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Abstract— The administrator of an enterprise network has a
responsibility to enforce the policies on the network. Yet,most
security mechanisms do not map well to the intended policies.
This has been due to the prevalence of simplistic tools that have
poor enforcement but, yet are easy to manage. While advanced
commercial solutions do exist that have stronger enforcement,
they are significantly harder to manage. To that end, we propose
Lockdown, a policy-oriented security approach that builds on
the concept of local context to deliver a lighter weight approach
to enterprise network security while striking a balance between
the level of enforcement and level of management available
to the network administrator. In this paper, we describe how
the Lockdown approach streamlines the process of network
security management from network auditing to visualization to
policy mapping to enforcement to validation. We demonstrate the
strength of Lockdown through detailed assessments of an enter-
prise university network to show how local context significantly
improves network management for the system administrator.

I. I NTRODUCTION

Network security policy is complicated and difficult to fully
manage in an enterprise setting. While the commercial so-
lutions provide a rich variety of mechanisms, they lack a
streamlined approach that would allow them to be setup and
managed efficiently. In a recent Computer Crime and Security
2007 survey [1], the collected data showed that the commonly
deployed security solutions are the simpler and less effective
ones. For instance, the survey showed that the lower end tools
which include traditional firewalls have near ubiquitous de-
ployment, found in upwards of 97% of the networks surveyed.
The higher end solutions, such as endpoint security client
software/(NAC) have considerably less deployment with their
deployment in 2007 at 27 % down from 31% in 2006.

In short, there appears to be two broad categories of
solutions for network administrators:

1) simply policy enforcement with easier manageability
2) rich policy enforcement with complex management

Clearly as evidenced by [1], network administrators are choos-
ing the first category of tools in favor of manageability
over security. Notably, such tools often derive their ease of
management by implicitly trusting that Layer 3 (IP) and Layer
4 (Port) map to user and application.

To further illustrate the problem with lower end tools in
regards to enforcement, consider an example based oniptables
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Fig. 1. Adding local context to streamline rule creation.

as shown in Figure 1. In the example, the desired high level
policy is to allow outbound connectivity for non-secure web
browsing. The natural rule foriptablesor any network firewall
would be to allow outbound port 80 with state preservation.
Critically, the reliance on inference of application from port
number allows for other applications not originally intended
in the high level policy to gain access out of the network.
As a result, the security mechanism ofiptableswould allow
not only web browsing but also applications such as Skype or
Gnutella that can arbitrarily configure port numbers or tunnel
directly over HTTP. Although increasingly popular solutions
such as deep packet inspection can address those concerns,
those solutions suffer in the presence of user-agent spoofing
and altogether fail when faced with end-to-end encryption [2].

We posit that the perspective at which enforcement and
monitoring occurs needs to be shifted in such a way that
the local context, i.e. the why of a connection versus the
where, forms the foundation of the security approach. By
infusing enforcement with local context, high level policycan
be followed more stringently as is seen in the “Lockdown”
example of figure 1.



2

Central Repository

Monitor

Enforcer

data collection

Hosts

DB

. . .

Visualization & AnalysisPolicy Construction

3

4

61

human 
analysis

Policy Distribution2
5 Auditing

Internet

LAN

Fig. 2. Lockdown System Architecture, the number is indicative of the closed
loop Lockdown operates in, i.e. 1,2,...,6,1,2,...,6

While enforcement with local context is certainly not a
new concept, we argue that the monitoring (gathering, au-
diting, analyzing) of local context has profound implications
for network management. Critically, local context strikesthe
ideal balance between ensuring proper policy enforcement
and complexity of mechanism while also improving network
management. In short, local context provides an extremely
efficient representation of thewhy of a connection with
minimal complexity increase over existing, well-deployedand
well-understood tools. Moreover, local context meshes nicely
with the reality of the enterprise network wherein resources
for network security management are extremely limited or
allocated only reactively rather than proactively.

To that end, we present the Lockdown security approach in
this paper. Lockdown is a streamlined management approach
for the enterprise network based on local context. Figure 2
gives an overview of the system architecture. Lockdown has
several components that make up the system:

1) Policy: Lockdown improves the mapping of policy to
mechanism by leveraging local context for rule con-
struction. Local context allows for Lockdown to offer
reasonable levels of expression while preserving clear
observability from the policy statement which the rules
originate from.

2) Enforcement: The Enforcer component allows for local
context rules to be enforced through the use of a
pluggable security module.

3) Monitor: The Monitor component enables the Lockdown
system to gather local context natively from the hosts
and forward it to a central repository.

4) Auditing: Auditing is used to validate that policy is being
followed.

5) Analysis & VisualizationThese components allow for
easy management of the network through visualization
of the connections and discovering chains that occur
as a result of user + application interactions. The data
collected is in turn analyzed for patterns among resource
usage and potential problem areas.

Lockdown provides an economy of mapping mechanism to

policy that is expressive, but also lighter weight than high
end host-based solutions. The ability to visualize and audit
the network creates a platform to explore the local context
gathered from all the hosts allowing for validation of policy as
well as determining any sort of interesting anomalies occurring
among user usage. Finally, the ability to identify problemsand
tie them to specific application easily are the key features of
our system.

The core contributions of this paper are as follows:

• A systematic method for collecting and enforcing local
context-based policy on hosts in a distributed fashion
within an enterprise network.

• A framework for monitoring local context and enforcing
related policy.

• A streamlined management system that includes analysis,
visualization and auditing components.

Lockdown serves as a robust addition to an enterprise
network infrastructure. Critically, we note that the goal of
Lockdown is to complement, not replace the security infras-
tructure by plugging into existing work from data mining,
anomaly detection, firewall analysis/management, and policy
mapping.

Lockdown seeks to be complementary to the existing areas
of work by supplementing network connectivity with addi-
tional information that can determine who the power users
on a network are, what applications they are using, and
other interesting tid-bits previously obscured. It also helps in
determining the disconnect between policy stated and what is
actually taking place in order to create a tighter more locked
down network.

While no security is perfect, giving administrators and
managers the details of exactly what is happening on their
network leads to better security management principles and
practices. Lockdown concerns itself with not creating an
absolute perfect security solution, but rather how to manage a
complex network system and the wide array of applications,
users, and connections that occur on them.

II. M OTIVATION & BACKGROUND

To better motivate Lockdown, we explore several interesting
cases drawn from the monitoring of hosts on the university
network. Since April 2007, a prototype of the Monitor compo-
nent of Lockdown has been running on roughly 250 hosts. The
hosts are allLinux-based and are used for activities ranging
from computation clusters to graduate student desktops to
public Engineering lab machines. The monitor gathers the
local context from each host which includes all network
connections along with the related process, file, and user
information associated with the connection. Further details
about the Monitor can be found in Section III-C while details
about the data collected is found in Section V.

Figures 3 and 4 demonstrates the notion that application
cannot be inferred by port number. Both of these figures
show that the client applications with established foreignports
are different than an administrator would expect to see. For
instance, with port 22 in Figure 3 we can see that a majority
of the connections are ruled by the typicalssh application
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Fig. 3. Multiple Applications with Foreign Port 22 destinations

Fig. 4. Multiple Applications with Foreign Port 80 destinations

TABLE I

SINGLE CLIENT APPLICATION USING MULTIPLE FOREIGN PORTS

ssh thunderbird-bin

22(ssh): 69.20% 993(imap): 85.31%

636(secure ldap): 28.46% 636(secure ldap): 10.42%

389(ldap): 1.63% 389(ldap): 1.77%

6010(x11): 0.58% 587(submission): 1.36%

7313(swx(ssh)): 0.09% 80(http): 0.29%

6012(x11): 0.04% 443(https): 0.27%

222(rsh-spx): 0.01% 25(smtp): 0.20%

631(ipp): 0.19%

6010(x11): 0.08%

465(urd/igmpv3lite): 0.07%

6011(x11): 0.02%

included in theLinux distribution, but a more intriguing case
is the presence ofjava with just under half of the total
connections. Upon further examination, thejava application
was discovered to be a program calledopennmsused to
administer and manage the network in this instance by probing
computers forsshdaemons.

Looking at Figure 4 one can see for port 80 there are
the common web-browsers appearing:firefox, mozilla, and
opera in addition to numerous other applications that are
obtaining network connectivity through port 80. However,
while there are only three primary application names, thereare
also multiple versions of each application being employed.The
versions offirefox found on the campus machines correspond
to: 1.5.0.10 and 1.5.0.12 while the most recent version avail-
able for download is at: 2.0.0.*. Upon further examination of
the versions offirefoxbeing used it was found that 19.47% of
the hosts are running version 1.5.0.15 while the other 80.53%
are using version 1.5.0.12.Firefox was additionally observed
as being run locally on the hosts 94.95% of time while only
6.05% of thefirefox instances were run off of a user space
locate on a distributed file system. Restricting version number
and application path is important to properly manage a multi-
user network to ensure that only approved applications can be
used.

Other issues occurring with inferring application based on
port numbers can be seen in Table I. Most applications do
not strictly use a single port, rather they use a multitude of
ports for numerous different tasks. In Table I,sshis shown as
having used 7 different types of ports. Port 22 is the standard
listening port which thessh daemonruns on, 636 is used
for secure LDAPlookup, 6010 and higher are used forX11
forwardingof the display back to a remote client. Applications
typically require several ports to be open in order to fully work,
yet these open ports are often not utilized 100% of the time
enabling other applications to use them when idle. For a fully
functioning application, all of these ports need to be opened,
but it is necessary to ensure that the traffic utilizing theseports
is the traffic which the administrator intended when he opened
them.

Local context helps remedy the previous problems by
providing what is actually occurring on the host. Through
local context, hardened rule sets are formed and uploaded
to the hosts for the enforcer to fully enforce policy that
now has the notion of application, among other fields. By
modifying the process of how hosts connections are monitored
through a few small changes, the benefit in managebility
and enforcement is increased tremendously. In addition to
enforcement, administrators are aware of what is actually
occurring on the network without having to install expensive
hardware/software solutions.

Furthermore, in regards to enforcement, we are also moti-
vated in improving application connectivity debugging when
connections violate policy. Firewalls and related tools that
enforce on a packet level, typically layer 3 or 4 of the network
stack, will drop packets that are in violation of policy. The
issue with dropping packets is that at the level in which the
packets are dropped there isn’t a way to alert the application
easily of what is happening. Typically the user will end up
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with a connection that appears to be doing something, but is
just sending packets into a garbage bin, until either a timeout
for the socket is reached or the user becomes frustrated and
terminates the application. A better approach is to enforceat
an entirely different layer within the computer so that explicit
error messages can be returned for connections that violate
policy. Section III-B discusses enforcement in depth.

III. A RCHITECTURE

The Lockdown system architecture is a distributed system
composed of host installable components in addition to a
central repository for the database. Utilizing a distributed data-
collection system of monitors and enforcers installed on every
host the mapping of mechanism to policy is fully realized via
use of the local context. Since the architecture is distributed, a
global policy can be created for all hosts and then finely tuned
for each host as individual needs may change over time in a
closed loop.

The rest of this section will talk about each component in
further detail, section III-A talks about how policy mapping to
mechanism is achieved in Lockdown. Section III-B discusses
the Enforcer module and how by using the Linux Security
Module framework a locked down host can be achieved.
Section III-C discusses the Monitor and how local context is
gathered. Finally, section III-D describes the visualization and
analysis components.

A. Policy

One of the most critical aspects of any enterprise security
approach is how the enterprise policy is mapped to the
network security mechanisms, be they end host or in-network
mechanisms. In the ideal management case, the configurable
aspects of the mechanisms (typically rules) map in an easily
observable manner to the policy, be it one or more rules tied
to a specific policy statement. The diverse array of work in the
area of natural language processing with regards to security
[3], [4] is a testament to the appeal of said aspect. In a similar
vein, the mechanisms must be able to capture reasonable levels
of expressiveness to enable reasonable confidence that the
policy item is indeed addressed by the mechanism. Hence,
the wide array of work on formal security expressiveness
addresses this need [5]–[7].

However, as any administrator or researcher in systems
will attest, the practical limits of systems and resources make
complexity a natural enemy of robustness and security. Case
in point from networking, the success of Ethernet can be
largely attributed to its simplicity while other better performing
but more complex solutions have fallen by the way side.
To that end, we do not focus on the theoretical foundations
of policy mapping but rather to focus on how local context
offers a compelling economy of expressiveness, i.e. significant
improvement to the efficacy of managing the network with
negligible increases to complexity. In short, local context adds
the ability to create rules that are cognizant of the normal
UNIX user (akin to a network ACL) and application (name,
path, arguments). In an oversimplified sense, the security
mechanism offered by Lockdown would appear to simply

# Policy Statement:
# Only F-T employees can browse the Internet,
# all employees can only access the intranet
# (10.1.1.50), with Firefox as the only
# browser
allow out to * when app=firefox

AND group=FTEmploy
allow out to 10.1.1.50 when app=firefox
# Policy Statement:
# Root cannot accept incoming connections
# except for sshd
allow in from * when app=sshd
deny in from * when user=root
# Policy Statement:
# Enable Condor (grid) functionality on
# the LAN
allow out to 10. * when app=˜condor/bin/ *

AND user=condor
allow in from 10. * when app=˜condor/bin/ *

AND user=condor
# Remainder of policy
...
# Policy Statement:
# Deny all other communications
deny all

Fig. 5. Example policy statements illustrating local context

be an enhanced firewall, i.e.iptables++. In contrast, as we
will show in later sections, the consideration of local context
can dramatically improve not only policy mapping but also
network assessment, mechanism auditing, and debugging, i.e.
streamlining the core management aspects expected of a
system administrator.

To illustrate the expressiveness of local context, consider
the three policy statements captured in Figure 5 regarding web
access, external connectivity, and enabling grid applications.
In the first case, the policy statement is that only full time
employees are permitted to browse the Internet but all em-
ployees may access the internal company web server (intranet).
Consider how such a policy might be enforced using current
mechanisms. The traditional firewall would only be able to
capture port numbers and IP addresses, only racheting down
access to port 80. File-level ACLs could guard the usage of
the application (firefox) if all web access was strictly limited
to full-time employees via a group-wise ACL. However, the
application itself can be used by multiple groups of users
whose type of connectivity is limited by their employment
status. User-dependent firewall rulesets could mitigate the is-
sue but create management issues for maintaining consistency
and debugging. User-authenticated application proxies also
satisfy the policy statement, but have issues with encryption
and crafty masquerading applications. In contrast, the addition
of local context creates straightforward rules that provide
sufficient expressiveness for the overarching policy. Moreover,
multiple mechanisms are not needed allowing for a single rule
consistent rule set to enforce the desired behavior.

In the second policy statement, the desire is to prevent root
from directly offering services besidesssh. In short, the owner
of any network services must be properly contained with its
own individual policy statement reflecting a push towards
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RBAC-style management. Hence, developers are not precluded
from offering services but can no longer simply bludgeon
open access via root to at least force priviledge escalation
exploits by attacking systems. The third policy statement in
the example gives an example of such a network service. In
the third example, the policy is to enable the functionality
of Condor, a popular grid computing application [8]. A key
property of Condor is that it embodies the properties that
many emerging P2P and highly distributed applications share,
namely that connectivity between nodes is essential but may
be difficult to restrict to a specific port. With the entrance of
local context, the adminstrator need no longer open a specific
port or even consider ports for that matter. Rather, local context
allows the rules to deal with the application in question and
creates rules much more in line with the policy, i.e. make
Condor work.

B. Enforcer

The job of the Enforcer component is to interpose when a
network operation is attempted and either allow the operation
to continue or to deny and shutdown the network attempt based
on local context. Since sockets are the method in which the
kernel manages network connectivity, it is a prime place to
enforce on. Also, working at this level in the operating system
allows direct access to the local context information. Figure 6
shows the necessary hooks that the Enforcer examines. With
the Enforcer working at the system call level, it is able to solve
the problem of acting on local context, providing interesting
feedback to applications that have their sockets denied, and
achieve an environment that is easily managed since it has
a better view of what is actually occurring with network
connectivity.

There are several paths that can be taken to achieve enforce-
ment at the system call level. The first method involves system
call interposition in the form of creating a kernel module and
intercepting on system calls. This way involves creating your
own version of the standard system call and overwriting the
system call table to point to your code. This method is clunky,
error prone, and has many traps [9], especially with the 2.6
version of the Linux kernel which was hardened against the
ease in which someone could intercept systems calls in the 2.4

Linux kernel. The second way involves actually modifying
the kernel source code. While this method proves one of
the easiest without relying on frameworks, it requires that
a custom kernel be compiled and loaded onto every system
in the network. Custom kernels are un-manageable and time-
consuming for an already heavily taxed IT department. The
third method, the one selected for Lockdown uses the Linux
Security Module framework

The Linux Security Module framework or LSM, standard in
the 2.6 kernel, but available as a patch for the 2.4 version, has
several hooks placed within an assortment of system calls that
allow upcalls to loadable modules implementing the functions
[10]. The Lockdown LSM module can be inserted dynamically
at anytime, without the need for a kernel re-compile, and is
responsible for enforcing the policy that is pushed out onto
each of the hosts. While the concept of a pluggable security
framework has been under fire by kernel developers, Linux
creator Linus Torvalds says it is here to stay for the foreseeable
future [11].

To enforce network connectivity we focus on the socket
hooks, see Figure 6. We can determine whether certain sockets
should be created before they are, or if an incoming connection
on a listening host should even be accepted. If upon passing
through the LSM the firewall or some sort of Intrusion
Prevention/Detection System located down the line chooses
to close the flow this can still be done since the LSM is an
additional security feature and the best security measure is a
layered approach.

Ideally a socket needs to be validated before it is created,
allowed to connect, while it is listening, before it acceptsa
foreign connection, and/or when sending / receiving messages.
There are however a few subtle points that need to be made
clear as to how the hooks and the system calls interact with
one another. (Although we enforce system calls, policy only
refers to users, applications, and hosts.)

For a large majority of the hooks if an error code is returned
i.e. -EPERM, then the system call that made the up call to
the LSM hook will return an error as well and terminate.
However, with hooks that have “post” within their name such
as: socketpostaccept, the error code that is returned is not
caught. The post hooks serve primarily as monitoring points
and not enforcement points.

Socket post hooks:
• socketpost create
• socketpostaccept
However, these two calls are essential in ensuring proper

enforcement due to their implementation in the kernel. In both
cases and more so in thesocketpostaccepthook the foreign
connection has yet to be established. The system is actually
listening for connections in between thesocketaccept and
socketpostaccepthooks, as is illustrated in Figure 6. This
leads to an interesting case of not being able to simply return
an error code if the connection in thesocketpostacceptneeds
to be denied. In order to deny the connection the socket needs
to be shutdown through thesocket shutdownoperation.

For full enforcement, the hooks necessary to send and
receive messages are needed. Thesocketrecvmsg and
socketsendmsgwork at a higher level than whereiptables
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Iptables: block all outgoing traffic
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Fig. 7. The application view of enforcement comparingiptables (above)
versus Lockdown (below)

validates on a packet by packet basis. When the application
utilizing a socket wants to send a message these hooks are
called and when finished, the data is passed to the network
stack which is responsible for breaking down the information
according to packet sizing and other related constraints. These
hooks do introduce a small amount of latency as can be seen
in the performance section later, but the level of security they
provide is a necessary trade off. In cases where the LSM may
become loaded after connections are established or if during a
new policy push a connection is able to be established during
the very brief switch, or if even the new policy suddenly
disallows previously allowed applications that have sockets
already established, are the reasons why we choose to use
the send and receive socket hooks. The added security they
provide ensures policy is fully enforced at all times.

The notion of being able to more effectively debug network
connectivity issues is greatly enhanced with LSM enforce-
ment. Figure 7 presents two cases. In theiptables case, all
outgoing traffic is blocked as ajava application we wrote to
connect to our laboratory’s web-server is initiated. Thejava
application had a socket timeout value set to 30 seconds, where
the default forjava sockets is no time-out. Sinceiptableswill
simply drop packets and not inform the application of what is
happening the application sat until 30 seconds had passed and
then the user was informed of theSocketTimeoutException.
Had there not been a timeout value set (default forjava), the
application would have sat indefinitely with no feedback for
the user. In the Lockdown case, a rule was put in to block
the java WebServerapplication. As soon as the application
was executed theIOExceptionwas returned informing the user
that the operation was not permitted. By using an LSM based
enforcement approach the user/administrator is able to debug
the problem easier than if packets were simply being dropped
with no feedback of what is occurring.

LSM Installation:

By default there can be only two LSMs loaded onto a

LSM Installation Steps:
1) modify the boot-loader configuration file to
disable selinux and capabilities
2) reboot system
3) insert the Lockdown LSM
4) create device driver node (enables rules to
be transported from user-space to kernel-space)
5) run policy loader program to validate and
push new rule sets into Lockdown

Fig. 8. LSM Installation Steps

system, however in the case of theLinux Fedoradistribution,
SElinuxcomes installed along with thelinux capabilitiesmod-
ule. To install the Lockdown LSM,SElinuxand capabilities
need to be disabled so that Lockdown is able to register
as the primary security module on a host. This fix is done
by supplying two additional commands to the boot-loader
configuration file.

LSMs are capable of being “stacked”, allowing multiple
modules to be loaded onto the system, however by default this
capability is not included in the kernel. The primary security
module needs to supply the stacking ability or a third party
module [12] needs to be loaded that takes care of the stacking
for the LSMs that eventually will be be loaded.

Policy Deployment:

Policy is deployed from a central server to the hosts running
Lockdown via a pull mechanism. The Lockdown LSM polls
the central server at a standard interval and is responsiblefor
checking if the policy file on the host is outdated. Based on
the cluster in which a host belongs a different rule-set willbe
downloaded that reflects the unique set of behavior inherent
to the cluster for which the host is a part of.

C. Monitor

The Monitor is deployed onto each host possible throughout
the network. The purpose of the Monitor is to gather the
local context related to network activity on the host. Since
the only way to accurately know exactly what is occurring on
a host is to monitor it by physically being at the machine,
either in software or by some other means, this is why we
deploy our monitor in a distributed fashion among all the
hosts on the network instead of monitoring a central location.
The information gathered from each host allows for accurate
auditing and policy management in a closed loop.

While the monitor was prototyped as a shell script for
simplicity in deployment and development time, a more robust
version has been prototyped using an LSM module. The LSM
version provides the same amount of information as the shell
script, but also has the ability of instantly determining the
direction of the connection (incoming/outgoing) without the
need for detailed post processing within the database. The
amount of data generated is roughly on the same order as
the shell script, and all connections, including very shortones
are caught, which is a limitation in continuously polling the
same tools every few seconds looking for changes. The data
from the LSM is produced as sockets are established and torn
down allowing accurate connection logging. Other advantages
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of using the LSM is that the data can be correctly formatted in
such a way without having to rely on stream processors such
as sed and awk in the shell script to re-format the outputs
of the tools. The LSM version of the Monitor is incorporated
with the Enforcer such that only one LSM needs to be loaded
onto a system using Lockdown. As connections are allowed
and denied these stats can be kept for a connection and used
to further supplement the data collected.

The data collection from April to September 2007, has
been using the shell script Monitor. At the time of writing,
the agent is deployed onLinux, Solaris, andOS Xplatforms
while a nativeWindowsversion is under development. The
Monitor is a root installedBASHshell script that gathers and
sends the local context of the monitored host to the central
repository. The simplicity of the Monitor lies in its ability to
run the commonly found toolsnetstat, ps, and lsof on any
Linux/Unix/BSDbased operating system.

These three tools are used instead of any single one in order
to gather the entire local context which includes:ppid, pid,
uid, gid, foreign ip, foreign port, local ip, local port, full
application path + argumentsamong other information. No
single tool, exceptlsof, gathers all of this data and glues it
together, however the problem withlsof is the large amount
of data it generates becauselsof reports back all open files
and libraries an application is using.

After netstat/ps/lsofexecutes, the output is properly format-
ted into a local buffer via a series ofsedandawk commands.
The currently buffered data is compared to the previously
buffered data from the previous iteration of the tool by using
the diff application. The diff’ing of the data enables the
Monitor to capture the start and stop of each connection while
avoiding needlessly collecting redundant data that results from
multiple iterations ofnetstat/ps/lsof. The three tools are used to
create a comprehensive view of information.Netstatprovides
the information relating to the (IP address, port number)
tuple of the connection along with the PID, UID, and (short)
program name responsible. We useps to drill down even
further and discover the full application’s path along withall
of the arguments supplied to run it.Lsof is checked against the
psdata to ascertain if an application is spoofing it’s path/name
and to obtain any and all files a process may be using.

D. Visualization & Analyzer

In order to visualize the network connectivity among hosts
within the Lockdown monitoring pool, we modified the source
code for SoNIA [13] see Figure 9. By comparing the topologi-
cal changes in the connectivity graph, Lockdown can compute
the invariants and/or evolution of the monitored networks.
Each host node is assigned a unique identification number
and the edges between the nodes represent the established
connections between them. Edges with higher weights (the
magnitude/number of connections) are shown with a thicker
line. Each node in the connection chaining graph is augmented
to contain additional information shown in a pop-up window
that the administrator can further investigate by clickingon
the node in question. The additional information availablefor
each node includes the network interfaces (IP) involved with

TABLE II

10000CONNECTIONS TO A LOCAL WEB SERVER, (#) REPRESENTS THE

RULE NUMBER

Test Mean (seconds) Standard Deviation

Base case 12.8 0.4216

Lockdown(1000) 14.8 0.4216

Lockdown(100) 14.9 0.3162

Lockdown(10) 14.8 0.4216

Lockdown(1) 14.9 0.3162

iptables(1000) 13.8 0.4216

iptables(100) 13.1 0.3162

iptables(10) 13 0

iptables(1) 13.1 0.3162
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Fig. 10. SCP File Transfer micro-benchmark

the connection, the top local ports, applications and usersthat
made the most connections on that node during the specific
time interval, the in/out degrees of each node, edge weights,
etc. For host-based chaining, dropdown menus are provided
in the interface for selecting whichUser andApplicationtype
to view for the connections. The edges between host nodes
are highlighted in different colors to reflect the change in user
and application. The GUI interface represents the connectivity
chaining at the host, user, and application levels. By stepping
through each slice (a time window that is customizable to
reflect the granularity level, for example hourly, daily or
weekly), the system and network administrator can examine
all connections between any pairs of monitored hosts that
occurred during the time interval.

IV. PERFORMANCE

Our goal for Lockdown is to improve management, but in
order to do so we need to demonstrate that the overhead of
such tools is in itself reasonable. The Enforcer was put through
a battery of micro-benchmarks to ascertain the effect the LSM
has on performance. Results are compared to a base-case with
a computer that has neither the LSM or firewall loaded and
one with only a firewall loaded.
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Fig. 9. Screen shots of SoNIA visualization tool.

Table II shows the results of the first benchmark that tested
the performance of the LSM against creating 10,000 sequential
connections to a web server on the same network. No data was
sent or received, this benchmark simply tested the establishing
of a socket to a web-server. The LSM andiptables were
both tested with 4 different rule set sizes, where the rule that
allows the connection through is the number represented next
to the test, i.e. Lockdown(1000) means the 1000 rule allows
the connection. Each test was run ten times on an x86 based
Mac-mini [Intel Core Duo 1.66Ghz, 512MB RAM, & 40 GB
HD] with Fedora Core 6 installed connected to a Netgear
100Mbps router on which an identically equipped Mac-mini
running Fedora Core 6 was hosting a website. There is on
average just over a second difference between using the LSM
versusiptablesspread out over 10,000 sequential connection
attempts. The difference in performance is primarily because
of the lookup associated with a large set of rules and the added
enforcement the LSM provides through a form of system call
interposition.

The second benchmark represented in Figure 10 shows the
results of an SCP file transfer from the same two systems
as outlined in test one. Once again each test was done 10
times for each file size ranging from 98MB to 977MB in
increments of 98MB, numbers were chosen randomly, with
the rule allowing the connection to be number 1000 in the
list. Similar results were observed when compared to test one.
iptablesperforms slightly faster, but the LSM overhead is not
significant enough to cause performance problems. The LSM
remained close toiptablesin terms of performance time, but

has a small overhead from the send and receive message hooks
that are invoked every-time a block of data is sent from the
application.

We conclude from the results of the benchmarks that the
LSM’s overhead is minimal when compared to the low-end of
the tool spectrum,iptables. While further development on the
LSM can lower the overhead the current status is acceptable
for an actual production environment.

V. EXPERIENCE USINGLOCKDOWN

With the permission of our department’s system adminis-
trators the Lockdown Monitor has been deployed and been
running from April through September 2007. We have been
analyzing, visualizing, and observing the behavior of users and
applications associated with the network connections captured
and reported back to the central server via the installed
Monitors. In order to deploy the Enforcer onto our clusters
we first need to determine how the network is being utilized
so that when loaded with the rulesets the systems are still
functioning according to the University’s network policy.

This section describes the interesting analysis and results
derived from the deployment of the Lockdown Monitor. It
presents what information we were able to gain and what can
be offered by the system in future use. Throughout this section,
the following will be discussed:

• Storage and bandwidth requirements of a deployed Lock-
down system.

• The number of connections made by hosts, users, and
applications within our department.



9

9/20/2007 9/22/2007 9/24/2007 9/26/2007 9/28/2007
Time

0.1

1

10

100

K
B

 / 
15

 m
in

ut
es

lsof
netstat
ps

Storage and Bandwidth Requirement

Fig. 11. The average sizes of raw data files uploaded by the Monitors for
all hosts.

• Identifying the top users among the hosts and the appli-
cations used.

• The chaining of connections from monitored hosts and
the applications + users responsible.

A. Storage and Bandwidth Requirement

To show that by turning on a system such as Lockdown
the network does not become overloaded, we measured the
storage and network bandwidth. The bandwidth metrics are
derived from the raw data files uploaded by the Monitors from
the hosts. Figure 11 shows the average file sizes over ten days
from all hosts within the monitoring pool. It is seen that the
average data size fornetstatandps has a minimum of about
2 to 3 KB every 15 minutes per host (interval in which the
Monitor uploads data to the server), with occasional peaks at
approximately 25 KB.lsof is the largest among the three files
and oscillates depending on host usage. Roughly speaking if
there are 500 monitored hosts with an assumed average of 100
KB for all three files, the storage on the central server reaches
4-5 GB per day and only about 0.5 Mbps on the local network.

B. Number of Connections Made by the Hosts, Users, and
Applications

Figures 12 to 16 shows the hourly number of connections
made by the users (local versus enterprise) on all monitored
hosts. The UIDs are checked against the University’s LDAP
service to determine if they are enterprise users.

• Figure 12 shows the connection patterns made by users
on the cse-gwhosts which solely consists of graduate
student office desktop machines. The diurnal pattern can
be clearly seen.

• Figure 13 shows the connectivity of users from thehelios
cluster of machines, which are public lab machines for
all engineering students. The three spikes observed on
the helios machines corresponds to unsuccessfulssh
attempts from computers in Taiwan, Mexico and US
during the hours 0-1am of 9/11, 7-8am of 9/14, and 2-
3am 9/17 respectively.
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Fig. 12. Hourly Connection made by Enterprise Users and Local users:
cse-gw cluster
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Fig. 13. Hourly Connection made by Enterprise Users and Local users:
helios cluster
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Fig. 14. Hourly Connection made by Enterprise Users and Local users:
cselab cluster
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Fig. 15. Hourly Connection made by Enterprise Users and Local users: all
other machines
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Fig. 16. Hourly Connection made by Enterprise Users and Local users: all
clusters

• Figure 16 shows connections fromall hosts in the moni-
toring pool. It is observed that the cyclic behavior occur-
ring is driven by enterprise-scoped users, whose behavior
is also less predictable, but nevertheless dominates the
pattern of connections. An enterprise scoped user access-
ing their home directory with an application invoking
network activity would create this type of behavior (i.e.
queued grid jobs).

It is important to notice that with the help of the local
context aware network management included inLockdown,
the information about the monitored connections has a very
fine level of granularity. The level of detail on a connectionis
not only limited to what host was responsible, but ratherwho
on the host was. Therefore, an identity of users in addition to
the identity of hosts (IP/Port) is attached to traffic monitoring.

C. Top Users Having Most Hosts and Applications

From Figure 12, we can see that the enterprise users
dominate the network connections. However, we do not know
which enterprise users from it. Diving down deeper through
the monitored data it is observed in Figure 17(a) which user’s
among the enterprise pool are responsible. Further drilling
down with the gathered data we can see the top applications

run by the user in question (e.g. uid 116670) that’s responsible
for the connections, as illustrated in Figure 17(b);

Another interesting property with the dataLockdowngathers
is to watch the combination ofusers, hostsandapplications.
Figure 18(a) shows the top users (distinguishable by different
machines they logged on) that had connected to the most
unique foreign hosts over one week. Figure 18(b) shows the
top users that had established connections using the most
unique programs in the same week. While there are some CSE
grad student users running experiments and theCondorsystem
users appearing in Figure 18(a), the users that logged into the
public computer lab shown up in the top list in Figure 18(b)
suggests that the grid users in scientific computing contact
many distinct hosts but, the variance among applications used
on those hosts is few. Whereas in contrast, the physically active
users, rather than user automated tasks (grid jobs), are more
interesting in that the number of distinct applications used on
those hosts to make network connections are diversified.

D. Connection Chaining

This section presents the context-aware connectivity chain-
ing on the host, user and application level possible/discovered
with Lockdown. Bipartite matching allows for Lockdown to
show the applications and users at both ends (assuming both
hosts are monitored) of the network connections in additionto
the responsible hosts and port numbers. WithLockdown, it is
possible to construct a connected graph on the level of hosts,
users, and applications for the purpose of network analysis.
The chains themselves can take multiple forms ranging from
considering the complete chain (files, process/application, user,
host) to considering high level topologies (user only, applica-
tion only, user and application, host only). The topology can
then be examined to assess both bottlenecks in performance
(downstream dependencies) as well as areas of trust (host1
indirectly trustshost2from its direct trust ofhost3). Moreover,
the chaining of the various levels of context (user, application,
host) extracts areas of trust relevant to inferring containment
methodology (virus or exploit propagation), attack graphs
analysis, risk management, and forensic analysis.

The algorithm we developed for bipartite matching uses two
hashtables for linking the source and destination identifiers
in linear time with regards to the number of total observed
established connections. In its simplest form, a bipartitematch-
ing is found if an established connection recorded on Host A
with source and destination identifierssrcA anddstB matches
another established connection record on Host B withsrcB

and dstA within the same time frame. The time frame can
be a varied by granularity of as low as a second to a much
coarser one such as hours, days, weeks or months.

Table III shows an example of such connection matchings
after the fusion of the data uploaded by the Monitors. Each
new connection chaining record begins with thestart andstop
time of such a connection and is further divided into the left
and the right part. The left part is thelocal identityin terms of
host name, IP/Port pair, user, and application associated with
the connection. Similarly, the right part is theforeign identity
in the same format.
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Fig. 17. (a) shows the topusersin cse-gwcluster making the most connections, (b) shows the topapplicationsbeing run by a selected user (116670) that’s
responsible for making the most connections during a week’smonitoring period.
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(b) Top users with most distinct applications.

Fig. 18. Top users contacting mostdistinct hosts vs. top users making connections using mostdistinct applications. It suggests different connection behaviors
between scientific grid users and desktop human users.

TABLE III

SELECTED OUTPUT OF BIPARTITE MATCHING OF ESTABLISHED CONNECTIONS. WITH THE HELP OFLOCKDOWN SYSTEM, WHICH APPLICATION RUN BY

WHICH USER AT BOTH ENDS OF CONNECTIONS ARE IDENTIFIED.

Start Stop Local Host Local Port(protocol) Local User Local Application Foreign Host Foreign Port(protocol) Foreign User Foreign Application

1177527137 1177527148 catbert 631(tcp) 0 cupsd ratbert 34406(tcp) 97392 gnome-pdf-view

1177543303 1177543309 catbert 631(tcp) 0 cupsd wally 35775(tcp) 92362 gedit

1177448975 1177449026 dustpuppy 54427(tcp) 105464 parrot sc0-18 9094(tcp) 108172 chirp server

1177391778 1177391807 noise 40096(tcp) 33 dumper1 concert 33084(tcp) 33 amandad

1177392075 1177392151 noise 40211(tcp) 33 dumper3 chamber 38429(tcp) 33 gzip

1177392075 1177392151 noise 40212(tcp) 33 dumper3 chamber 53342(tcp) 33 sendbackup

1177478126 1177478133 noise 41128(tcp) 33 dumper1 noise 41127(tcp) 33 chunker1

1177345841 1178341216 orchestra 32797(tcp) 27 ora pmon testd orchestra 1521(tcp) 27 tnslsnr

1177345841 1179571284 orchestra 1521(tcp) 27 tnslsnr orchestra 32797(tcp) 27 ora pmon testd

1177515292 1177515299 orchestra 36019(tcp) 317 httpd orchestra 1521(tcp) 27 oracletestdb

1177610657 1177611222 sc0-16 9094(tcp) 108172 chirp server bomber 49857(tcp) 102744 condorexec.e

1177610633 1177610638 sc0-17 9710(tcp) 108172 condorschedd bomber 9788(tcp) 108172 condorstartd

1177625404 1177625765 sc0-17 9314(tcp) 102744 condorshadow classical 9868(tcp) 108172 condorstarter

117748953 1177548992 theresa 34479(tcp) 97464 ssh dilbert 22(tcp) 0 sshd: root

1177459056 1177459112 wally 34739(tcp) 92362 gedit catbert 631(tcp) 0 cupsd

1177636992 1177636998 wombat02 9094(tcp) 108172 chirp server bootleg 38394(tcp) 97399 java
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Fig. 19. Visualization of the bipartite matching from data collected on Saturday July 14, 2007 2pm-3pm EST.

Before, at one end of the connection (server side), the
identity of who is connecting to the server is vaguely inferred
from theIP/Port pair (assuming only user A can use that client
machine). Now, the identity ofwho is connecting to a host
can be precisely known from the bipartite matching without
inferring from the IP/Port in terms of whichuser and what
applicationare atboth sidesof the monitored connections. For
example, in Table III, it is clear that from time1177548953
to 1177548992, user 97464 on host theresausing program
sshconnected to thessh daemonrun by root on hostdilbert.
This is extremely useful for evaluating the effectiveness of the
enforcement of the existing policy in the enterprise network,
with a side benefit for forensic systems.

Figure 19 shows a snapshot of the visualization that Lock-
down performs on the bipartite matching with the help of
modifications done to [13]. Figure 19 is primarily showing
a user on a specific machine fanning out a job onto Condor
for a grid based computation.

VI. RELATED WORK

In a broad sense, the work in this paper touches on the
vast array of research already conducted with regards to
firewall/policy analysis [14]–[18], intrusion detection [19]–
[22], user/host authentication [23], [24], and recent clean slate
design security efforts [25], [26]. Figure 20 attempts to capture
where Lockdown lies on the axes of deployment complexity
(x axis) and granularity of control (y axis). In some sense, the
figure captures the range of solutions ranging from lightweight,
simple firewall solutions to pervasive, heavyweight solutions
that encompass the entirety of the enterprise. Notably, the
figure focuses on standards body and research works with the
primary discussion below regarding commercial solutions.
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Fig. 20. Contextualizing Lockdown within existing networksecurity mech-
anisms

At the lower end of deployment complexity, traditional
host-based and in-network solutions are located includingfire-
walls (iptables & OpenBSD-pf) and flow monitoring solutions
that act in an application-independent manner (Snort, classic
anomaly detection systems, etc.). Notably, these devices suffer
from the inability to understand the context of the connection,
acting on Layer 3 / Layer 4 data or broad patterns of activity
(signatures, anomalous traffic patterns, etc.). However, given
that these techniques are often the initial mechanism for ap-
plying policy, significant research has explored how to validate
policy mapping. Hamed and Al-Shaer [14] noted a taxon-
omy of conflicts in policy for network security devices with
their previous work applying graph-based boolean function
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manipulation to distributed policy analysis [15]. Guttman[16]
constructed a global policy definition language with algorithms
for verification while Bartal et al in [17] separated policy from
topology along with a more modular architecture with Firmato.

Ioannadis et. al in [27] introduced KeyNote which addressed
the issue of distributed firewall management. While the kernel
enforcement mechanism of KeyNote shares aspects of the
Lockdown enforcer component, KeyNote operates largely in
the same rule domain as traditional IP firewall rules (IP, port)
only with authentication (digital credentials) enforcinguser
identity. The recent clean slate efforts of SANE [25] and
Ethane [26] move enforcement to the network switch itself
with Ethane operating in a slightly less heavyweight manner
than SANE. Similar to KeyNote, Ethane and SANE force the
users through a centralized controller (digital certificates via
IKE in KeyNote) to validate connectivity with the resulting
authentication being a pre-requisite for proper LAN routing.
Critically, the clean slate architectures of SANE/Ethane rep-
resent a sizeable cost in terms of changing network hardware.
Moreover, we note that none of the noted works address
management, focusing exclusively on the how of enforcement
rather than how management of the network might be im-
proved through visualization or auditing.

Deep packet inspection (DPI), i.e. application-specific prox-
ying, trades processing speed for the ability to fully evaluate
the state of the application-layer protocol. A typical deploy-
ment of DPI might involve an in-band application-aware IDS
or forcing users to authenticate through an application-specific
proxy (ex. web proxy). While this is marginally effective
for the most basic of applications, DPI must continually
react to application protocol enhancements and applications
exploiting ‘benign’ operations to bypass filtering. Moreover,
DPI offers little benefit when the traffic itself is encrypted
(SSH, SSL, etc.). While work has been conducted on how to
infer applications types despite encryption [28], the potential
for widespread usage of encryption with IPv6 is problematic.

On the commercial side, numerous solutions exist across
the entirety of the deployment complexity spectrum. Enhanced
firewalls provide normal firewall rules with additional options
for consideration of applications and for detecting changes
to the application itself (Windows XP Firewall, ZoneAlarm).
Management software such as Microsoft SMS (Server Man-
agement System) and others allows for management of the
distributed policies. However as noted earlier, these tools can
make security-based connectivity issues difficult to detect and
offer little in the manner of validation or visualization ofthe
network itself.

With regards to the high end, we note several prominent
solutions including Cisco Security Agents, Endforce, Consen-
try, Alterpoint, and Elemental Secrity. In a broad sense, the
solutions can be divided into three different groups. The first
group are based on signature databases whereby application
network accesses are analyzed by a host agent and compared
to the signature database for possibly exploits and security
warnings. The second group employs signature analyses to
search for common security holes such as buffer overflows
with data logged for future analysis. The third group of
solutions such as Cisco’s NAC employ a mixture of network-

level and host-level control with user authentication to control
network security. While these solutions are quite powerful,
the pervasive commercial solutions are often time consuming
to configure and manage requiring significant IT investments
to employ effectively. Hence, as noted in the introduction,
deployment of such solutions has largely been limited to a
minority of enterprise environments [1].

Finally, we note related work in the area of intrusion detec-
tion. Specifically, Lockdown does not attempt to fill the role
of a host-based IDS (HIDS) [21], [29], [30]. Notably, several
works noted the need for local context [31], [32] for better
policing but did not focus on how to gather or analyze the
information. Conversely, other IDS works [21], [29], [33] have
described approaches for the aggregation of host-based IDS
information for centralized analysis. In contrast to the often
heavyweight nature of host-based intrusion detection systems
and their respective data gathering, Lockdown focuses on max-
imumizing benefit with minimal cost. As a result, Lockdown
trades effectiveness of mechanism for that decision (impact of
compromised host) but offers vastly improved management to
the network administrator with minimal deployment cost.

Hence, Lockdown is placed in the middle of the spectrum
from Figure 20. Lockdown does not purport to offer sig-
nature analysis for detecting zero day exploits nor claim to
offer Tripwire-like functionality for detecting root-level host
compromises. Rather, Lockdown is complementary to the vast
body of existing work with assistance to the mapping of policy
to mechanism and the addition of a process to further refine
policy via streamlined monitoring and auditing.

VII. SUMMARY AND FUTURE WORK

There is no final solution to computer security and net-
work manageability, the best approach is typically a layered
one. Lockdown complements existing layered solutions by
seeking to improve the ease in which an administrator can
manage the network and ascertain what is occurring among
the managed hosts in a streamlined manner. The inclusion
of local context significantly improves the expressivenessof
both enforcement and observed behavior to better map and
validate high level policy to mechanism. Notably, the ability
of Lockdown to deftly balance between economy of mecha-
nism and complexity of mechanism allows Lockdown to stay
lightweight but yet offer benefit via streamlined management
through visualization and analysis. The full application of
the Lockdown process offers a cycle of enforcing, auditing,
and analyzing that creates a closed loop of manageability for
a Lockdown deployed network without expensive restructur-
ing. The analysis, auditing, and visualization tools help in
unearthing user / application behavior among hosts within
the enterprise network that previously was non-existent or
buried in volumes of log data. Moreover, the components of
Lockdown are modular, offering the ability for partial adoption
of the components (i.e. only monitoring) rather than requiring
pervasive deployment as an initial start point.

Future work on improving Lockdown’s auditing, anlysis,
and enforcment is currently split into several areas. First,
we are in the process of developing a GUI/front-end tool
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that enables on-demand exploration of the network data. The
tool will allow for visual browsing of the data, i.e. following
interesting graphs through various perspectives of the network.
Second, we are expanding our agent coverage to robust imple-
mentations on Windows, Mac OS X, and Solaris. Third, we
are exploring the potential for conveying local context during
the connection setup phase and its implications for enhanced
control and trust extensions.
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