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a b s t r a c t 

Ransomware has risen to be among the top cyber threats in recent years. There is an alarming trend of 

ransomware stealing data in addition to locking files. Compared to traditional ransomware, this new data- 

selling ransomware can be more harmful to the victims facing the data leakage threat. Traditional wis- 

dom of defensive measures such as data backup is less effective in preventing the attacker from making 

money by selling data. We propose two preventive measures designed to defend against the data-selling 

ransomware, i.e., preventive data encryption and preventive data deception. Users may form a preven- 

tive portfolio made up of the two preventive measures. We contribute a novel game theoretical model of 

the data-selling ransomware to study the equilibrium strategies of the attacker and victims. The equilib- 

rium solution of the portfolio and tradeoff analysis of both data encryption and deception are particularly 

useful for the users to optimize their system to defend against ransomware attacks. Simulation studies 

demonstrate the effectiveness of the preventive portfolio, which maximizes user utility while significantly 

reducing the profit of the attacker. 

© 2022 Elsevier Ltd. All rights reserved. 
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. Introduction 

Ransomware is a particular malware that locks a victim’s com- 

uter systems and files through encryption via either software vul- 

erabilities or social engineering. These deny-of-access attacks typ- 

cally infect high-value machines containing sensitive files such as 

ogin credentials, important financial data, business records, hos- 

ital patient records, government documents, etc. Victims are then 

sked a ransom payment in return for the key to decrypt their data 

nd systems. 

Since the malware gains full access to user data, it can poten- 

ially collect sensitive information from the target machines and 

se the information to blackmail the victims. We believe one of the 

ost detrimental types of ransomware is the one that not only en- 

rypts files, but also steals information in each of the targeted ap- 

lications ( Cyware, 2020 ). Ransomware attackers have threatened 

o publicly release the stolen data if the victims choose not to 

espond to their ransom demands ( Cyware, 2020 ), e.g., the Maze 

ansomware ( Whitwam, 2019 ), and the trend is likely to continue 

 Mathews, 2020 ). 
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Ransomware is believed to be highly lucrative ( Simoiu et al., 

019 ). Traditionally, all ransomware profits come from ransom pay- 

ent. A hypothetical, new ransomware model, i.e. Ransomeware 

.0 ( Li and Liao, 2020 ), has been proposed by considering an ad- 

itional revenue source to the attacker, i.e., data selling capability. 

e believe this new data-selling ransomware is not only imminent 

ut also is much harder to defend compared with traditional ran- 

omware. For example, victims with a full data backup may still 

e motivated to pay ransom to prevent attackers from selling their 

ensitive data. 

To that end, we propose, study and evaluate two preventive 

easures targeting the data-selling ransomware, i.e., preventive 

ata encryption and preventive data deception. Preventive data 

ncryption may be achieved by encrypting either the partial or 

hole system drive enabled by technologies such as trusted plat- 

orm module (TPM) or as simple as via password-protected data 

les. While traditional ransomare prevents victims from accessing 

heir system and data through encryption, we note that preventive 

ncryption prevents attackers from accessing victims’ data. 

Preventive data deception is another interesting measure that is 

upported by fake information or data. In this scheme, a percent- 

ge of data unknown to the attacker may be artificially generated 

nd does not reflect the real data actually used by the users. Intu- 

tively, the uncertainty of fake information deteriorates the quality 

https://doi.org/10.1016/j.cose.2022.102644
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cose
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2022.102644&domain=pdf
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f data stolen from users and waters down the market value of 

ata. 

To study the proposed preventive measures, we build a novel 

ame-theoretical model of the data-selling ransomware at the 

resence of proposed preventive measures. In this model, attackers 

onsider factors such as how much ransom to ask, whether to keep 

eputation to unlock user’s data once ransom is paid, and whether 

o sell the data based on the ransom. Users, on the other hand, 

ecide on the composition of preventive portfolio (i.e., percent- 

ges of data encryption and deception) to maximize their utilities 

ased on their cost constraints. We derive the equilibrium strate- 

ies for both the attacker and the users/victims. Through extensive 

imulation studies, we analyze the complex relationships among 

he preventive measures, user utility, and ransomware profit. The 

esults suggest the proposed preventive measures effectively de- 

end against data-selling ransomware and significantly reduce the 

ttackers’ profit. 

Our major contributions of the paper include 

1. We proposed an interesting concept of preventative portfolio 

using a combination of both data encryption and data decep- 

tion to defend against the data-selling ransomware, which we 

perceive as the emerging variant of ransomware attacks. 

2. We developed a novel game theoretic model for the new data- 

selling ransomware to analyze the complex relationships be- 

tween attackers and users/victims by considering multiple de- 

cision variables. We were able to derive the optimal strategies, 

and ultimately, equilibrium / optimal solutions for both attack- 

ers and victims. 

3. We conducted an extensive simulation study to compare 

the complex relationships between various decision variables 

imbedded in equilibrium solutions, for example, how various 

rates of encrypted and fake data affect user utility and attacker 

profit. We derived other insights for the security practitioners 

and ransomware market. 

It is worthwhile to note several derivatives from our study. First, 

he proposed preventive measures also have positive externality, 

.e., they protect not only the victims who adopt them, but also 

thers who may not use preventive measures or for whom low 

revention is optimal. In addition, preventive measures may mo- 

ivate the attacker to improve credibility. Second, other market- 

ased defensive measures may be explored as well, e.g., the vic- 

ims and defensive buyers ( Li and Liao, 2018 ) may participate in 

he data market, to increase the transaction costs of the attacker, 

ower the transaction price, and/or track down the sellers. 

The rest of the paper is organized as follows. Section 2 reviews 

elated literature. Section 3 performs the game theoretical analy- 

is of the data-selling ransomware at the presence of preventive 

ortfolio composed of preventive encryption and preventive decep- 

ion. Optimal strategies of the victims and the attacker are derived. 

ased on the theoretical analysis, Section 4 presents simulation re- 

ults that illustrate how individual users choose the composition 

f their preventive portfolio, and how the presence of preventive 

ortfolio affects the expected payoffs of the victims and the at- 

acker. Section 5 concludes the paper. 

. Related works 

Ransomware has recently become the top cyber threats and one 

f the most widespread cybercrimes ( CyberEdge, 2020 ). Often, we 

ear the news report on ransomware attacks on businesses, gov- 

rnment agencies, or even hospitals, forcing them to shut down 

heir daily operations. Healthcare systems and financial systems 

re being attacked with ransomware through COVID-related con- 

ent ( Hakak et al., 2020 ). Recent attacks on vast number of orga-

izations post enormous burden in terms of monetary and repu- 
2 
ation loss involved in those attacks ( Aldaraani and Begum, 2018; 

imoiu et al., 2019 ). 

To reduce the risk of ransomware, various cyber security strate- 

ies and practices are recommended ( Silva et al., 2019 ), and re- 

earch on ransomware and its detection and prevention tech- 

iques has been reviewed ( Al-rimy et al., 2018 ). For example, zero- 

ay ransomware attacks may be detected via monitoring file sys- 

em activities for I/O requests and protecting Master File Table 

 Kharraz et al., 2015 ). Botnets may be traced for the distribution 

aths of ransomware or to exploit vulnerabilities to deliver mal- 

are. 

General preventive measures, such as user education and net- 

ork management, apply to most malware including ransomware. 

sers are recommended to take preventive measures to avoid ran- 

omware ( Mohurle and Patil, 2017 ). A common advice of ran- 

omware literature is mitigation such as backup technologies 

 Laszka et al., 2017 ). Data backup is considered the most effec- 

ive strategy to mitigate the loss of ransomware ( Ali, 2017; Anghel 

nd Racautanu, 2019; Subedi et al., 2017 ). Although sufficient data 

ackup has the potential to defeat traditional ransomware, it has 

o effect on preventing the new data-selling ransomware ( Li and 

iao, 2020; 2021 ). Are there any effective preventive measures 

gainst this data-selling ransomware? This leads to our research 

n this paper. 

The problem of ransomware needs to be addressed from the 

erspective of multiple disciplines ( Wolf and Goff, 2018 ). In ad- 

ition to technical approaches, there has been recent research 

hat uses economics and game theory to study specific aspects 

f ransomware. For example, economic analysis of ransomware 

 Hernandez-Castro et al., 2020 ) reveals the impact of different 

rice discrimination strategies for estimating an optimal ran- 

om value. A theoretical model of ransomware based on stan- 

ard economic pricing models was implemented to explore strate- 

ies criminals could use to extract illegal gains from ransomware 

 Hernandez-Castro et al., 2020 ). Game theory can model the strate- 

ic playing by ransomware criminals and victims ( Caporusso et al., 

018 ). A repeated game setting was developed to explicitly model 

eputation of the criminals in ransomware attacks ( Cartwright and 

artwright, 2019 ). For businesses, the relationship of investment in 

ackup technologies and deterrent for ransomware attacks is an- 

lyzed in a game-theoretical model of the ransomware ecosystem 

 Laszka et al., 2017 ). 

Since existing game theoretic works are almost entirely on 

raditional ransomware that demands ransom payment with no 

ata leakage threat, we conduct the first game theoretical analy- 

is of the data-selling ransomware by focusing on two preventive 

easures, i.e., preventive data encryption and preventive data de- 

eption. The equilibrium solutions derived from the game theory 

odel provide the rules users may follow to construct their opti- 

al preventive portfolio against the data-selling ransomware. 

Defense against data-selling ransomware is related to defense 

gainst data theft and data protection. In such case data encryp- 

ion has been used (and sometimes required by law) to protect 

ustomer databases kept by organizations against data theft. We 

ote that the setting of data-selling ransomware is different from 

raditional data theft. While it may be possible for organizations 

o encrypt the entire databases on a server to protect against con- 

entional data theft, in a ransomware attack, the victims are often 

nd users whose system and user files on the local machines get 

ocked (encrypted) and/or stolen by the malware. For practical pur- 

ose, it may not be possible for the end user systems to be 100% 

ncrypted while users are using their machines. Therefore, preven- 

ive encryption in the paper (ranging from full disk encryption to 

artial on-demand encryption based on file/directory access) is to 

rotect private data of end users against data-selling ransomware. 

hile data encryption may be better than data deception for trac- 
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ional data theft, data deception (in addition to data encryption) is 

 valuable alternative in defense against data-selling ransomware. 

The practice of data deception proposed in the paper is also 

elated to but not entirely the same as a practice known as 

ecurity-by-obscurity. Traditionally, security-by-obscurity/secrecy 

eans that the technical details of a system are kept secret in a 

ope that such system will not be easily compromised if no one 

nows how it works. For example, a software company may not 

ant to make their source code public, making it hard to identify 

otential vulnerabilities in their software. We, on the other hand, 

re not hiding the fact of using fake data. Actually, we argue the 

enefit of advertising to the public including attackers that data 

eception policy is enforced in a protected organization. 

It is generally agreed in security community that security-by- 

bscurity “alone ” may not be a good idea. However, good secu- 

ity is always layered. When used as an independent layer, ob- 

curity is considered a valid security tool ( Climek et al., 2016 ). 

n recent years, security through obscurity has gained support 

s a methodology in cybersecurity through Moving Target De- 

ense and Cyber Deception from both military and civilian con- 

exts such as AFRL cyber agility program, DoD, and DHS. NIST’s 

yber-resiliency framework includes deception as an integral part 

f a resilient and secure computing environment ( Ross et al., 

021 ). The data deception component suggested in the paper is not 

ntended to replace existing security mechanisms against cyber- 

ttacks. Things such as firewalls, intrusion detection/prevention 

ystems, spam filters, multi-factor authentications, encryptions, 

ata backup/recovery procedures, user educations, etc. are still in 

lace. The additional independent layer of preventive portfolio (i.e., 

 combination of data encryption and data deception) suggested 

n the paper is a complementary part of the entire secure ecosys- 

em. In the case that ransomware attacks still succeed despite of 

hese existing security mechanisms, the preventive strategies at 

east lower the market value of the data and reduce the economic 

ncentives of data-selling ransomware attackers. 

. Game theoretic model of preventive portfolio against 

ata-selling ransomware 

In this section we lay out a game theoretic framework to model 

 preventive portfolio against the data-selling ransomware and de- 

ive the game outcomes. The portfolio is made up of two preven- 

ive measures: preventive data encryption and preventive data de- 

eption. 

.1. Preventive data encryption and preventive data deception 

Compared to traditional ransomware, the data-selling ran- 

omware imposes additional data leakage threat on the victims. 

e aim to design preventive mechanisms that target in particular 

he data-selling feature of the ransomware. We propose two pre- 

entive measures called preventive data encryption and preventive 

ata deception. 

Preventive data encryption can be used to protect data from be- 

ng disclosed to unauthorized access. The term preventive refers 

o users encrypting their data before possible ransom attacks. If a 

ansomware attack does occur, while the attacker will still be able 

o encrypt the victims’ systems to prevent the victims from using 

heir computers or accessing their data, the attacker will not be 

ble to steal or access the victims’ data. In other words, if data is 

ncrypted with one key, one may encrypt the already encrypted 

ata again with another key, but double encryption will not reveal 

he original data. 

The rationale for preventive data deception is that the profit of 

ata-selling ransomware largely depends on the market value of 
3 
ata and/or the transaction cost of selling data. We propose to cre- 

te fake information/data to water down the true information/data. 

hen the stolen data is a mix of true and fake data, the market 

rice of data must go down as the data quality deteriorates. The 

ransaction cost may go up because of the increased uncertainty. 

.2. Game players’ strategy space 

There are two types of players in the data-selling ransomware 

ame: attackers and users/victims. To prevent the possible loss 

f data leakage, the users construct a preventive portfolio made 

p of preventive data encryption and preventive data deception. 

et δe ∈ [0 , 1] be the percentage of data that is pre-encrypted and 

f ∈ [0 , 1] be the percentage of fake data. An existing preventive 

ortfolio at the moment of attack is the actual level of protection 

he portfolio provides to the users. 

Once a data-selling ransomware attack succeeds, the users be- 

ome the victims, who face dual threats: losing access to data and 

ata leakage. The attacker demands an equalized ransom payment 

 > 0 on all the victims, and the victims decide whether to pay 

he ransom or not. Let p be the victims’ choice of ransom pay- 

ent that is binary, i.e., p = 1 if choosing to pay, and p = 0 other-

ise. Upon observing the victims’ action on ransom payment, the 

ttacker chooses whether to return files and/or to sell data. It is 

easonable to assume that the attacker would not return files and 

ould sell data with no ransom payment. However, when a vic- 

im chooses to pay the ransom, there is no guarantee that the at- 

acker would always return the files and/or not to sell the data. We 

se βr for the attacker’s probability of returning files with ransom 

ayment, and βs for the attacker’s probability of selling data with 

ansom payment. 

Therefore, the users/victims’ strategy space is the choice of 

δe , δ f , p) , and the attacker’s strategy space is the choice of 

R, βr , βs ) . The combination of δe and δ f is defined as the struc- 

ure of the preventive portfolio composed of preventive data en- 

ryption and preventive data deception. The after-attack scenario 

ts a Stackelberg game with asymmetric information: the attacker 

oves first by demanding a uniform ransom based on incomplete 

nformation of the victims’ willingness to pay and preventive port- 

olio; the victims follow by choosing ransom payment strategy 

ased on incomplete information about the attacker’s reputation. 

he equilibrium solution of the game is the strategy profile that 

erves best each player, given the expected strategies of the other 

layer. 

Table 1 lists the major symbols and definitions used in the 

odel. We use the phrase “returning files” or “unlock data” inter- 

hangeably to refer to the situation in which the attacker deliv- 

rs decryption keys to remove restrictions to a victims’ comput- 

ng resources and files. We use the phrase “selling data” to re- 

er to the situation in which the attacker sells the stolen data to 

 third party or in a market place. We also use the terms “pre- 

ncrypted files” and “preventive data encryption” interchangeably, 

nd “fake data/information” and “preventive data deception” inter- 

hangeably. We assume all the game players are rational, i.e., they 

hoose strategies to reach a game outcome that maximizes their 

xpected payoffs. In the following sections, we will derive the equi- 

ibrium solution of the game by analyzing the optimization prob- 

ems of the game players. 

.3. Victims’ expected payoff

The victims’ expected payoff (or user utility) at the presence of 

reventive portfolio is 

 = −pR − (1 − pβr ) V − (1 − p(1 − βs ))(1 − δe ) h (δ f ) D 

−C(δe ) − C(δ f ) (1) 
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Table 1 

Symbols/variables and definitions. 

Symbol/variable Definition 

R ransom request 

M market value of data 

V victims’ self-valuation of cost from losing access to data 

D data leakage damage to victims 

A attacker’s profit of selling data (data profit) 

βr probability of returning/unlocking files with ransom payment 

βs probability of selling data with ransom payment 

C r cost of returning/unlocking files to victims 

C s transaction cost of selling data 

δe percentage of encrypted files 

δ f percentage of fake data 

C(δe ) cost of preventive encryption 

C(δ f ) cost of preventive deception 

h (δ f ) fraction of data value remained at the presence of fake data 

p binary variable measuring victims’ ransom payment choice 

N number of users/victims 

n number of victims choosing to pay ransom 

u (individual) user utility 

π ransomware profit from an individual victim 

� ransomware profit from all victims 

Table 2 

Victims’ expected payoff. 

Case Victims’ choice Victims’ expected payoff

I p = 0 , δe = δ f = 0 −V − D 

II p = 1 , δe = δ f = 0 −R − (1 − βr ) V − βs D 

III p = 0 , δ f = 0 , 0 < δe ≤ 1 −V − (1 − δe ) D − C(δe ) 

IV p = 1 , δ f = 0 , 0 < δe ≤ 1 −R − (1 − βr ) V − βs (1 − δe ) D − C(δe ) 

V p = 0 , δe = 0 , 0 < δ f ≤ 1 −V − h (δ f ) D − C(δ f ) 

VI p = 1 , δe = 0 , 0 < δ f ≤ 1 −R − (1 − βr ) V − βs h (δ f ) D − C(δ f ) 

VII p = 0 , 0 < δe ≤ 1 , 0 < δ f ≤ 1 −V − (1 − δe ) h (δ f ) D − C(δe ) − C(δ f ) 

VIII p = 1 , 0 < δe ≤ 1 , 0 < δ f ≤ 1 −R − (1 − βr ) V − βs (1 − δe ) h (δ f ) D − C(δe ) − C(δ f ) 
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here V is the victims’ self-valuation of the locked files that 

easures the victims’ loss of losing access to the files, includ- 

ng but not limited to the recovery costs to restore the opera- 

ions back to normal and longer-term impacts of permanent loss 

f data; D is the victims’ data leakage loss; C(δe ) is the cost 

f preventive encryption; and C(δ f ) is the cost of preventive 

ata deception. 

It is reasonable to assume there are costs associated with pre- 

entive measures. For example, preventive encryption may require 

xtra CPU cycles and reduce quality of experience (QoE). Preventive 

eception may require extra storage for storing fake data. Moving 

argets may cause user confusion and extra maintenance overhead. 

f there are no preventive measures taken, there is obviously no 

revention cost, i.e., C(δe ) = 0 at δe = 0 and C(δ f ) = 0 at δ f = 0 .

revention costs increase as the level of prevention increases, i.e., 

 

′ (δe ) > 0 and C ′ (δ f ) > 0 . 

All terms in Eq. (1) have negative signs, meaning the victims 

re absolutely harmed by the data-selling ransomware attack. Pre- 

entive portfolios help reduce the data leakage loss of the victims 

ut do not affect the loss of the victims when they are denied ac- 

ess to the data locked in the attack. The decrease in the victims’ 

ata leakage loss is proportional to the level of preventive encryp- 

ion while the protection of preventive deception is not necessar- 

ly linear. In Eq. (1) , h (δ f ) ∈ [0 , 1] measures the potential impact of

ake data on camouflaging real data. At δ f = 0 , h (δ f ) = 1 . As the

ercentage of fake data increases, h (δ f ) decreases and h (δ f ) D de- 

reases, i.e., h ′ (δ f ) < 0 . 

The victims’ expected payoffs in various cases of the victims’ 

trategy choice are listed in Table 2 . 
l

4 
.4. Victims’ optimal strategy 

The users need to determine the composition of the preventive 

ortfolio before the attack and whether to comply with the ran- 

om request after the attack. They choose their optimal strategy 

δ∗
e , δ

∗
f 
, p ∗) to maximize their expected payoff. The optimal choice 

f preventive portfolio δ∗
e and δ∗

f 
depends on the comparison of 

xpected benefit and preventive cost that solve the following two 

rst-order conditions of Eq. (1) : 

1 − p(1 − βs )) h (δ∗
f ) D = C ′ (δ∗

e ) (2) 

nd 

(1 − p(1 − βs ))(1 − δ∗
e ) h 

′ (δ∗
f ) D = C ′ (δ∗

f ) (3) 

In Eqs. (2) and (3) , the left-hand-side is the marginal benefit of 

he preventive measures in terms of the marginal decrease in data 

eakage loss, and the right-hand-side is the marginal cost of tak- 

ng the preventive measures. The optimal level of prevention cor- 

esponds to the point where the marginal benefit and the marginal 

ost are equal. 

These two equations are what the users shall follow to con- 

truct the preventive portfolio before the attack. At the time of 

orming the portfolio, the users evaluate their data (how much 

he data is worth to them) and cost structure of preventive mea- 

ures. What is unknown to the users is the attacker’s credibility 

nd the ransom request that would affect the users’ ransom pay- 

ent choice. The users would have to set up the preventive portfo- 

io based on the expected values of the attacker’s control variables. 
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When an attack actually occurs, the existing level of prevention 

s what the victims take as given to choose their optimal com- 

liance strategy. The actual ransom demand will become known. 

he victims incorporate the new information into their decision- 

aking to choose whether to pay ransom. Cases VII and VIII in 

able 2 are the victims’ expected payoff when they either refuse 

o pay the ransom or choose to pay at the presence of preventive 

ortfolio. The victims choose to pay the ransom ( p = 1 ) if the ex-

ected payoff in Case VIII is no less than the expected payoff in 

ase VII. Therefore, the victims’ optimal choice of ransom payment 

iven the pre-determined optimal preventive portfolio (δ∗
e , δ

∗
f 
) is 

p ∗ = 

{
1 , if βr V + (1 − βs )(1 − δ∗

e ) h (δ∗
f 
) D ≥ R , 

0 , if βr V + (1 − βs )(1 − δ∗
e )) h (δ∗

f 
) D < R . 

(4) 

here βr V + (1 − βs )(1 − δ∗
e ) h (δ

∗
f 
) D defines the victims’ williness 

o pay, i.e., the highest ransom the victims may accept in exchange 

or unlocking data and not leaking data. The victims would only 

hoose to pay the ransom if the ransom request is no higher than 

heir willingness to pay. Eqs. (2) –(4) combined specify the victims’ 

ptimal strategy. 

The key factors determining the victims’ willingness to pay in- 

lude the victims’ valuation of the locked files ( V ), the data leak- 

ge loss to the victims ( D ), the level of prevention ( δe and δ f ), and

he attacker’s reputation ( βr and βs ). Of the factors, V and D are 

iven. The preventive portfolio is also given at the time of attack. 

he attacker’s reputation matters since the victims’ willingness to 

ay increases when the attacker is more likely to keep the promise 

ith ransom payment. 

.5. Ransomware profit 

The data-selling ransomware attacker receives the following 

rofit from victim i , 

i = p i R − p i βr C r + (1 − p i (1 − βs )) A i (5) 

here C r is the cost of returning files, and A i is the data profit

eceived from victim i . The attacker sells the victim’s data if doing 

o is profitable, i.e., 

 i = 

{
(1 − δe,i ) h (δ f,i ) M i − C s , if (1 − δe,i ) h (δ f,i ) M i ≥ C s , 
0 , if (1 − δe,i ) h (δ f,i ) M i < C s . 

(6) 

here C s is the cost of selling data, and M i is the market value of

he victims’ data in absence of preventive measures. 

From Eq. (5) , the attacker receives a profit of A i if victim i

hooses not to pay the ransom ( p i = 0 ). The attacker’s profit is

 − βr C r + βs A i if victim i chooses to pay ( p i = 1 ). 

Combining all N victims, the total profit of the attacker is 

= n (R − βr C r ) + βs 

n ∑ 

i =1 

A i + 

N ∑ 

i = n +1 

A i (7) 

here n = { i ∈ N| βr V i + (1 − βs )(1 − δe,i ) h (δ f,i ) D i ≥ R } . 
The attacker receives both ransom profit and data profit from 

he n victims who pay the ransom. Of which, the per-victim ran- 

om profit is R − βr C r , and the per-victim data profit is βs A i . For

he N − n victims who do not pay, the attacker receives zero ran- 

om profit but A i individual data profit. 

.6. Attacker’s optimal strategy 

The goal of the attacker is to choose ransom R and the proba- 

ilities of returning and selling users’ data βr and βs to maximize 

rofit. Had the attacker had perfect information on each victim’s 

illingness to pay, the attacker would differentiate the ransom 

equest to demand an individualized ransom βr V + (1 − βs )(1 −
i 

5 
e,i ) h (δ f,i ) D i on victim i , which is the maximum ransom victim i 

an accept. Then the attacker would set βr = 1 if βr V i ≥ C r , and

s = 0 if (1 − βs )(1 − δe,i ) h (δ f,i ) D i ≥ (1 − δe,i ) h (δ f,i ) M i − C s . Lack-

ng perfect information, the attacker may group the victims by es- 

imating their willingness to pay and demand a tailored ransom 

o each individual group. When hacking companies, the attacker 

ay request individual ransoms depending on company size and 

evenue. Nevertheless, the attacker would not perfectly price dif- 

erentiate the victims, especially when the attacker faces a large 

umber of unknown victims. In this case, knowing the distribu- 

ion of users’ willingness-to-pay within the population is the key. 

hen the willingness to pay is uniformly distributed, the profit- 

aximizing ransom would be the mean of all the victims’ willing- 

ess to pay ( Li and Liao, 2020 ). That is 

 

∗ = 

1 

N 

N ∑ 

i =1 

{ βr V i + (1 − βs )(1 − δe,i ) h (δ f,i ) D i } (8) 

βr and βs gauge the reputation of the attacker. The attacker’s 

romise is more credible as βr increases and/or βs decreases. The 

ttacker’s likelihood of default depends on the tradeoff between 

ansom revenue and gains from default. Choosing a high proba- 

ility of returning files and a low probability of selling data with 

ansom payment increases the victims’ willingness to pay, hence 

enerating more ransom revenue, but at the cost of foregone data- 

elling income. 

The attacker is not granted reputation but has to gain reputa- 

ion by building records. The victims estimate the credibility of the 

ttacker by collecting information on the past records of the at- 

acker. Unfortunately, the currently available information is largely 

n a population mean rather than on a particular attacker, and the 

opulation mean changes from survey to survey. For example, it 

s reported in 2019 about 60% victims who pay the ransom recov- 

red their files ( CyberEdge, 2020 ). In a 2021 global survey, 32% of 

hose organizations whose data was encrypted decide to pay the 

ansom but only 8% of them got all their data back ( Sophos, 2021 ).

he percentage changes over time and across ransomware and at- 

ackers. In this game the attacker sets βr = 0 and βs = 1 for the

N − n ) victims who do not pay. The attacker returns files to n r of

he n victims who pay the ransom ( βr = 

n r 
n ), and sells the data of

 s of the n victims who pay the ransom ( βs = 

n s 
n ). 

Indeed, there are two βr ’s and two βs ’s, ex ante and ex post, 

epending on the timing. The βr and βs determining the victims’ 

ptimal preventive portfolio and willingness to pay are ex ante or 

xpected, based on the historic record of the attacker, likely to 

e a mixed result of the attacker’s optimal choice, random acts, 

echnical errors, and incomplete records. The βr and βs in equa- 

ions βr = 

n r 
n and βs = 

n s 
n are ex post or realized. For simplicity, 

e assume the ex ante and ex post βr and βs have no signifi- 

ant difference. This would be true if the distribution of V and D 

ere not significantly different between previous victims and cur- 

ent victims of ransomware. 

Applying marginal analysis, the attacker shall compare the ad- 

itional benefit (i.e., marginal benefit) of a small change in βr or 

s to the additional cost (i.e., marginal cost) of the change. The 

hange would be profit improving if the marginal benefit of the 

hange exceeds the marginal cost. 

Holding βs constant, we study the marginal effect of βr on 

ansomware profit. When the attacker increases the probability of 

eturning files, i.e., when βr increases, n increases as more vic- 

ims choose to pay the ransom hence the ransom profit increases 

or the attacker. In the meantime, data profit decreases from the 

ictims who change their ransom payment choice in response to 

hanging βr . Let βr change by �βr . The corresponding change 

n data profit is −(1 − βs ) 
∑ �n 

i =1 A i . The corresponding change in 
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Table 3 

Victims’ willingness to pay. 

Preventive portfolio Victims’ willingness to pay 

δe = δ f = 0 βr V + (1 − βs ) D 

δ f = 0 , 0 < δe ≤ 1 βr V + (1 − βs )(1 − δe ) D 

δe = 0 , 0 < δ f ≤ 1 βr V + (1 − βs ) h (δ f ) D 

0 < δe ≤ 1 , 0 < δ f ≤ 1 βr V + (1 − βs )(1 − δe ) h (δ f ) D 
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ansom profit is (n + �n )(R − (βr + �βr ) C r ) − n (R − βr C r ) , which

implifies to �n (R − (βr + �βr ) C r ) − n �βr C r . 

The net change in ransomware profit is hence 

� = �n (R − (βr + �βr ) C r ) − n �βr C r − (1 − βs ) 
�n ∑ 

i =1 

A i (9) 

In Eq. (9) , the first term �n (R − (βr + �βr ) C r ) is the increase in

ansomware profit generated by the �n victims who switch from 

o pay to pay. The second term n �βr C r is the decrease in ransom

rofit as the cost of returning files increases for the original n vic- 

ims who pay the ransom, and the last term (1 − βs ) 
∑ �n 

i =1 A i is the

ecrease in data profit. 

For marginal analysis, the first term in Eq. (9) is the marginal 

enefit of the incremental change in βr , and the sum of the last 

wo terms is the marginal cost of the change. The attacker shall 

ncrease βr when the marginal benefit is bigger and decrease βr 

hen the marginal cost is bigger. The profit-maximizing β∗
r satis- 

es 

lim 

βr → 0 
�n (R − (β∗

r + �βr ) C r ) = lim 

�βr → 0 
n �βr C r + (1 − βs ) 

�n ∑ 

i =1 

A i 

Or, 

∗
r = lim 

�βr → 0 

1 

C r 
{ R − �βr C r (n + �n ) + (1 − βs ) 

∑ �n 
i =1 A i 

�n 

} (10) 

Similarly, we can derive the profit-maximizing βs by compar- 

ng the marginal benefit and the marginal cost of changing βs 

y holding βr constant. When the attacker’s probability of sell- 

ng data decreases from βs to βs − �βs , the number of victims 

hoosing to pay the ransom increases. The corresponding change 

n ransom profit is �n (R − βr C r ) , and the corresponding change 

n data profit is −�βs 
∑ n 

i =1 A i − (1 − βs + �βs ) 
∑ �n 

i =1 A i . The former 

s the marginal benefit of the decrease in βs and the latter is the 

arginal cost. The attacker shall decrease βs if the marginal ben- 

fit is bigger and increase βs otherwise. The profit-maximizing β∗
s 

atisfies 

lim 

βs → 0 
�n (R − βr C r ) = lim 

�βs → 0 
�βs 

n ∑ 

i =1 

A i + (1 − β∗
s + �βs ) 

�n ∑ 

i =1 

A i 

Or, 

∗
s = 1 − lim 

�βs → 0 
{ �n (R − βr C r ) − �βs 

∑ n 
i =1 A i ∑ �n 

i =1 A i 

− �βs } (11) 

Combining Eqs. (8) , (10) , and (11) , { R ∗, β∗
r , β

∗
s } is the attacker’s

ptimal strategy to maximize ransomware profit that balances ran- 

om profit and data profit, dependent on the victims’ valuation of 

ocked files and stolen data that affect n . 

The equilibrium solution provides the guidelines the attacker 

ay follow to increase profit. For example, the attacker shall de- 

rease the probability of returning files if the cost of returning files 

ncreases, while increasing the probability of returning files if de- 

anding a high ransom. The attacker shall increase the probabil- 

ty of selling data if more victims are of high value. It would be

ifficult for the attacker to fulfill the optimal strategy due to in- 

omplete information. The best practice could be to choose βr and 

s consistent with the victims’ perception. Since the victims’ per- 

eption is consistent with past records of ransomware attacks, the 

ractice can be self-reinforcing, leading to a steady state of the two 

robabilities that helps control uncertainty. 

.7. Effects of preventive measures 

.7.1. Preventive measures reduce victims’ willingness to pay 

Cases I and II in Table 2 are the victims’ expected payoffs in 

bsence of preventive measures. Cases III and IV are the victims’ 
6 
xpected payoffs when preventive data encryption is the only pre- 

entive measure used while Cases V and VI are the victims’ ex- 

ected payoffs when preventive data deception is the only preven- 

ive measure used. In any case of preventive portfolio, the victims 

ould choose to pay the ransom if doing so generates a larger ex- 

ected payoff than declining the ransom demand. We derive the 

ictims’ willingness to pay in all cases as in Table 3 . 

As shown, the existence of preventive measures decreases the 

ictims’ willingness to pay. While preventive portfolio would not 

elp reduce the victims’ loss from losing access to the locked 

ata, preventive portfolio would help reduce the loss of data leak- 

ge. In the case of sufficiently large preventive encryption ( δe = 

 ) and/or preventive deception ( h (δ f ) = 0 ), the data-selling ran-

omware profit would be equal to the profit of traditional ran- 

omware when data profit is zero and victims’ willingness to pay 

ansom is completely determined by their valuation of locked files 

 βr V ). 

.7.2. Preventive measures induce higher credibility of attacker 

The attacker’s optimal strategy of returning files and selling 

ata are in response to the victims’ preventive portfolio choice. As 

n Eqs. (10) and (11) , the values of β∗
r and β∗

s depend on the value

f A 

∗ that changes with the victims’ preventive portfolio structure, 
∗
e and δ∗

f 
. 

Since δ∗
e ∈ (0 , 1) , the attacker’s probability of returning files 

 β∗
r ) increases in the presence of preventive encryption. Such 

hange induces more victims choosing to pay the ransom, increas- 

ng ransom profit to compensate for the lost data profit. 

The attacker’s probability of selling data ( β∗
s ) decreases as well 

n the presence of preventive measures. The deteriorated quality 

f data decreases the marketability of the stolen data, thus giving 

ansom profit more weight over data profit. 

.7.3. Preventive measures decrease ransomware profit 

As in Eq. (7) , there are two components of profit of the data-

elling ransomware: ransom profit and data profit. Both preventive 

ncryption and preventive deception decrease data profit of the at- 

acker. They can also decrease ransom profit of the attacker by de- 

reasing the victims’ willingness to pay, thus reducing the ransom 

emand and the number of victims choosing to pay the ransom. 

In absence of preventive measures, the data-selling ransomware 

rofit has the same format as in Eq. (7) with a different num- 

er of victims choosing to pay the ransom as n = { i ∈ N| βr V i + (1 −
s ) D i ≥ R } and different individual data profit as 

 i = 

{
M i − C s , if M i ≥ C s , 
0 , if M i < C s . 

(12) 

In absence of preventive measures, the attacker would receive 

oth higher ransom profit and data profit, and hence total higher 

ansomware profit. Comparing ransomware profit in Eq. (7) at var- 

ous levels of preventive encryption and preventive deception, we 

an see that the number of victims paying the ransom ( n ) de- 

reases as δe increases, thus reducing ransom profit. Data profit 

ecreases as well as the attacker cannot sell the data stored in the 

re-encrypted files. Since both components of ransomware profit 

ecrease, the data-selling ransomware becomes less profitable. The 

igher δe is, the bigger is the decrease in ransomware profit. 
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Fig. 1. Heatmap of user utility with combinations of encryption rate ( δe ) and fake 

data rate ( δ f ). The optimal portfolio commination with highest utility is highlighted 

at −0 . 356 . 
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. Simulation results 

The game theoretic analysis suggests how both users and at- 

ackers choose their optimal strategies, especially how the users 

hall form their optimal preventive portfolio including preventive 

ata encryption and preventive data deception to defend against 

he data-selling ransomware attack. In this section, we conduct 

imulations to systematically study how users choose optimal pre- 

entive portfolio and how the presence of preventive portfolio af- 

ects the expected payoffs of both users/victims and attackers. 

.1. Simulation parameters 

The number of users/victims is set at N = 30 . The victims’ self-

aluation of files and the market value of data are both randomly 

enerated in the range of 0 ∼ 50 . Without loss of generality, the 

ollowing parameters are set: C r = C s = 0 , D = M. The simplifica-

ions will not affect the insights we shall derive from the simu- 

ations. 

The relationship between the fake data rate and the decrease 

n the market value of data is set as h (δ f ) = 1 − (δ f ) 
1 
2 . At δ f = 0 ,

 (δ f ) = 1 . At δ f = 1 , h (δ f ) = 0 . 

The preventive encryption cost function has the increasing 

arginal cost, C(δe ) = δ2 
e . The cost function of preventive decep- 

ion also has the increasing marginal cost, C(δ f ) = δ2 
f 
. 

Eqs. (2) and (3) are used to solve for the users’ optimal choice 

f preventive portfolio (δ∗
e,i 

, δ∗
f,i 

) , where i in the following two 

quations denotes those victim-specific variables, 

∗
e,i = 

(1 − p i (1 − βs ))(1 − (δ∗
f,i 

) 
1 
2 ) D i 

2 

(13) 

nd 

 −
(1 − p i (1 − βs ))(1 − (δ∗

f,i 
) 

1 
2 ) D i 

2 

= 

4(δ∗
f,i 

) 
3 
2 

(1 − p i (1 − βs )) D i 

(14) 

Besides p that depends on the comparison of ransom demand 

nd the victims’ willingness to pay, the optimal preventive port- 

olio depends on three key factors: the potential data loss to the 

ictims, the cost of preventive measures, and the attacker’s proba- 

ility of selling data with ransom payment. Throughout the simula- 

ions we hold the attacker’s probability of returning files with ran- 

om payment constant at βr = 0 . 6 because the variable does not 

ffect the choice of preventive measures. 

The optimal ransom is as defined in Eq. (8) . The following equa- 

ion is used to calculate the ransom used in each simulation, 

 

∗ = βr V + ( 1 − βs ) 
(
1 − δe 

)(
1 −

(
δ f 

) 1 
2 

)
D (15) 

here the variables with an upper-bar are the estimated means of 

ndividual values of the victims. 

.2. Users’ optimal preventive portfolio 

Users follow Eqs. (13) and (14) to choose their optimal preven- 

ive portfolio to maximize utility. The maximized utility is as in 

q. (1) where both the encryption rate and the fake data rate take 

heir optimal values. Since the first two terms in the equation do 

ot depend on the preventive portfolio, only the part of user utility 

hat depends on the choice of preventive portfolio is calculated, 

 

∗
e, f,i = −βs (1 − δ∗

e,i )(1 − (δ∗
f,i ) 

1 
2 ) D i − (δ∗

e,i ) 
2 − (δ∗

f,i ) 
2 (16) 

here u ∗
e, f,i 

represents the part of user i ’s utility that depends on 

he user’s choice of preventive portfolio. 

For illustration purpose we pick a representative victim whose 

ptimal portfolio is δ∗
e,i 

= 15 . 4% and δ∗
f,i 

= 26 . 1% at βs = 0 . 1 , and

 

∗
e, f,i 

= −0 . 3521 from Eq. (16) . 
7 
The heatmap in Fig. 1 shows the value of u e, f,i at various com- 

inations of δe,i and δ f,i where both δe,i and δ f,i take 10 dis- 

rete values between 0 and 1. As shown, the worst case occurs 

t full preventive portfolio. The maximized user utility occurs at 
∗
e,i 

≈ 0 . 1 and δ∗
f,i 

≈ 0 . 3 , consistent with the mathematical model 

sing Eqs. (13) and (14) . The visualization is also useful in such 

ases that suboptimal solutions may be desirable by moving away 

rom the optimal solution when users’ constraints evolve in dy- 

amic environment. 

Fig. 2 further illustrates how users choose their optimal pre- 

entive portfolio with marginal analysis specified by Eqs. (2) and 

3) . The curve of accumulative utility gain measures the accumu- 

ative change in utility as the user continues to increase the rate 

f encryption or the fake data, holding the other rate constant at 

he optimal level. The intersection of the marginal cost and the 

arginal benefit curves is the optimum point where the accumu- 

ative gain in utility reaches the maximum. In this case, the utility- 

aximizing rates of encryption and fake data are approximately 

5% and 26% , respectively. 

Fig. 3 shows individual users’ optimal preventive portfolio at 

arious probabilities of selling data ( βs ). Three representative users 

re chosen with low, medium, and high market value of data. Sim- 

lation results generally match Eq. (13) since both preventive en- 

ryption and preventive deception reduce data leakage loss. It ap- 

ears that when the chance of data leakage is low and/or the data 

as limited market value, users prioritize the utilization of data de- 

eption. Increasing fake content may lower the needs of data en- 

ryption. Users have the option to substitute one preventive mea- 

ure for the other. When the attacker has a high probability of sell- 

ng data and/or the market value of data is high, users may in- 

rease the rates of both preventive measures. 

Market value of data is the most important factor affecting the 

sers’ choice of optimal preventive portfolio. Fig. 4 shows indi- 

idual users’ optimal rates of encryption and fake data at various 

s . The simulation results suggest that overall the optimal preven- 

ion rates are increasing in the market value of data, and users 

end to increase both preventive measures when the attacker has 

 high probability of selling data. Nevertheless, the positive rela- 

ionship is less clear at low βs . At βs = 0 . 1 , both encryption and

ake data rates increase initially as the market value of data in- 

reases. Users adopt more deception than encryption because the 
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Fig. 2. Marginal analysis of choosing optimal preventive portfolio composed of en- 

cryption and fake data. The intersections of marginal cost and marginal benefit 

curves determine the optimal rates of encryption or fake data, where the accumu- 

lative gains in utility reach the maximum. 
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unctional form of h (δ f ) used in the simulation determines decep- 

ion provides more protection effects than encryption at low level 

f fake content. When fake data rate reaches a threshold, users ad- 

ust optimal preventive portfolio to use encryption to substitute for 

ake data. As βs increases, users have to increase both the encryp- 

ion rate and fake data rate to prevent data loss. The findings are 

onsistent with Fig. 3 . 

.3. Effect of preventive portfolio on user utility 

In this simulation, we study the effect of prevention portfolio 

n the expected payoff of the users/victims. In particular, we com- 

are the users’ expected payoff when they use the optimal preven- 

ive portfolio and the expected payoff when no preventive measure 

s used. The expected payoffs in various cases are listed in Table 2 .

We compare user utility with and without preventive portfolio 

t various βs . Individual users’ composition of optimal preventive 

ortfolio is as shown in Fig. 3 . With preventive portfolio, the ex- 

ected payoff for the victims choosing p = 1 is 

 

∗ = −R − 0 . 4 V − βs (1 − δ∗
e )(1 − (δ∗

f ) 
1 
2 ) D − (δ∗

e ) 
2 − (δ∗

f ) 
2 

nd the expected payoff for the victims choosing p = 0 is 

 

∗ = −V − (1 − δ∗
e )(1 − (δ∗

f ) 
1 
2 ) D − (δ∗

e ) 
2 − (δ∗

f ) 
2 
8 
In absence of preventive measures, the expected payoff for the 

ictims choosing p = 1 is 

 = −R − 0 . 4 V − βs D 

nd the expected payoff for the victims choosing p = 0 is 

 = −V − D 

The ransom demand in each case is equal to the mean of all 

ictims’ willingness to pay. 

Fig. 5 illustrates individual users’ utility gain that is equal to the 

ifference between optimal user utility with and without preven- 
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Fig. 4. Relationship between the market value of data and individual users’ optimal 

choice of rates of encryption and fake data at various βs . Overall, fake data rate and 

encryption rate are increasing in market value of data. At lower βs , users have a 

choice to lowering one preventive measure by increasing the other. 

Fig. 5. Relationship between market value of data and users’ utility gain (i.e., utility 

with preventive portfolio minus utility without preventive portfolio). In all cases, 

users are better off with preventive portfolio. Overall, utility gain is increasing in 

the market value of data at high βs . 
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9 
ive portfolio at βs = 0 . 1 , βs = 0 . 4 , and βs = 0 . 8 , respectively, in re-

ation to the market value of data. The preventive portfolio benefits 

ll users, and the gain in expected utility is overall increasing in 

he market value of data, especially at high βs . That is, preventive 

easures benefit more the users with valuable data. Nevertheless, 

tility gain levels off at certain market value of data at low βs . The 

arginal gain in utility tends to increase in βs as the curve be- 

omes steeper with rising βs . 

Although the optimal composition of preventive portfolio 

hanges with βs , at any βs , the victims receive a higher expected 

ayoff (or lower expected loss) when protected by the preven- 

ive portfolio. The presence of preventive measures benefit the 

sers/victims. This is true for every individual user, even those who 

hoose low (or even zero) level of prevention. Those are the users 

or whom the costs of preventive measures exceed the benefits. 

hey are better off as well when other users use preventive port- 

olio. The presence of preventive measures generates positive ex- 

ernality that provides social prevention insurance protecting all 

he users. The effectiveness of preventive measures and mutual in- 

urance requires effective communication. It can become a general 

ractice for users to publicly announce the adoption of preventive 

easures, thus to form a common knowledge that user files may 

e encrypted and data may be fake. The uncertainty would dis- 

ourage ransomware attackers and data buyers. 

.4. Effect of preventive measures on ransomware profit 

The ransomware profit at the presence of preventive portfolio 

an be written as 

1 = R 1 ∗ n 1 + βs 

n 1 ∑ 

i =1 

(1 − δe )(1 − δ
1 
2 

f 
) D i 

+ 

N ∑ 

i = n 1 +1 

(1 − δe )(1 − δ
1 
2 

f 
) D i 

here the first term is the ransom profit, the last two terms mea- 

ure the data profit, R 1 is the optimal ransom request, and n 1 is 

he number of victims choosing to pay the ransom at the presence 

f preventive portfolio. 

With no preventive measures the ransomware profit is 

2 = R 2 ∗ n 2 + βs 

n 2 ∑ 

i =1 

D i + 

N ∑ 

i = n 2 +1 

D i 

here R 2 is the optimal ransom request and n 2 is the number of 

ictims choosing to pay the ransom in absence of preventive port- 

olio. 

We choose a representative victim and compare how ransom 

rofit, data profit, and total ransomware profit the attacker may 

eceive from the victim change with the victim’s use of preventive 

ortfolio. The comparison in Fig. 6 suggests that as the encryption 

nd fake data increase, both data profit and ransom profit of the 

ttacker drop. At the presence of preventive portfolio, the overall 

ansomware profit decreases significantly. 

Fig. 7 analyzes the relationship between ransomware profit and 

he data-selling rate with and without preventive portfolio. With- 

ut preventive portfolio, total ransomware profit increases as the 

ata-selling rate βs increases. With preventive portfolio, however, 

verall ransomware profit is reduced by more than two-thirds 

 Fig. 7 a), and the reduction is even more significant as the data- 

elling rate βs increases. The profit reduction of ransom compo- 

ent decreases as the data-selling rate increases due to victims’ 

ecreasing willingness to pay ( Fig. 7 b). Ransom request is much 

ower than the no-prevention case as the attacker can no longer 

se data as much as valid threat. Notably, the profit reduction in 

he data component is the most significant, over 90% reduction as 



Z. Li and Q. Liao Computers & Security 116 (2022) 102644 

Fig. 6. Attacker’s ransomware profit received from a representative victim in re- 

sponse to the victim’s changing composition of preventive portfolio. Presence of 

encryption and deception not only reduces data profit, but also reduces ransom 

profit, thus reducing overall ransomware profit significantly. 

d

p

a

w

r

v  

Fig. 7. Analysis of ransomware profit components (data and ransom) with and 

without preventive portfolio at various data-selling rate βs . Preventive measures 

flatten the curves and lower the ransomware profits. The decrease in data profit 

is most significant. 

Fig. 8. Profitability of ransomware with preventive portfolio decreases as compared 

to the profitability without prevention at all data-selling rate β . 
ata-selling rate increases. With preventive portfolio, both ransom 

rofit and data profit (and thus total ransomware profit) decrease 

s βs increases. Overall, the ransomware profit reduction (between 

ith and without preventive portfolio) widens as βs increases. 

Finally, Fig. 8 further compares side-by-side the profitability of 

ansomware (together with ransom and data component profit) at 

arious data-selling rate ( βs = 0 . 3 , βs = 0 . 6 , and βs = 0 . 8 ). Taking

s 

10 
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Fellow at U.S. Air Force Research Lab. 
s = 0 . 6 for example, all three profits (ransom, data, ransomware) 

ecrease dramatically with preventive portfolio, with data profit 

eduction being most significant. In absence of preventive mea- 

ures, the attacker faces a tradeoff between ransom profit and data 

rofit, i.e., while data profit increases, ransom profit decreases, 

ence total ransomware profit may go up and down when βs 

hanges. At the presence of preventive measures, however, both 

ansom profit and data profit decrease as βs increases, hence to- 

al ransomware profit is always decreasing in βs . 

. Conclusion 

More research is needed for the inevitable data-selling ran- 

omware which is harder to defend than traditional ransomware. 

n this paper, we proposed a preventive portfolio that consists 

f two preventive measures, i.e., preventive data encryption and 

reventive data deception against the data-selling ransomware. 

hrough both game-theoretical modelings and extensive simula- 

ion studies, we discovered the complex relationships between 

sers/victims and attackers considering various decision variables, 

xpected payoffs, strategy space and other parameters. The results 

uggest the preventive portfolio is effective against data-selling 

ansomware in that it can significantly decrease the profit of the 

ata-selling ransomware and increase the expected payoff of the 

ictims. Preventive portfolio not only dramatically decreases data 

rofit but ransom profit as well by decreasing the victims’ will- 

ngness to pay thus reducing the ransom demand. Preventive mea- 

ures have positive externality in the sense that some adoption of 

reventive measures benefits all users. The practice also reduces 

ncertainty and provides financial incentives for the attacker to 

ncrease credibility or reputation. Our future work is to explore 

ther market-based solutions involving defensive buyers against 

he data-selling ransomware. 
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