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Abstract
Distributed Denial of Service (DDoS) attacks originating from botnets can quickly bring normally effective

web services to a screeching halt. This paper presents SESRAA (SElective Short-term Randomized Acceptance
Algorithms), an adaptive scheme for maintaining web service despite the presence of multifaceted attacks in a noisy
environment. In contrast to existing solutions that rely upon “clean” training data, we presume that a live web service
environment makes finding such training data difficult if not impossible. SESRAA functions much like a battlefield
surgeon’s triage: focusing on quickly and efficiently salvaging good connections with the realization that the chaotic
nature of the live environment implicitly limits the accuracy of such detections. SESRAA employs an adaptive
k-means clustering approach using short-term extraction and limited centroid evolution to defend the legitimate
connections in a mixed attack environment. We present the SESRAA approach and evaluate its performance through
experimental studies in a diverse attack environment. The results show significant improvements against a wide
variety of DDoS configurations and input traffic patterns.

I. INTRODUCTION

With the advent of tools and scripts that trivialize the creation and management of large numbers
of compromised hosts (aka botnets), low profile armies exist that are ready to launch devastating DDoS
attacks at any moment. The sheer prevalence and highly distributed nature of the hosts further complicates
matters. Hence, considerable research attention has been brought to bear on how to effectively prevent,
detect, defend, and/or neutralize the botnet threat [1]. Moreover, the diversity of botnets in the ‘wild’
necessitate multi-tiered strategies in order to effectively weather attacks.

In this paper, we specifically examine the issue of end host defense against such a distributed resource
exhaustion attacks with non-spoofed legitimate requests. Based on the vast amount of data that the servers
observe daily, can one use lightweight data mining techniques to enable mitigation mechanisms that reduce
or nullify the offending botnet(s)? We assume that the end service operates from the perspective of isolation
with no external information services beyond those directly initiated by itself are available. As the issue
of end host defense has roots in load balancing and anomaly detection, we note the key novelties of our
work versus that of the large body of existing work [2]–[11]:

• Effectiveness of short-term data views: We note that short-term pattern extraction (extracting patterns
in the order of minutes versus hours or days) can be effective against botnets. Rather than attempting
to extract the long-term ‘clean’ signal, short-term extraction meshes well with open sites whose input
traffic is highly variant (for example eBay, CNN, etc.).

• Pattern evolution as an input: While short-term pattern extraction provides an excellent baseline, the
evolution of the extracted patterns (for example clusters) is interesting. We introduce the notion of
adaptively skipping between past patterns under sustained attacks to prevent attacker profiling and
comment on using evolution as a secondary filtering input.

• Quality metric - Session Completion Time: While intuitively understood, we note the distinctive
performance effects of considering the satisfaction of multiple TCP flows (for example web traffic)
as requisite for a successful session (group of flows). We introduce the notion of Session Completion



Fig. 1. View of SESRAA co-located with a load balancer.

Time (SCT) for evaluating botnet performance mitigation. To the best of our knowledge, ours is the
first study to consider session-wise rather than connection-wise QoS.

We describe SESRAA (SElective Short-term Randomized Acceptance Algorithms), a host-based scheme
that employs a nimble and adaptive response mechanism to mitigate malicious attacks in a noisy, live
environment. Our solution is co-located with the traditional load balancer (see Figure 1). Rather than
attempting to remove the noise inherently present in the traffic, our scheme embraces the noise and adapt
rapidly to network dynamics. The design of our solution is centered around a difficult problem faced by
research community: How should a system react when attacks are massive, distributed, rapid, dynamic,
and there exists little to no pattern of what constitutes good behavior? To that end, SESRAA attempts to
offer an effective first line of defense to handle short-term mitigation while more sophisticated but slower
schemes (pushback, tracing, etc.) run their course. Through the adaptive application of k-means clustering
and recording of the cluster evolution, SESRAA consistently changes its defense profile to both better
isolate ongoing attacks and to reduce its vulnerability to profiling attacks.

The remainder of the paper is organized as follows. Section II differentiates our research approach
with existing work and acknowledge the previous studies in the field. In Section III we discusses the
environment in which our solution operates and theory behind our approach. Detail explanation is given
to how the clustering should work and how the suggested probability should be generated. Section IV
shows some traffic analysis and the evaluation of proposed solution to DDoS attacks via simulation.
Further experiments is studied and discussed in Section V. Finally, Section VI offers several concluding
remarks and comments on the ongoing future work for SESRAA.

II. RELATED WORK

Traditionally, Distributed Denial of Service (DDoS) attacks have been characterized as either TCP SYN
or UDP data flooding. In the case of TCP SYN flooding, the three-way handshake is never completed (SYN
flood) or the handshake completed but data never sent. In contrast, UDP data flooding simply overwhelms
the link in question through sheer bandwidth with the source address often spoofed to hide the location
of the source(s). Critically, a first step in defense is the identification that an attack is occurring versus
the server simply being overloaded due to popular content. In [19], the concept of a one-way connection
density (OWCD) function is used to describe the asymmetric property of incoming and outgoing traffic
for detection of DDoS attacks. Similarly, the basic assumption in [20] is that the ratio of incoming traffic
over outgoing traffic is high during the DDoS period because the server could not respond quickly under
heavy load. Kang, Zhang, and Ju proposed the use of hierarchical clustering in [21] to classify the type of
DDoS attacks. Conversely, our work focuses on the initial mitigation mechanisms rather than detection but
does not preclude the use of existing work with regards to DDoS attack detection as a trigger mechanism
rather than solely using system load.
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As flooding typically involves spoofing the source of the packet, numerous works have attempted to
reduce or eliminate spoofed packets. Xu and Lee propose in [22] is to filter spoofed packets through
URL redirection via MAC verification but require router support to provide such a mechanism. In [23],
Kim et. al propose a packet scoring mechanism whereby packets are discarded based on a per-packet
score threshold. Yaar, Lessig, and Song propose SIFF in [24] which controls Internet flows based on the
notion of privileged or unprivileged channels. In a similar vein, Path Identification [6] is a packet marking
technique that embeds a path fingerprint within each packet by altering the IP Identification field. This
allows a victim to identify packets traversing the same paths through the Internet on a per packet basis,
despite spoofing. Path Identification can remain effective in a partial deployment, up to 50%, but still
suffers from the cost of deployment on a large scale.

In the case where attacks are not spoofed, an approach to curtailing the DDoS attack problem is through
IP Traceback [2]–[4]. The goal of traceback is to identify systems responsible for generating attack
traffic and to determine the network path through which the malicious communication flows. However, in
the botnet setting, attacks may involve involves hundreds if not thousands of machines intermixed with
legitimate traffic making tracing back to individual hosts impractical. Park and Lee [2] present a discussion
on the effectiveness of source identification through probabilistic packet marking. This technique may
potentially reduce the DoS problem to a manageable level, however, this scheme suffers as spoofing of
the packet marking field eliminates the ability of the method to perform an accurate traceback.

In addition to genuineness of source, DDoS can also be categorized into bandwidth depletion and
resource depletion attacks. Bandwidth depletion attack can be mitigated by filtering unwanted traffic
earlier which would have been discarded anyway later at the end server (for example UDP data flood).
In [17], Mahajan et al. propose a pushback mechanism to control aggregates at the upstream router.
The rate limiting scheme from the upstream gateway can be combined with our approach to provide a
comprehensive end host defense against DDoS attacks. In a similar vein, level-k max-min proposed in
[18] offers an alternative over the earlier recursive pushback mechanism when attacking hosts are spread
across the network. However, the rate limiting requires the identification of the offending nodes in order
to effectively contain the malicious traffic. We note that SESRAA could be applied as the input for rate
limiting to blend the two techniques which could be a subject for future research.

A significant hindrance to many of these techniques discussed above is the requirement of extensive
deployment throughout the router infrastructure of the Internet versus more deployable but typically less
effective host-based solutions. The approach by Xu and Lee in [22] uses game theory to model the attackers
and defenders and apply a quota to each client to confine the clients to their fair bandwidth share. In
contrast, our work focuses on probabilistically filtering the likely botnet patterns rather than diluting the
share of each client which we believe provides a more responsive solution. Specifically, our work incurs
only a fixed state when in the overloaded state and only imposes increased state / load when the system
is lightly loaded as opposed to potentially per-client state in [22]. Another promising victim-based DDoS
attack detection scheme was proposed by Jin and Yeung in [25] using covariance models to combat SYN
flooding attacks but unfortunately the work provided minimal mapping for how to apply the results with
regards to mitigation. Jin, Wang, and Shin proposed an alternative filtering scheme based on hop-count
filtering in [26]. This technique is able to allow a server to infer authenticity based on an analysis of
expected and actual TTL values of packets from a single host. However, a study of the effectiveness of
this technique against a DDoS featuring unspoofed traffic has yet to be performed.

The first large-scale study of the application of the subspace method to traffic flows was performed
in [27]. Incorporating anomaly detection with this technique has yielded strong results, allowing analysts
to note distinct traffic behavior such as flash crowds, worms, and even changes of routing policy. While
this technique is not an automated solution, it demonstrates the power the subspace method in terms
of network traffic identification. In Static Clustering (SC) and Network-aware clusters (NAC) [28], [29]
clients are clustered by some common properties like the longest matched prefix/netmask BGP routing
table snapshots. Finally, we also acknowledge another attack model called Reduction of Quality (RoQ)
[30], which targets adaptation mechanisms and keeps an adaptive mechanism oscillating between over-
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Fig. 2. Side-by-side analysis of connections characteristics. The left is a partial view of collection of connections immediately prior to the
DDoS and the right is partway through the attack.

load and under-load conditions. Unlike DDoS, RoQ optimizes the attack traffic to produce the maximum
damage while keeping a low profile to avoid detection.

III. ARCHITECTURE DESIGN OF SESRAA
In the literature, DoS attacks typically employ IP and port spoofing to quickly overwhelm the server.

Rather than addressing the removal of spoofed IP addresses, we assume that the handshake portion of the
TCP connection can be largely offloaded to the load balancer, thus only creating load in the bandwidth
rather than computational sense. In contrast, we focus on a more difficult problem in which a series of
hosts attempt to overwhelm the server through legitimate connection requests (i.e. handshake is completed
and all data is downloaded). This resource exhaustion attack is made possible with the recent emergence
of large scale botnets in which vast amount zombies do not even bother to hide their real addresses. The
threat model we are considering is that an attacker, such as a botnet master, controls tens of thousands
of compromised machines and makes legitimate connection requests to victim machines, such as a web
server, thus making its resources unavailable to valid users. Hence, SESRAA targets the mitigation of
botnet-style DDoS exhaustion attacks wherein the attack consists of a burst of activity to the target victim.

Our conjecture is that despite the noise of the Internet, there is good behavior to be extracted over
short periods of time. To that end, we consider k-means clustering [12] to discover clusters of normal
activity or behavior based on connection requests. This premise further bolstered by observations in [13],
[14], which noted that connection requests tend to cluster over time. Intuitively, if the normal traffic tends
to self-organize in cohesive clusters, the overload state will introduce anomalous or malicious behavior
that falls outside of clusters or overloads existing clusters. Conversely, traffic that falls within a cluster
has a higher probability of being good, until the cluster density increases beyond an acceptable load. By
probabilistically filtering attackers based on the weighting of the clusters and a distance function, SESRAA
infers the potential for a connection to be bad in a lightweight and efficient manner. Moreover, clusters are
continually recomputed with multiple characteristics, which presents an attacker with a non-static defense
scheme.

A. Operation of SESRAA
When the server (S) reaches a warning state (Swarn), the most recent set of centroids M derived from

k-means clustering over IP and TCP characteristics freezes. The proportion of distributions around some
members of M will rise as other fall while connection requests flood the system, which is seen in Figure
2. New connection requests are placed into clusters, which will cause a disruption to the population
balance, allowing SESRAA to probabilistically adapt to the attack in order to better serve members from
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Server Load Server Action SESRAA Action
Overload Maximum probabilistic Trigger adaptation
(Sover) connection rejection Clustering
Warning Probabilistic rejection Clusters Fixed
(Swarn) of new connections
Normal All connections accepted Recompute clusters
(Snormal) at intervals

TABLE I

SESRAA AND SERVER ACTIONS WITHIN EACH STATE

the good clients (CG). Based on the load to the server (S), the differential between the actual and expected
cluster size, and the relative distance (based on deviation and cluster density) from the cluster’s centroid,
an acceptance probability is assigned. This method allows the isolation of collections of flows that are
different from those found when the traffic was in a normal state. Ideally, such flows are those of the bad
clients (CB). As the botnet attacks recedes, the server reverts to a normal state (Snormal), allowing it to
prepare for the next attack. This offers a unique, adaptable, and resilient method to managing a botnet
attack while still delivering service to legitimate users. Table I summarizes the actions taken at SESRAA
during different sever loads.

While the normal state (Snormal) does not imply that all accesses are good, we believe that one can infer
that a higher probability of goodness for connections received during this state. However, SESRAA can be
tuned to not use this metric as the sole test for goodness as this assumption possesses two key weaknesses.
First, an attacker may be conducting a low level botnet attack that does not overwhelm the server. Second,
a cluster of hosts that was previously considered good may become compromised. In both cases, the simple
metric of training the goodness of connections based the underload state may be deceptive. However, it is
important to note that the increase in traffic that occurs with a botnet attack will likely cause previously
noted good cluster(s) to become overweighted and thus subject to increased rejection probabilities. Even
a slow ramp-up for the botnet attack is not immune to rejection by overweighting as the cluster weight for
the botnet cluster will still manifest itself by the magnitude of the number of connections in the cluster.

To further defend against those bots that attempt to poison the clustering, Wcluster and Wcentroids are
used for the evolution of cluster and centroids in SESRAA. For each window size of Wcluster, the cluster’s
centroids are recomputed and all traffic data points are discarded. These centroids will be used as the
fresh starting points in each cluster for the new round of Wcluster. Wcentroids is used to keep a history of
recent past sets of computed centroids. In the event that the current clustering techniques do not mitigate
the overload state (Sover) at the server due to the insufficient learned pattern, a random hop between
these centroid sets at fixed intervals is adopted until all traffic move to Snormal. Overall, these adaptation
mechanisms provide a non-deterministic rejection method to botnet. Our future work will explore a method
of differential of clustering for botnet attacks.

B. Rejection Probability Generation
When the data is manageable, these requests are merely noted as examples with which clusters are

established. However, when the server is in danger of failing, SESRAA needs the ability to distinguish
traffic falling within the accepted pattern. Thus, SESRAA’s task becomes that of outlier detection. To
perform outlier detection, we were initially inclined to apply a method that incorporates Local Outlier
Factor [15], which is a useful measure of both a point’s distance from a cluster and the relative measure
of the cluster’s density. However, such an operation is computationally infeasible given the requirement to
calculate Nearest-Neighbor (NN) for each connection and the small quantum of time budgeted to accept
or decline the connection. Thus, our system must rely on a faster heuristic for assigning a probability that
the connection belongs to a given cluster.

As the exact distribution of connections is unknown, we rely upon Chebyshev’s theorem stating that
no more than k−2 of the examples exists at a distance k standard deviations or greater from the mean
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[16]. This is invaluable in determining acceptance probabilities based on the cluster information we have
gathered, as this model makes no assumptions about the distribution of connections within each cluster.
For each new connection received when the server is under attack, Chebyshev’s theorem suggests:

Pcluster(X) =
σ2

(µ−X)2

where µ represents the cluster mean, X represents the connection datapoint, and σ represents the cluster
standard deviation. As new traffic enters the connection subspace, those points distanced furthest from
cluster centers will receive the lowest acceptance probability (such as the sparse points distant from
centroids), while those closer to cluster centroids will be increasingly accepted.

As the load on the server increases, the policy also needs to become much harsher to prevent server
overloading. The primary danger of the botnet attack stems from overloading the capacity of the server.
Given two scenarios where the server was presented an identical connection request and the distributions
and partitions were identical between scenarios, the Server cannot issue the same acceptance probability
if one scenario features a differing traffic load than the other. As the server reaches its resource capacity,
the rate of rejection must rise significantly. This implies that any rejection probability component derived
from load over threshold will follow an exponential growth pattern. Therefore, the acceptance probability
function based on load is:

Pload = e
−
(

λ· l(t)−lthres
lthres

)

where λ is a constant weight, l(t) is the load on the server at time t and lthres represents the server’s
threshold load.

The final considerations of the acceptance probability generation is where a connection maintains the
existing distribution of connections around each cluster. If a connection causes a cluster to deviate over its
natural distribution against the entire population, then the probability of its rejection should be increased.
For distribution consideration, it is sufficient to calculate a probability based on the separation from the
actual and expected distribution of the cluster.

Pdist(X) =
dexp

d(X)

where d(X) represents the percent of all packets within the cluster of connection packet X and dexp

represents the percentage of connections within the given cluster at the point when the clusters are fixed.
This component of probability generation will therefore assign connections falling within heavy regions to
very low acceptance probabilities as these localized changes to the overall traffic aggregate likely reflect
a botnet attack.

While it is straightforward to merge the above functions to calculate an acceptance probability during
Sover using a linear combination of weights and probabilities, this metric has some shortcomings. First,
after an extended period of attack, ideally the weighting can adapt to focus on Pcluster, Pdist or Pload.
However, the dynamically adjusting the weights entails extra computation cost. Second, the magnitude of
rejection does not increase significantly using the linear relation, which is particularly important within the
context of a botnet attack. Therefore, for simplicity and effectiveness, product of the above probabilities
is adopted to calculate the final probability, which the load balancer then uses to decide connection
acceptance or rejection. Although a discrete accept/reject model is nearly infeasible, such a probabilistic
heuristic should prove to be an effective method to mitigating a botnet attack.

C. Discussions
Beyond the core operations of SESRAA, we discuss the following items in more detail: flash crowds,

false positives, and the computation cost of SESRAA.
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Flash Crowds: While one can debate whether flash crowds can be defined as “good” or “bad” behaviors,
the reality is that flash crowds are generally not intentionally malicious, rather the requests are driven
by exceptionally popular content. Although SESRAA’s discerning offers limited benefit in discerning the
participants of the flash crowd versus the normal traffic behavior, SESRAA will still control admissions
to ensure that those connections admitted can indeed be served in a timely manner. SESRAA does have
the capacity to limit highly localized flash crowds (for example university message board posting) which
can be a desirable outcome to encourage caching on the part of the remote network. In particular, we note
that SESRAA will not do any harm beyond what a normal load balancer would employ if all requests
are considered ‘good’ in the larger network context.
False Decision: For a system without perfect knowledge of request intention, false positives and false
negatives are a practical reality of the system. Critically, SESRAA is targeted at systems where the noise
of the Internet precludes the creation of extremely accurate models, i.e. the users of a site change over time
rather than exhibiting an easily extractable behavior such as with eBay, CNN, Amazon, and university
web sites rather than an authorization-driven web site such as scientific portals and others. We accept
that SESRAA will clearly make incorrect decisions but that tradeoff is taken in exchange for nimbleness
of the system (preventing simply profiling attacks via adaptation) and elimination of long-term training
periods (simply unfeasible). As noted in our upcoming experimental studies, SESRAA offers significantly
improved results over the merely randomized load balancing demonstrating a clear improvement in false
positives / false negatives. Hence, we believe the benefit gain in our approach outweighs the incorrect
decisions made by the server in accepting/rejecting clients requests during the DDoS period in order to
maintain a reasonable load with the realization of good QoS for the majority of legitimate users.
Computation Cost: It is important to note that the core of SESRAA are relatively lightweight data mining
operations that are conducted at the load balancer, not the web server itself. Moreover, the transition to
a highly loaded state freezes the set of centroids (recent and past) used for evaluation and does not incur
a data mining load when the system itself is under attack. These computations could also be directed to
a separate server besides the load balancer if the load balancer does not have sufficient resources when
under a light load. While we do acknowledge that the k-means clustering process is not deterministic,
the lack of determinism is mitigated by its invocation during only periods of low load. The computation
during the rejection phase is also relatively lightweight as the Euclidean distance versus existing clusters
is a constant factor that does not require significant overhead and creates a fixed impact per connection.
Bandwidth Exhaustion Attack: Finally, we note that SESRAA does not mitigate pure bandwidth exhaustion
attacks (for example UDP flood). SESRAA solely focuses on the issue of botnet-style resource exhaustion
via legitimate requests for which traditional SYN-flood pushback-style mechanisms [17], [18] would offer
little benefit. SESRAA does not preclude the use of these techniques to filter out unwanted traffic and is
largely complementary to those techniques.

IV. SIMULATION ANALYSIS

To understand the traffic pattern and to evaluate SESRAA, we performed simulation and experimental
analyses that are discussed in the next two sections. To start, we conducted a simulation analysis based
on a month of live captured data from the primary web server on the university campus. The usage of
actual data allows for the avoidance of artifacts of random addresses, random ports, and other traffic
characteristics that would be trivial to extract via data mining. Moreover, the usage of actual data allows
for the accurate simulation of members of a ‘live’ botnet with real addresses, ports, TTLs, and request
characteristics that represent subverted hosts from the observed traffic flows. While the usage of actual
data rather than synthetically data increases the difficulty of defense, we firmly believe that our results
more accurately reflect what would occur under an actual botnet exhaustion attack. The university tap
data was used both for the simulation and experimental analyses.

To enable testing across a wide variety of scenarios, a discrete-event simulator for SESRAA was
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Fig. 3. A 3-D view of the number of connections of all incoming
web traffic for a seven days monitoring period. X axis is time in
unit of hours; Y axis is the IP with the first three significant bytes;
and Z axis is the total number of connection requests during that
hour.
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Fig. 4. A 2-D view of incoming web request for a monitoring pe-
riod of approximately one hour. X axis is the source IPv4 addresses
normalized to 232 and Y axis is the source ports normalized to 216.

developed in Java1. The clustering criteria uses characteristics from the packet headers of both the network
and transport layer, which includes but not limited to IP address, port numbers, TTL values, and sequence
numbers. While Euclidean distance of multi-dimension is easy to compute and is actually adopted by our
approach, for visualization easiness, we present results using only the src ip and src port to form a 2-D
space for k-means clustering.

With regards to clustering, a sliding window of 55 simulation seconds is used. If there has not been a
recent attack, the data points of the current clusters will be dropped and only the centroids themselves will
be saved. In the simulation, the cluster centroids are updated each simulation second provided that the
server is under the appropriate load level. Client-side characteristics are modeled with a 100 Mb/s link and
varying WAN-side RTTs. The load and SESRAA threshold are set 0.8 and 0.6 respectively, denoting the
load at which the respective algorithms are invoked. The timeout at the server is set three seconds while
the client SYN timeout set to be two seconds with a maximum of three retries before declare failure. The
policies of load only (probabilistic rejection beyond a threshold), SESRAA (outlined earlier), and perfect
(always reject attackers) are compared.

The primary performance metric, quality preservation in terms of Session Completion Time (SCT), is
defined in the following manner:

SCT = Max(FCTf0 , FCTf1 , ..., FCTfn)

where FCTfn is the flow completion time of flow n. In order for a session to be successful, each flow
within the session must complete its gathering of data before the timeliness requirement of the client. For
instance, a real web session might require three connections to render a webpage, and each of which must
complete in their entirety. A session is then determined to be successful if the SCT ≤ TQoS , where TQoS

is the QoS constraint of the user. Session-wise QoS is more important than connection-wise QoS because
good connection-wise QoS does not necessarily guarantee that session-wise QoS will be satisfied. In the
case of load balancing, this is especially critical as a rejected connection will prevent the completion of a
successful session. From the session completion metric, the percentage of good hosts serviced successfully
serves as an effective metric to evaluate the effectiveness of botnet mitigation. If not enough ‘bad’ users

1Available at netscale.cse.nd.edu

8



Fig. 5. Screenshot of clusters evolution visualizer (zoomed-in for the centroids movement within one chosen cluster)

are prevented from accessing the server, the QoS for all sessions will suffer. Consequently, if a load
balancing scheme is indiscriminate, individual connections of good users may be rejected which prevents
the completion of the overall session.

To that end, we studied the hourly, daily, and weekly traffic pattern of all incoming web requests to the
main web sever on campus. Figure 3 shows a seven-day traffic pattern of all incoming web requests to the
main web sever on campus. While the majority of total number of connections for a specific subnet (/24
is the default unit used) within an hour is below ten, there are some extremes observed in certain /24 IP
addresses. A diurnal pattern can also be observed for some IP ranges which is an interesting observation
that is not currently accounted for in SESRAA but is an open topic for future research.

A scatter plot of the 2-D space used for clustering formed by the source IP addresses and port numbers
is shown in Figure 4. It provides a snapshot of about one hour of web traffic coming to the web servers
on campus. Short-term clustering on IP and port shows that port numbers are heavily distributed at low
and high ends for certain IP range. A simulation visualizer (Figure 5) was developed to visualize the
clusters and centroids evolution. One can zoom in each individual cluster and see the centroid movement
within that cluster by stepping through each time unit, or we can get an overview of the distance between
different centroids of clusters. The visualization helps one to understand the potential pattern and provide
better adaptation to botnet attack behavior.

A comparison of QoS performance of various policies are summarized in Figure 6. The Perfect policy
is the oracle that knows exactly which SYN packets are good or bad, i.e. the equivalent of an ‘evil’ bit in
the packet header. The Load policy represents a nominal load balancer that exemplifies a traditional load
balancer. We note that in the figure, the Load policy performs relatively well at the initial phase of the
botnet attack as the existing connections are still legitimate hosts. Once the legitimate hosts finish their
existing connections, the overwhelming nature of the botnet drastically reduces the rate of good connections
having their session-wise QoS satisfied despite having the same relative request rate as before the initial
attack. In contrast, SESRAA offers a rate of successful sessions for good clients roughly halfway between
the Perfect and Load policies with a k setting of k = 10. Clearly, SESRAA is incorrectly rejecting a
portion of good connection requests but serves its purported role, i.e. to act as a triage, salvaging part
but not all of the connections to in essence buy time for other mechanisms to function. By the end of
the DDoS period, SESRAA has provided a roughly 25% cumulative improvement over the normal load
balancing scheme in terms of good users with their sessions successfully satisfied.

While setting k = 10 offers reasonable performance, an interesting question is posed with the ideal
setting of k.

In Figure 7, possible choices of k values are studied with the same data input as with Figure 6. Normally,
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Fig. 6. Comparison of QoS Performance of Perfect, SESRAA,
and Load Policy Only in a Random Botnet attack (time 300 to
time 600).

300 400 500 600
Time

50000

60000

70000

80000

C
um

ul
at

iv
e 

G
oo

d 
Se

ss
io

ns
 S

uc
ce

ss
fu

lly
 C

om
pl

et
ed k=1

k=5
k=10
k=15
k=30

Clustering Performance of different k values

Fig. 7. Performance of Choices for Various K values during the
attacking period (time 300 to 600).

k should be increased with higher connection rate depending on the server’s traffic volume. One possible
choice of k is to minimize the cost function C(distortion + MDL). The distortion function is defined
as

∑k
j=1

∑|Cj |
i=1 (xi−cj)

2, where Cj is the jth cluster, xi is a data point in each cluster and cj is the centroid
in the cluster. Minimum description language (MDL) is defined as λ(m ·k · logn), where λ is a predefined
constant, m is the number of features (IP, Port, TTL, etc), k is number of clusters and n is number of
instances in training data set. The choice of λ depends on each web application. To avoid overfitting, we
need to reduce the number features and the number of clusters. As we can see from Figure 7, one cluster
(k=1) has the worst performance as the single cluster is clearly insufficient to fit the data. Conversely, a
larger k improves performance but only up to a certain level as shown by how how a k value of 30 is
only slightly better than the initial k value of 10.

V. EXPERIMENTAL STUDIES

In addition to our traffic analysis and simulation studies, a preliminary version of SESRAA was
developed to validate our initial results. In our experiments, the environment is divided into four compo-
nents: clients, emulated network, load balancer, and the server. The clients are responsible for generating
connection requests via wget to the server. In the emulated network, connection requests are mapped to
a characteristics space derived from live university traffic from network tap. The list of potential clients
was separated into groups of good and bad clients with the bad clients elected to conduct a botnet attack
during the experimental period.

The experimental testbed was connected by a 100 Mb/s switched network with Layer 2 overlay
connectivity provided by libpcap. The web content served reflected a CNN style page: a 66 KB hypertext
page featuring several small pictures. All content retrievals were conducted using wget which employed
HTTP 1.0 (separate connections for each object). The DDoS attack lasted 150 seconds for all experiments.
We selected HTTP 1.0 as it is significantly more difficult than HTTP 1.1 due to the fact that the denial of
any single connection for a good client (i.e. image 1 in the webpage) will cause the good client session
to be counted as failed.

We define different scenarios of attack for each experiment separately. In the simplest generation method
(Random DDoS), attackers are selected randomly from the client space; in essence, a random set of
clients from C form Cb. A more sophisticated attack (Clustered DDoS) represents a localization within
the connection space. Here, a single centroid is picked within the connection space. Members from C are
more likely to join Cb the closer they are to the selected centroid, generating a singular attack cluster. The
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most sophisticated form of attack (Homologous Clustered DDoS) mimics the pattern of legitimate traffic,
making differentiation between good and bad clients nearly impossible. While such an attack is extremely
unlikely as the attacker would need to have inside information (i.e. access to the tap), we present this
scenario to demonstrate that SESRAA can still offer a benefit even in this worst case.

Fig. 8. Summary of QoS preservation (100% represents all
legitimate hosts serviced)
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Figure 8 indicates that as expected, the overall Quality of Service based on our metric falls between
the load policy and perfect policy. The figure itself shows the end result of performance after the test has
completed. In the first case of randomized attackers, SESRAA performs best, noting the discrepancies as
the clients in the botnet themselves tend to fall into the outlier range and have a higher rate of rejection. The
introduction of clustering to the clients reduces the performance of SESRAA slightly as the request is less
likely to fall into the outlier category and must overload a cluster first before being rejected. The cluster
type of attack does require some intelligence in the attack and a reasonable approximation or biasing
of the clusters to group the attackers into a single cluster. In the third case, SESRAA still outperforms
normal load balancing but only slightly due to the fact that the botnet traffic is nearly perfectly balanced
among the normal clusters that would be derived. In practice, such an attack is extremely unlikely as it
would require that the attacker have precise information about all connections (i.e. a tap to all network
data to the server) in order to appropriately guide their botnet with regards to attacking.

The graph in Figure 9 represents several scenarios that a server may face. This case generates inde-
pendent clusters of attack traffic. This represents the case in which a number of similar machines are
compromised to form the zombie army. Suppose a Trojan horse compromised a university’s residential
computing network. As most machines are likely Windows machines, leading to similar TTL values,
for personal use and the range of addresses is relatively tight, a botnet attack generated from such a
collection would likely generate a separate cluster than that of the normal traffic. Figure 9 demonstrates
the domination of the perfect policy curve over both the load and SESRAA policies. While SESRAA
outperforms the load policy, the degree of domination is less than in the case of the purely randomized
DDoS. Although SESRAA assigns high probabilities to connections falling within attack clusters with
sufficient separation from legitimate traffic clusters, overlapping attack and legitimate traffic clusters lead
to a reduced rate of attack connection rejections. In an applied setting, if there is a grouping of legitimate
machines, such as a university cluster, for a SESRAA server’s content and then a compromising within
this group occurs, SESRAA will have difficulty in distinguishing between attack and legitimate hosts
within this cluster. On the basis of its bias, SESRAA’s performance will suffer, particularly in instances
of overlap. In such a case, we believe the use of cluster evolution in a combined heuristic with the basic
SESRAA approach could provide interesting insight. The inclusion of evolution directly into the heuristic
is an on-going work.
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VI. CONCLUSION AND FUTURE WORK

In this paper, we present SESRAA, an effective probabilistic connection rejection method that provides
management against botnet-based DDoS attacks. Our technique employs k-means clustering while there is
a manageable load on the server. As the load becomes unbearable, the server then applies several metrics
based on distance from cluster center and cluster population and uses these to assign rejection probabilities
accordingly. Using this method will assist in isolating connections likely to be attacks and will enhance
the Quality of Service delivered to legitimate clients. Once the attack has passed, the server reverts to its
learning state.

The results of our experiments indicate that this is an effective technique, which leads to several other
avenues of study. We intend to perform a full-scale study of temporal network traffic and determine
methods of segmentation, using both clustering and hyper rectangles, and visualization, which will be
useful in better understanding network traffic, particularly during a botnet attack. Further works includes
expanding the usage of cluster evolution as well as long-term studies of network traffic.
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