function to
encode the temporal constraint of the non-focus nodes.

Formally, the energy function is written as

F = (1−α)
n−1

∑
i=1

n

∑
j=i+1

ωi j(‖Xi−X j‖−di j)
2

+
(n−1)α

2

n

∑
i=1

µi‖Xi−X
′
i ‖2 (7)

where Xi denotes the position of the ith node in graph L,
di j defines the optimal distance between the ith node and
the jth node, ωi j and µi are the parameters controlling the
weight of each node (pair), X

′
i denotes the desired position

of the ith node according to its temporal information, and
α controls the degree of stability.

In the vertical setting, the position of the sub-nodes
split from the focus node are fixed at the center of their
sub-glyphs. We remove irrelevant terms from the energy
function by setting parameters as (8), which helps to
alleviate the negative effect of fixed-nodes on the layout
aesthetics. ωi j and µi are set according to the classical
model [47]. By default, α is set to 0.5 to strike a balance
between the temporal and topology graph aesthetics. Users
can adjust α online to favor a different layout strategy.
For example, setting α = 1 fixes the non-focus nodes at
their desired positions by the temporal affinity, while setting
α = 0 only considers their topology aesthetics.

ωi j =

{ 0 ith and jth nodes are both sub-nodes of A

d−2
i j otherwise

µi =

{
0 ith node is sub-node of A

‖X ′i −X ′‖−2 otherwise (8)

where X ′ = (x,y) is the center of the trend glyph.
The desired position of each non-focus node (X

′
i ) is set

on the circumference of a circle centered at the trend glyph.
For the unweighted graph L, the angular position of a non-
focus node is computed from the average time slot of all

the incident edges connecting to the focus node A. The
radius is inversely proportional to the total number of these
edges to A. Formally, for a non-focus node vi in graph L,
X
′
i = (xi,yi) is computed by

xi = x+ syn(vi)ρ cosθ

yi = y+ρ sinθ

ρ =
ρ0

‖{ j|(vi, p j) ∈ EL}‖

θ = θ0 +
(θk−1−θ0)(si− t0)

tk−1− t0
si = t j, ∀ j,(vi, p j) ∈ EL (9)

where (x,y) is the center of the trend glyph, syn(vi) is the
signal function indicating whether the non-focus node is
placed on the left (-1) or on the right (1) of the trend glyph,
ρ0 denotes the maximal node distance from the center, and
θ0 and θk−1 denote two bounding angular positions from
the center, by default set to π

2 and - π

2 .
We apply a modified version of the stress majorization

solver [47] to compute the optimization result of the above
energy function. To decide on which side the non-focus
node is placed, we implement a uniform graph bisection
algorithm to partition the non-focus node set. The case
with weighted graphs is handled similarly, except that edge
weights are added to the computation in (9).

Re-projection: After the layout is computed, it is pos-
sible that some non-focus nodes lie in the contour of the
central trend glyph. We introduce a linear re-projection on
the X coordinate of non-focus nodes to alleviate this effect.
Formally, their new X coordinates are calculated as below.

x∗i =


W −W −C

W
(W − xi) W/2≤ xi ≤W

W −C
W

xi 0≤ xi <W/2 (10)

where xi denotes the X coordinate before the re-projection,
W is the width of the layout space, C is the maximal width
of the trend glyph. Figure 5 illustrates this process.

4.2.2 Radial Layout Model
For the event-centric dynamic networks, the event and the
resulting network can involve thousands of entities, e.g.,
authors in a conference series. In this size, the force-
directed layout will be quite slow. Although there are
approximation-based multi-level layout algorithms for large
graphs [48], the final drawing is often too cluttered to be
understood, especially for the 1.5D visualization having
many edge crossings on the central trend glyph. The event-
centric edge bundling is proposed to alleviate this effect, as
shown in Figure 6 and described in Section 4.3. By edge
bundling, time-independent edges which connect two non-
focus nodes are not drawn in straight lines, and topological
adjacencies among non-focus nodes are weakened to favor
their temporal affinities to the focus node. Motivated by
this observation, we propose a radial layout model which
places the non-focus nodes rapidly for large event-centric
dynamic networks. The layout result is shown in Figure 6.
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Fig. 6: 1.5D visualization of the InfoVis co-authorship network
1995∼2009. The left part of the graph shows the authors who
publish InfoVis papers in multiple years; the right part shows the
authors who present in only one year (maybe multiple papers).
Both time-dependent and time-independent edges are drawn.
Event-centric edge bundling is applied. The node representing
“Carpendale” is highlighted.

The radial model determines the graph layout in a polar
coordinate system. The position of the non-focus nodes are
computed only from their temporal affinity to the focus
node. The center of the polar coordinate is set to the center
of the trend glyph. The radius of each non-focus node is
inversely proportional to the number of edges connecting
to the focus node. The computation of a non-focus node’s
angular position involves three steps:

Partition: All the non-focus nodes are divided into two
subsets and placed in the left and right side of the central
trend glyph respectively. The default partition method sep-
arates the nodes having only one edge connecting to the
focus node from the other nodes having multiple edges to
the focus node. Other partition methods can also be applied
for customized comparison purposes.

Sort: The average time affinity of each non-focus node
to the focus node, denoted as si, is calculated by (9). Then
for each subset generated in the first step, their non-focus
nodes are sorted according to this average time affinity. The
node rank is assigned starting from zero.

Assign: The non-focus node vi with rank ri in subset S
is assigned the angular position θi by

θi = θ0 +
ri(θk−1−θ0)

‖S‖−1
(11)

4.3 User Interaction for Analysis
We design a few customized interactions for the analysis
of egocentric dynamic networks by the 1.5D visualization:

Timeline Navigation: In our design, the dynamic net-
work is processed and visualized by pre-defined time slots.
Switching to a new slotting granularity will lead to a
quite different view of the same network. Inspired by the
geometric zoom-in/zoom-out operation, we introduce the
timeline navigation interaction which allows a user to select
an interesting timeline period, zoom-in to show the network

(a) (b)

(c)

Fig. 7: 1.5D network visualization in different time granularities:
(a) Slotted by month, the network contains one-month’s data; (b)
Showing the separate days in a month; (c) Drilling down to a few
minutes of April 1st, 2009.

(a) (b)

Fig. 8: Egocentric network navigation in the InfoVis co-authorship
network: (a) The network central to Van Wijk, the node for Van
Ham is hovered; (b) Switch to the network central to Van Ham
by double-clicking the node.

with a finer time granularity for the detailed analysis, and/or
zoom-out to a higher-level view for the overview purpose.

Figure 7 gives an example of this interaction. In Figure
7(a), the network is slotted by month; however no temporal
trend is visible as the time span is only one-month. Then
the user zooms to the day granularity (Figure 7(b)), and it
can be quickly discovered that the behavior of the focus
node is divided into two periods: April 1st and April 3rd
∼ 4th. As he proceeds to select the day of April 1st and
zooms to the minute granularity (Figure 7(c)), the pattern
of a constant-rate burst in three minutes is located.

Egocentric Network Navigation: A major trade-off of
the 1.5D design is to show only the egocentric dynamic
network, rather than the entire network. Moreover, the
temporal patterns associated with the time-independent
edges among the non-focus nodes can not be revealed.
We mitigate these limitations by allowing the user to
navigate across many egocentric networks through a simple
interaction. Upon a double-click of one non-focus node, the
dynamic network view will switch to a new network central
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(a) (b) (c) (d)

Fig. 9: 1.5D dynamic network visualization in a telecommunication network scenario: (a) A typical spammer behavior slotted by
month; (b) Spammer slotted by minute; (c) A typical non-spammer behavior slotted by day; (d) Non-spammer slotted by hour.

to the clicked node, as illustrated in Figure 8.
Event-centric Edge Bundling: In the 1.5D design, the

time-independent edges will sometimes pass through the
central trend glyph, which can introduce significant visual
clutters. On the event-centric dynamic networks, each time-
independent edge is associated with a few events happening
at particular time slots. We can deliberately bundle all the
edges on the same event together by letting them go through
the center of the trend glyph at the event’s time slot. When
a user hovers one non-focus node for its connections, its
incident edges bundled at the same time slot of the trend
glyph are decoupled into different events to reflect the
details. This is called the event-centric edge bundling. In
an example of the InfoVis co-authorship network, Figure
6 shows the result after the bundling. The overall visual
clutter is alleviated. Carpendale’s connection patterns are
highlighted in detail. She published 9 papers with 13 co-
authors during the history of the InfoVis conference. Note
that by the event-centric bundling, the time-dependent and
time-independent edges will overlap with each other. Our
design differentiates them by the edge coloring. As shown
in Figure 6, upon mouse hovering a node, the first-half
segment of its time-independent edge, which is also a full
time-dependent edge, is drawn in deep blue; while the
second half segment of this time-independent edge is drawn
in green and red, according to the priority of the target node
over the hovered node on the event.

5 CASE STUDIES

We present two case studies covering the two targeted
task scenarios for the 1.5D visualization: 1) the dynamic
adjacency between the focus node and non-focus nodes; 2)
the connectivity of non-focus nodes with respect to their
dynamic adjacencies to the focus node.

5.1 Telecommunication Network
In the first case, we visualize the telecommunication net-
work collected by a service provider. As shown in Figure
9, each node in the network, as well as the central trend
glyph, represents one mobile phone user. The directed
edges among them indicate short message communications
(Figure 9(c)). The resulting network is essentially a dy-
namic social network in the time period of the data set.

Our previous work has developed a learning-based system
[1] which detects mobile users who spam, based on the
temporal and topological features of the social network. In
the real usage, it is important for the service provider to
evaluate the accuracy of the system. In case the system
has wrong classifications, the provider needs to find root
causes. Even if the system is shown to be accurate in most
time, there is a need to prepare a summary of the spamming
behavior, preferably in the visual form.

We invited Adam, an analyst from the telecom service
provider, to use our visual tool to check the learning-based
spammer/non-spammer classification results. He started by
selecting one spammer in the list and accessing its ego-
centric dynamic network. As in Figure 9(a), the network
slotted by month showed up a star-like pattern where the
suspected spammer sent out only one message to quite
a few users without receiving any messages from them.
Meanwhile, there was no communication among neighbors
of the spammer, a situation which indicated an extremely
abnormal social network. These observations corresponded
to the features applied in the spammer classifier: high
outbound degree but low inbound degree, low average
outbound edge weight, high sending/receiving ratio, and
low clustering coefficient. Further, Adam drilled down to
more details by changing the slotting granularity to minute,
as shown in Figure 9(b). The temporal patterns in the
spammer’s behavior were located. The spammer tended to
send messages out in a constant rate within a short time
span. In this case, nine messages were sent per minute for
12 minutes. There was no user who communicates with the
spammer in more than one time slots. This corresponded to
the temporal feature applied in the classifier: the long-term
bursty and short-term smooth sending rates.

In his second trial, one non-spammer classified by the
system was selected, as shown in Figure 9(c) with the
egocentric network slotted by day. The orange edge in-
dicated bidirectional communications, and the edge thick-
ness displayed the number of messages on the edge (also
drawn as the edge label). In this view, opposite patterns
to the spammer’s network were discovered: between the
non-spammer and non-focus users, there were both in-
bound/outbound and bidirectional edges; the number of
messages exchanged was larger than one in many cases;
communications were found among non-focus users; there
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were several users who talked to the non-spammer in
multiple time slots, and the sending/receiving trend of the
non-spammer had no significant temporal pattern. Drilling-
down to the hour granularity, as shown in Figure 9(d), more
details were revealed. Although there were few high-level
patterns to discover in this scale, more clues can be found in
personal communications. For example, some had a double-
handshake like contact with the central user within an hour
and some others received a lot of messages continuously
without replying. This is highly useful for scenarios such
as crime network analyses.

5.2 Co-authorship Network in the Visualization
Community

In this part, we present another case study on the analysis of
paper co-authorship dynamic networks in the visualization
community. The data set is extracted from the ArnetMiner
database [49]. It contains all the 9,557 papers of nine
major visualization conferences and journals, including
SciVis, InfoVis, VAST, EuroVis, PacificVis, TVCG, CGF,
IV journal and CG&A, from 1982 to Jan. 2013. The co-
authorship network is generated by adding one directed
edge between any two authors of the same paper, from the
lower-ranked to the higher-ranked author. This sums up to
a network of 11,016 author nodes and 40,839 co-authorship
edges. Some tags are attached to the co-authorship edges
according to the topic of the corresponding paper (e.g. “net-
work visualization”). This is done by matching the paper
title, index terms and abstract with relevant keywords and
manually double-checking all the matched papers for the
final classification. In visualization, we apply the horizontal
single-sided trend glyph design. In most cases, we mute the
time-dependent edges in grey (except Figure 11(b) with a
small network), so that the network structure of non-focus
nodes can be better perceived.

Jane, a junior visualization researcher, helped us in
evaluating the 1.5D visualization tool. As a newcomer to
the visualization community, Jane first selected Arie E.
Kaufman, the prestigious fellow on scientific visualization,
to study his collaboration history in this field. The initial
view of Kaufman’s egocentric dynamic network was a bit
cluttered because of his 104 co-authors in history. Jane
decided to apply the node filter in our tool to leave only
his top 30 co-authors who published at least three papers
together with Kaufman. In Figure 10(a), Jane found that
Kaufman’s top co-authors were naturally divided into two
disconnected components (i.e. network community) over
time. The community on the left connected to Kaufman
mainly before 2003, as indicated by the horizontal position
of these non-focus nodes and time-dependent edges (mouse
hover to access a better view). The community on the
right worked with Kaufman mainly after 2003. She then
drilled down to the recent ten years after 2003, which
was displayed in Figure 10(b). She found that the most
influential author in Kaufman’s recent egocentric dynamic
network was Klaus Mueller, a professor on visualization
at the same department. Notably, Mueller’s co-authorship

(a)

(b)

Fig. 10: 1.5D visualization of Arie E. Kaufman and his co-
authors in the visualization community: (a) the egocentric dynamic
network with his top 30 co-authors; (b) the top influencer in the
recent ten years.

with Kaufman distributed broadly over time and he virtually
collaborated with most of Kaufman’s top co-authors in this
time period.

In the next trial, Jane conducted the same analysis
on Ben Shneiderman, the well-known InfoVis fellow. As
an overview, the tool displayed a full dynamic network
visualization egocentric to Shneiderman (Figure 11(a)). He
published 26 visualization papers and had 46 co-authors
during 22 years. From the graph, Jane quickly found
that Shneiderman became more active in the field from
2003. Two thirds of his co-authors were connected to the
same component (community), and the other one third
were isolated from the main community, who might be
doing independent research with Shneiderman. Jane further
studied the connection patterns between Shneiderman and
his co-authors using our tool. She filtered out the one-time
co-authors who wrote only one paper with Shneiderman.
The result is shown in Figure 11(b). It is clear that only a
few people co-authored at least two papers with Shneider-
man. Using another filter, Jane could create an egocentric
dynamic network of Shneiderman and his top 20 productive
co-authors (Figure 11(c)), according to their number of
papers in the visualization community. From Figure 11(a)
and Figure 11(c), Jane found that Plaisant, Stasko and Wong
stood at the center of Shneiderman’s egocentric dynamic
network and connected a few local communities together.
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(a)

(b)

(c)

Fig. 11: 1.5D visualization of Ben Shneiderman and his co-authors
in the visualization community: (a) a full egocentric dynamic
network; (b) after filtering out one-time co-authors; (c) leave only
the top 20 productive co-authors.

Different from the above cases that look at the dynamic
network central to one node (a mobile phone user or an
paper author), we also apply the 1.5D visualization to event-
centric dynamic networks. As Jane was very interested
to the network visualization research, she selected this
topic as the central event, which included 301 papers
classified in our data pre-processing stage. In Figure 12,
the network was organized with respect to this research
topic, drawn as the single-sided horizontal trend glyph in
the bottom. She learned that this field was growing steadily,

Fig. 12: 1.5D co-authorship network visualization central to the
“network visualization” topic having 301 papers. The top authors
with at least five network visualization papers are shown. Two key
influencers in this topic are identified and highlight in the graph.

with most of papers published after 2000. The non-focus
nodes, which represented the authors ever published on
this topic, connected to the focus node (the topic) at each
paper publication year. The edges among these authors
still indicated the co-authorship relationship. Because there
were 651 authors who ever published network visualization
papers, Jane applied a filter to show only the authors with
at least five such papers, which left 35 authors in Figure 12.
Most of these productive authors were connected into one
single component, showing the close tie in this research
field. At the center of this egocentric dynamic network,
Jane found a few influential authors, notably Jack Van
Wijk and Jean-Daniel Fekete (highlighted in Figure 12),
who connected several local communities together and also
published frequently in the recent decade.

6 USER EVALUATION
We conducted a controlled user experiment to evaluate the
performance of the 1.5D approach (1.5D Vis) in the context
of the egocentric dynamic network analysis scenario. Our
approach was compared with two baseline dynamic net-
work visualization methods: small multiple display (SMD),
dynamic network movie (Movie); as well as the static
visualization aggregating the dynamic network over time
(Static). Each method was implemented in a separate tool
with a similar visual design, as shown in Figure 13. In
the Movie approach, the user was required to control
the timeline to navigate dynamic networks. Auto-play is
disabled because it is hard to select a fair animation speed
for comparison. In all the tools, it is not allowed to switch
the focus node or apply any filters.

Participant and apparatus. Twelve participants were
recruited for the experiment. Eight were novices in the
network visualization, three had experience, and another
one was an expert. All the experiments were carried out
in the same laptop workstation with a 17” widescreen
LCD and a high performance graphics card. A 800 × 800
window size was set for all the visualization tools, except
for SMD which used a smaller 400 × 400 window size
for each timeslot (≤ 2×3 timeslots) or 200 × 200 window
size (≤ 4×6 timeslots).
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(a) 1.5D visualization (b) Small multiple display (c) Dynamic network movie (d) Static aggregated visualization

Fig. 13: The interface of 1.5D Vis and three alternative dynamic network visualization methods. The data set is the co-authorship
network of VAST conference from 2006 to 2009. The star icon indicates “J. Yang” who is a relevant subject in the task questions.

Experiment design. Participants were asked to com-
plete several tasks with each visualization method, and
then answered corresponding questions. We measured their
accuracy and performance time in completing each task.
Participants also responded to a quantitative questionnaire
regarding their experience in using each visualization.
The experiment followed a within-subject design: each
user completed one trail per task (“T1∼T4 or T5∼T8” +
“Q1∼Q2”) × visualization method (“1.5D Vis”, “SMD”,
“Movie”, “Static”). To obtain independence among results
from the same user, we introduced four data sets so that
each participant worked on tasks of each visualization
method with a different data set. We applied a Latin square
design that counterbalanced both learning and ordering
effects. On each participant’s turn, a training session was
held before using each visualization. The session included
readings of a half-page material on a paper describing the
visualization, a short oral instruction from the organizer,
and a trial of the tool with an irrelevant sample data to
understand the basic visual encodings and interactions. The
participant was told to complete each task in best-effort and
wrote down their answers on paper.

Data and task. Four data sets were used in the exper-
iment. The first two were egocentric short message com-
munication networks from the first case study: one was the
network central to a suspected spammer (12 timeslots by
minute and 109 nodes in total); the other was the network
central to a typical non-spammer (5 timeslots by day and 16
nodes in total). Four egocentric dynamic network analysis
tasks were designed on the first two data sets, as listed
below. T1 and T2 were used to examine the performance
involving topological features of the egocentric dynamic
network. T3 and T4 were used to evaluate the tasks further
combining temporal features of the network. On each task,
six candidate answers were provided including one “can
not answer” option.

T1: Estimate the number of unique non-focus users who
ever SEND short messages to the focus user.

T2: Estimate the number of unique connections among
non-focus users.

T3: Among all the time slots, find the time slot when
the focus user connects to (sends to or receives from) a
maximal number of non-focus users.

T4: Estimate the number of non-focus users who connect
to the focus user in more than one time slots.

The other two data sets were co-authorship dynamic
networks in the visualization community. One was extracted
from the InfoVis conference publications from 1995 to 2009
(15 timeslots by year and 674 nodes in total). The other was
extracted from the VAST publications from 2006 to 2009
(4 timeslots by year and 298 nodes in total, see Figure 13).
Four similar tasks were designed.

T5: Find the researcher that publishes the most InfoVis
(VAST) papers.

T6: Find the researcher that co-authors the most InfoVis
(VAST) papers with Frank Van Ham (J. Yang).

T7: Find the researcher that co-authors the most InfoVis
(VAST) papers with Frank Van Ham (J. Yang) in the years
2005∼2009 (2007).

T8: Find the year in which the InfoVis (VAST) conference
has the most (least) unique paper authors.

Two subjective questions were asked to rate each visu-
alization, immediately after a participant completed all the
four tasks. Answers were selected from a 1∼7 Likert scale.

Q1: How much does this visualization help you in
completing the tasks and finding the correct answers?

Q2: How much do you like the experience using this
visualization?

In the first two smaller data sets, the force-directed layout
model was applied (Section 4.2.1); in the other two data
sets, the radial layout model was applied (Section 4.2.2).

Result and analysis. We collected 288 data entries in
total, each corresponding to one task question completed
by a user. Statistical analysis was conducted on the effect
of alternative visualization methods over the measure of
task accuracy, completion time and subjective rating. The
choice of data set and task were considered as contributing
factors. The significant level was set at 0.05 throughout
the analysis. We also compared the performance difference
between non-temporal and temporal tasks. On non-temporal
tasks (T1/T2/T5/T6), users can complete the study without
accessing the dynamics of the egocentric connection pattern
over time. In contrast, on temporal tasks (T3/T4/T7/T8),
users must take connection dynamics into consideration.
Because all the users could not answer temporal tasks
with the static visualization by design (Figure 14(a)), we
avoided comparing the Static approach on temporal tasks
and subjective ratings.

Task accuracy: We translated task answers into binary
accuracy variables, either true or false, by comparing to
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(a) Task accuracy (b) Task completion time

Fig. 14: User experiment results.

ground-truth answers. “Can not answer” choice is classified
into false. We conducted binary logistic regressions to
capture the boolean value of the accuracy. The choice of
visualization, data set and task were used as independent
variables, and the binary accuracy variable was used as the
dependent variable. Results show that the contribution of
the visualization method to the task accuracy variation is
statistically significant (p < .005). Compared to the 1.5D
Vis, the Movie approach decreases the likelihood (odds)
of correctly answering each task to 17.1 percents of the
1.5D Vis (95% CI = [5.6, 52], p < .005), controlling
for differences in data set and task. Similarly, the SMD
approach decreases this likelihood (odds) to 15.3 percents
of the 1.5D Vis (95% CI = [5, 46.7], p < .005). The
goodness of fit of this logistic regression model is 0.361
(Nagelkerke R Square). The raw task accuracy distribution
in Figure 14(a) indicates the same result: the 1.5D Vis
approach receives the lowest overall error rate (7/48) than
both the Movie approach (20/48) and the SMD approach
(21/48). In the split view, the 1.5D Vis again receives the
lowest error rate on non-temporal tasks (4/24), close to the
Static approach (5/24) and much better than Movie (13/24)
and SMD approaches (10/24). On temporal tasks, the result
is similar: the 1.5D Vis has a much lower error rate (3/24)
than Movie (7/24) and SMD approaches (11/24).

Task completion time: We applied the analysis of vari-
ance (ANOVA) test to study the impact of visualization,
data set and task choice on the task completion time.
Because of our Latin square study design, we can not
use the repeated-measure ANOVA test to partition out the
variability of individual participants. Instead, we applied
a three-way ANOVA model, in which the numerical task
completion time was used as the dependent variable, the
visualization, data set, and task choice were used as three
independent variables. Only main effect on each factor was
modeled, high-order interactions among three factors were
not captured. We validated both the normality (p > .1 in
Shapiro-Wilk test) and homogeneity of variance (p > .05
in Levene’s test) assumptions on the dependent variable
before conducting the ANOVA test. Results show that, with
three-way ANOVA, there are significant main effects of
the visualization method (F(2,131) = 16.3, p < .001) and
the task choice (F(6,131) = 5.45, p < .001) on the task
completion time. There is no significant main effect of the
data set choice on the task completion time. A Tukey’s

post-hoc comparison among different visualization groups
indicates that the 1.5D Vis group (M=55.0, 95% CI =
[38.4, 71.7]) leads to significantly shorter task completion
times than the Movie group (M=123.3, 95% CI = [106.5,
140.2]), p < .001, and the SMD group (M=85.6, 95% CI
= [69.0, 102.3]), p < .05. The SMD group also has signifi-
cantly shorter task completion times than the Movie group,
p < .01, which is coherent with previous study results on
general dynamic networks [33]. The raw task completion
time shown in Figure 14(b) indicates the same comparative
result on both non-temporal and temporal tasks. On the
non-temporal tasks only, the difference between the 1.5D
Vis group (M=56.4, 95% CI = [38.1, 74.7]) and the Static
group (M=62.4, 95% CI = [43.8, 81.0]) is not significant.

Here we should note that, during the experiment we did
not distinguish the time to read the question and write-
down the answer from the task completion time. Therefore,
the task completion time measure may not be exactly
representative to account for the technique differences,
though in general participant’s difference in reading and
writing speed does not vary much when they are told to
work in best-effort on short, simple tasks.

Subjective feedback: We analyzed participant’s subjective
ratings by the Kruskal-Wallis test, which does not require a
normality assumption of the observed data. The dependent
variable was set to the 7-scale Likert rating from Q1/Q2,
the independent variable was set to the visualization method
and the data set separately (Kruskal-Wallis test allows only
one independent variable in each time). Results show that
there are statistically significant differences among visual-
ization groups (H(2) = 11.0, p < 0.005) on the subjective
rating of Q1. The mean rank value is 26.5 for 1.5D Vis, 14.1
for Movie, and 14.9 for SMD (the rank value has a range of
1 to 36 from 36 feedbacks on three visualization groups).
On the rating of Q2, there are also significant differences
among visualization groups (H(2) = 8.48, p < 0.05). The
mean rank is 25.5 for 1.5D Vis, 14.6 for Movie, and 15.3
for SMD. Follow-up Mann-Whitney tests were conducted
to evaluate the pairwise difference among visualization
groups. Results show that the subjective rating of the
1.5D Vis is significantly higher than the rating of the
Movie approach, on both Q1 (U = 23.0, p < .005) and
Q2 (U = 27.5, p < .01). Similarly, the subjective rating of
the 1.5D Vis is significantly higher than the rating of the
SMD approach, on both Q1 (U = 24.5, p < .01) and Q2
(U = 32.0, p < .05).

Discussion. From the above analysis, we can summarize
that on both non-temporal and temporal tasks, the 1.5D
approach gains an advantage over two baseline dynamic
network visualization methods (the self-controlled dynamic
network movie and the small multiple display) by higher
task accuracies, shorter task completion times, and better
subjective ratings from participants. On non-temporal tasks
only, the performance of the 1.5D approach is close to that
of the static visualization aggregating the dynamic network
over time. We caution that our result should be taken on the
egocentric dynamic network analysis scenario only, and we
haven’t compared it with various special-purpose network
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visualization tools.

7 CONCLUSION
In this paper, we propose a general framework, namely the
1.5D visualization, for displaying and analyzing egocentric
dynamic networks. Through formal case and user studies,
we show that the 1.5D approach can effectively guide a user
in the analysis process of egocentric dynamic networks,
notably by optimizing low-level tasks such as analyzing
egocentric dynamic adjacencies and egocentric network
structures. The success of our approach can be attributed
to three key innovations: the egocentric dynamic network
abstraction that reduces the network complexity for a better
human perception; the 1.5D visual metaphor with a variety
of trend glyphs that reveal both interesting temporal pat-
terns and topological egocentric network features; and var-
ious interaction methods that allow temporal and network
navigation beyond the basic single view representation.
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