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ABSTRACT
Cybercrime such as ransomware denies access to valuable data
until a ransom is paid. Recent ransomware attacks on organiza-
tions such as hospitals, schools, government agencies and private
businesses raise public awareness of the severe impact on the soci-
ety. In this paper, we propose a hypothetical new revenue model
for the ransomware, i.e., selling the stolen data. Through a game-
theoretical analysis between attackers and victims, we contribute a
novel model to understand the critical decision variables between
the traditional ransomware (ransomware 1.0) - demanding ransom
only and the new type of ransomware (ransomware 2.0) - selling
the data as well as demanding ransom. Both theoretical modeling
and simulation studies suggest that in general ransomware 2.0 is
more profitable than ransomware 1.0. Common defensive measures
that may work to eliminate the financial incentives of ransomware
1.0 may not work on ransomware 2.0, in particular the data backup
practice and the never-pay-ransom strategy. Nevertheless, the un-
certainties created by this new revenue model may affect attackers’
reputation and users’ willingness-to-pay. In turn, ransomware 2.0
may not always increase the profitability of attackers. Another find-
ing of the study suggests that reputation maximization is critical in
ransomware 1.0 but not in ransomware 2.0, where attackers should
seek imperfect reputation for profit maximization.
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1 INTRODUCTION
Ransomware as a class of malware has lately appeared as a major
cybersecurity threat. The malware affects victims’ computers and
disables access to system and data files through encryptions, and
demands ransom payment for the return of computer functionality
and data. Ransomware is believed to be highly lucrative [19]. In
2019, the U.S. was hit by an unprecedented ransomware attacks
that impacted at least 113 state and municipal governments and
agencies, 764 health care providers, and 89 universities, and 1233
schools. The potential cost of these attacks was estimated at $7.5
billion [16]. In CyberSecurity annual reports, ransomware is listed
as one of the top three cyberthreat concerns three years in a row
(2017, 2018 and 2019) [8].

There are thousands of different ransomware strains in existence,
varying in design and sophistication [4]. The first ransomware at-
tack dates back to 1989 that spread via floppy disks and involved
sending money to a post office to pay the ransom [2]. The concept
of file-encryption ransomware became known as so called “cryp-
tovirology” in a 1996 IEEE Security & Privacy paper [20]. However,
such practice remains relatively uncommon until the mid 2000s
[10]. Since then, ransomware has been automated and professional-
ized. The traditional ransomware relies on encrypting information
on the victims’ computer to demand ransom payment. Recently, a
new version of ransomware was found that is armed with browser
and email password-stealing features. While it does encrypt data,
it uses a variety of methods to steal credentials in each of the tar-
geted applications [14]. Ransomware attackers have threatened to
publicly release stolen data if the victims chose not to respond to
their ransom demands[13, 15].

In this paper, we propose a new revenue model for ransomware,
i.e., selling the stolen data in addition to demanding ransom. We re-
fer to it as ransomware 2.0 for data-selling ransomware as opposed
to ransomware 1.0 for traditional ransomware (demanding ransom
only). It is imperative to understand what changes ransomware
2.0 may bring to the ransomware business model. To that end, we
conduct game-theoretical modeling of both ransomware 1.0 and 2.0
and study the strategic decision-making by the profit-driven ran-
som attackers and victims/users. The attacker has both the stolen
data and locked files in order to gain profit, either from ransom
by victims or from selling data to potential buyers, or both. The
best response by the victims is studied with the assumption that
decryption is not guaranteed as there have been reports of victims
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paying the ransom and not receiving the decryption key [14]. It
is even more uncertain whether the attacker will keep the stolen
data safe. We derive the profit of the ransomware 2.0 in three cases:
the attacker has no reputation, perfect reputation, and imperfect
reputation; and compare the profitability of both ransomwares 1.0
and 2.0.

Our model and simulation studies suggest ransomware 2.0 in
general is more damaging and can make cybercrimes even more
lucrative as selling potentially valuable data generates an additional
revenue source to the attackers. The threat of data leakage increases
the victims’ willingness-to-pay the ransom if the data threat does
not negatively affect the value of the locked files to the victims.
However, if the market value of the stolen data is limited, and/or
if the uncertainty of data leakage reduces the value of the locked
files to the victims, the ransomware 2.0 may actually be worse
for the attackers. While reputation maximization leads to profit
maximization in ransomware 1.0, having a perfect reputation in
ransomware 2.0 is not necessarily profit maximizing.

The contribution of this work lies in the novel ransomware 2.0
model. To the best of authors’ knowledge, we build the first game-
theoretical ransomware model with data selling as an additional
revenue source. Contrary to common belief, ransomware 2.0 may
not always be more profitable than ransomware 1.0 due to the
uncertainties. Not trying to be reputable may bring more profit in
ransom business is another counterintuitive findings of our study.
This paper explores the effects of numerous important factors on the
profit of the new data-selling ransomware. The game-theoretical
analysis provides insights in designing defensive measures against
ever evolving malware and ransomware business.

2 RELATEDWORKS
Ransomware has recently taken center stage as one of the most
prevalent cybercrimes. Various reports demonstrate the enormous
burden placed on individuals and institutions [19]. Given the sig-
nificant growth of ransomware attacks, it is important to develop a
prevention and protection mechanism. Researchers have conducted
a survey on ransomware taxonomy and countermeasures [1]. Like
any malware, technical mechanisms to defend against ransomware
attacks are on the front line. For example, file system activities
may be monitored for I/O requests and Master File Table may be
protected to detect zero-day ransomware attacks [11].

In addition to technical approaches, there has been recent re-
search that uses economics and game theory to study ransomware
behavior. Economic analysis of ransomware [9] reveals the relation-
ship between the valuation distribution among the population and
the optimal ransom demand. The study examines the impact of dif-
ferent price discrimination strategies which can help in estimating
an optimal ransom value. Since ransom payments are often in the
form of Bitcoins, data collected from Bitcoin transactions at public
blockchain suggests that the market for ransomware payments has
a minimum worth of USD 12,768,536 (22 967.54 BTC) from 2013 to
mid-2017 [17].

Game-theoretical model of the ransomware ecosystem [12] was
first developedwith emphasis on the decision of companies to invest
in backup technologies and which degree backup investments can
serve as a deterrent for ongoing attacks. Using a game theory to

model the strategic playing by ransomware criminals and victims,
researchers can understand potential prevention measures and
further investigate similar types of cybercrime [5].

Study of the role of reputation suggests that it is optimal for the
criminal to build a good reputation and always return the files [6].
How victims form beliefs influences the victims’ intention to pay
the ransom. A trust model shows that the trust in the attacker and
reasonable ransomware demands positively influence the victims’
intention to pay the ransom [21].

While kidnapping and blackmail are typically in a terrorist con-
text [18], ransomware may be modeled as kidnapping. The kid-
napping aspect of ransomware was acknowledged at a practical
level and the models of hostage were extended to study the role of
irrational aggression and crime deterrence [7]. The game theoretic
literature on kidnapping and blackmail gives insight on the optimal
ransom that criminals should charge and the role of deterrence
through preventative measures.

Our work is in line with the economics and game theoretic re-
search on ransomware. This paper is the first study on the new
type of ransomware that utilizes the stolen data as either a threat
for victims to pay ransom or an asset for attackers to manipulate.
We propose an additional revenue for ransomware by selling the
valuable data. Our model emphasizes on the profitability of the
data-selling ransomware compared to traditional ransomware with
varying reputations of the attacker. The findings of this study give
insights to help the development of defensive measures against
this new ransomware. Notably, common advice of nearly all ran-
somware literature is a mitigation such as backup technologies [12].
While sufficient data backup has the potential to deter traditional
ransomware, it has little effect on the new proposed ransomware
model which also sells the stolen data.

3 GAME THEORETIC ANALYSIS OF
DATA-SELLING RANSOMWARE

In this section, we first lay out the backgrounds and assumptions
to specify the ransomware attacks that will be analyzed. We then
develop the game theoretic models in three cases of varying rep-
utation of the attacker. We compare the profit of the data-selling
ransomware (2.0) with that of traditional ransomware (1.0) in each
case.

3.1 Background and Assumptions
While ransomware may be classified into Scareware, Lock-Screen,
and Encrypting, the most common form of ransomware is file en-
cryption ransomware [2]. We consider an potential add-on to this
type of ransomware that not only files are encrypted but the whole
or a subset of data are also transferred to a cloud storage controlled
by the attacker. The victims face dual threats: the threat of losing
access to files and the threat of leaking data. Hereinafter, we use the
phrase “returning files” to refer to the situation where the attacker
delivers decryption keys to remove restrictions to a victim’s com-
puting resources and files. We use the phrase “selling data” to refer
to the situation where the attacker releases the stolen information
to a third party.

The attacker has numerous ways to release the data: to release
the data to public for free, to sell the data for revenue, or to keep the
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data confidential (do nothing). We assume the attacker is money
driven so that the attacker will sell the data if doing so is more
profitable. As seen from past ransomware attacks, we assume there
is no negotiation or bargaining opportunity. Once hit, the victims
face two options: pay the ransom demand or do not pay. If the
attacker does not return the files, then all encrypted files are going
to be lost for good.

There is a cost of returning files and/or selling them. The cost of
returning files may include the cost of delivering the decryption
key to the victims and the cost of guiding the victims on how to
recover files and dealing with queries about files that fail to recover.
The cost of selling data includes the search for potential buyers,
delivering channels, and other costs of data-related transactions. In
addition, the current underground ransomware practice involving
cryptocurrencies via distributed blockchain technologies suggests
that the probability of facing punishment for a ransomware attack
is very low across legal jurisdictions.

3.2 Timeline and Payoff Matrix
The ransomware game is a sequential, multi-stage game involv-
ing the attacker and the victims. The timeline of the game is as
follows. Stage 1: The attacker launches a successful ransomware
attack on N victims. This is the starting point of the game. The
infected machines lose access to files and get confidential data
stolen. The attacker demands a ransom payment R, which the vic-
tims take as given. Stage 2: After observing R, the victims decide
whether to pay the ransom or not to pay it. This stage is the victims’
decision-making on the ransom payment. Stage 3: Upon observing
the victims’ decision on ransom payment, the attacker chooses
whether to return files to the victims. Stage 4: The attacker deter-
mines what to do with the stolen data, to sell it or do nothing. Both
Stages 3 and 4 are the attacker’s follow-up decision-making.

Let p be the victim’s choice of paying ransom in Stage 2.

p =

{
0, Not to pay ransom,
1, To pay. (1)

Let r be the attacker’s choice of returning files in Stage 3.

r =

{
0, Not to return files to the victims,
1, To return. (2)

Let s be the attacker’s choice of selling data in Stage 4.

s =

{
0, Not to sell data,
1, To sell. (3)

Consider a representative victim i . The payoff (profit) the attacker
expects to receive from victim i is

π = pR + sAi − rCr (4)

where Cr > 0 is the cost of returning files to the victims. Cd > 0
is the data transaction cost. Di ≥ 0 is the market value of the data
stolen from victim i . We define Ai as the data profit of the attacker
where

Ai =

{
Di −Cd , if Di ≥ Cd ,
0, if Di < Cd .

(5)

The payoff (utility) of victim i is

u = −pR − (1 − r )Vr ,i − sLd ,i (6)

whereVr ,i ≥ 0 is the value of the locked files to the victims. Ld ,i ≥ 0
is the loss to the victims if the stolen data is sold.

The key difference between the data-selling ransomware and
traditional ransomware is the existence of the stolen data. Numer-
ous questions arise. Will ransomware be more profitable with the
new feature? Will the victims change their willingness-to-pay the
ransom? Will the attacker keep the stolen data confidential? If the
victims do not expect the attacker to keep the data safe, why should
they pay the ransom? To address these questions, we need to com-
pare the data-selling ransomware to traditional ransomware and
show the difference between game outcomes and payoffs.

Since p and r are binary decision variables, the game of tra-
ditional ransomware has four possible outcomes. In data-selling
ransomware, the strategy variables (p, r and s) suggest that the
game of data-selling ransomware has eight possible outcomes. The
attacker’s and victim i’s payoffs to different outcomes are shown in
Table 1. The goals of both the attacker and the victims are to maxi-
mize their expected payoffs, which depend on the game outcomes.

In the ransomware game, the victims are in a disadvantageous
position. As Table 1 shows, the best possible outcome for the victims
is to receive a zero payoff. This would be the case if the attacker
returned files for free, and would not sell the stolen data. In all the
other cases, the victims suffer a negative payoff.

3.3 The Baseline Case: Non-repeated Game
with No Trust

As a baseline case, we model a one-shot game with no need for
the attacker to build reputation. The attacker’s decision-making
in Stages 3 and 4 are independent. Let’s derive the game outcome
using backward deduction from the last stage of the game, i.e., Stage
4.

Proposition 1: In the baseline model, the attacker sets s = 1 if
Di ≥ Cd and s = 0 if Di < Cd .

The attacker sells the stolen data whenever the market price of
the data exceeds the transaction cost. The attacker receives a net
gain ofAi = Di −Cd from the victims whose data values more than
the transaction cost in the market. The attacker receives a payoff of
Ai = 0 from the victims whose data values less than the transaction
cost.

Proposition 2: In the baseline model, the attacker sets r = 0.
Not returning files to the victims is always the dominant strategy

for the attacker regardless of ransom payment. When reputation is
irrelevant, the attacker has no incentive to return files.

The victims’ ransom payment decision in Stage 2 critically de-
pends on the victims’ belief that the attacker will honor the ransom
payment. In the baseline model, taking the money and run is the
dominant strategy of the attacker. Expecting the attacker to default,
the victims will choose not to pay the ransom in Stage 2.

Proposition 3: In the baseline model, the victims set p = 0.
Combining Propositions 1 to 3, the baseline model between the

attacker and one victim has two possible outcomes: {p = 0, r =
0, s = 1} if Di ≥ Cd , and {p = 0, r = 0, s = 0} if Di < Cd .

The total profit of the attacker to receive from all victims in the
baseline model is

Πb =
N∑
i=1

Ai (7)
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Table 1: The payoffs to different outcomes in the data-selling ransomware game

Outcome Attacker (π ) Victim (u)

p = 0 r = 0 s = 0 0 −Vr ,i

p = 0 r = 0 s = 1 Di −Cd −Vr ,i − Ld ,i

p = 0 r = 1 s = 0 −Cr 0
p = 0 r = 1 s = 1 Di −Cd −Cr −Ld ,i

p = 1 r = 0 s = 0 R −R −Vr ,i

p = 1 r = 0 s = 1 R + Di −Cd −R −Vr ,i − Ld ,i

p = 1 r = 1 s = 0 R −Cr −R

p = 1 r = 1 s = 1 R + Di −Cd −Cr −R − Ld ,i

Victim i’s utility is −Vr ,i if Di < Cd and −Vr ,i − Ldi if Di ≥ Cd .
For traditional ransomware, the game outcome of a one-shot

model is {p = 0, r = 0}. The attacker’s profit is 0 and victim i’s
payoff is −Vr ,i . If the attacker’s reputation is irrelevant, the data-
selling ransomware is more profitable than traditional ransomware.
The two strains of ransomware were only equivalent if none of the
stolen data were marketable enough, which is not likely to occur.

Therefore, even if the ransom payment is zero, the attacker may
still receive financial benefits as long as the market value of the
stolen data exceeds the cost of selling data. This is arguably the
biggest advantage of the data-selling ransomware (2.0) compared
to traditional ransomware (1.0). Thus some defensive measures that
may work to eliminate the financial incentives of ransomware 1.0
may not work on ransomware 2.0, in particular the data backup
practice and the never-pay-ransom strategy.

Data backup has been widely considered the most effective strat-
egy to mitigate the loss of ransomware [2, 3]. Having a compre-
hensive data backup process may effectively protect the victims
from the threat of traditional ransomware. The victims could simply
ignore the ransom note and have a fresh start with the backed-up
files. Data backup, however, will not work as effectively against
the data-selling ransomware. The victims are exposed to the risk of
data leakage. Even if the files are fully backed up, the attacker may
gain from selling the valuable data. Data backup will not eliminate
the financial incentives of the data-selling ransomware.

Similarly, the never-pay-ransom strategy may work for tradi-
tional ransomware since if no one pays, ransomware will become
unprofitable. Therefore, a practical strategy for the victims of tra-
ditional ransomware is always to say no to the attacker. However,
the never-pay-ransom strategy would not work for the data-selling
ransomware because attackers can almost always gain from selling
data. The never-pay-ransom strategy does not remove financial
incentives of the new ransomware.

In both cases of data backup and never-pay-ransom, the profit
of traditional ransomware is zero with no ransom payment, but the
profit of the data-selling ransomware can be positive. Nevertheless,
it does not imply the data-selling ransomware is always more prof-
itable than traditional ransomware. The equilibrium outcome of
the baseline model is not optimal for neither the attacker nor the
victims. If there were trust, the victims could benefit from paying

the ransom for any R ≤ Vr . The attacker could benefit from return-
ing files and keeping data confidential for any R ≥ Cr . Since the
value of files to the victims is highly likely to exceed the attacker’s
cost of returning files, there exists a range of ransom R ∈ (Cr ,Vr )
that can be mutually beneficial. The attacker would be better off
receiving a ransom higher than the cost of returning files. The vic-
tims would be better off to pay a ransom in exchange for the files
that value more than the ransom. However, this “win-win” (when
compared to the baseline equilibrium outcome) situation requires
cooperation of the two parties and the victims to trust the attacker.
The attacker cannot ignore reputation if ransomware is to be a
sustainable business model.

3.4 Role of Reputation: A Cooperative Game
with Perfect Reputation

Reputation matters when the outcome of the game between the
attacker and one victim affects the choice of other or future victims.
It can be in the attacker’s interest to build up a reputation because
any short-term gain from taking the money and run may be offset
by the unwillingness of other victims to pay any ransom.

Proposition 4: In the perfect reputation model, the attacker sets
r = 1 and s = 0 if ransom is paid; the attacker sets r = 0 and s = 1
if ransom is not paid and Di ≥ Cd .

To illustrate the role of reputation, suppose the attacker had en-
dowed reputation who would honor the agreement with the victims
with no need to be self-enforcing. The strategy the attacker shall
follow, in response to the victims’ choice, would be straightforward:
to return files and keep the stolen data confidential if the ransom is
paid; or to delete the files and sell the data if the ransom is not paid.

Proposition 5: In the perfect reputation model, victim i sets p = 0
if R > Vr ,i + Ld ,i and p = 1 if R ≤ Vr ,i + Ld ,i .

When the victims trust the attacker, the victims’ willingness-
to-pay the ransomware is Vr ,i + Ld ,i . By paying the ransom, the
victims avoid the file loss and the data loss.

Suppose there are n victims who set p = 1. The profit of the
attacker is

Πt = n(R −Cr ) +
N∑

i=n+1
Ai (8)
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For traditional ransomware in the case of perfect reputation, the
victims’ willingness-to-pay the ransom is capped by Vr ,i and the
profit of the attacker is n(R −Cr ). Recall the victims’ willingness-
to-pay the ransom is 0 in the baseline case with no trust. Building
reputation can be rewarding to the attacker by increasing the vic-
tims’ willingness-to-pay the ransom.

The attacker of the data-selling ransomware receives the same
profit from the n victims who choose to pay the ransom. For the
victims who choose not to pay the ransom, the attacker’s profit
increases for the data-selling ransomware, compared to 0 profit of
traditional ransomware. Compared to traditional ransomware, the
data-selling ransomware is more profitable.

In summary, if the attacker has perfect reputation, the data-
selling ransomware is more profitable than traditional ransomware.
However, it is difficult for the attacker to build perfect reputation in
the underground economy. In reality, although many victims who
do not pay the ransom may end up losing their files, victims who
do pay may not necessarily retrieve their files. Recent evidence sug-
gests that in 2019 about 60% victims who pay the ransom recovered
their files [8]. Next we extend the model to a competitive setting,
and examine how the data-selling feature of ransomware may add
extra uncertainty to an already risky environment.

3.5 A General Competitive Ransomware Game
with Imperfect Reputation

The victims’ willingness-to-pay ransom depends on the attacker’s
reputation. The victims estimate the credibility of the attacker based
on the past records of the attacker regarding delivering decryption
keys and keeping the stolen data safe, e.g., crawling personal and
social networks, forums, search engines, media reports, etc. Suppose
past records of the attacker indicate that the attacker has βr ∈ [0, 1]
percentage of the chance to return files with ransom payment
and βd ∈ [0, 1] percentage of the chance to keep the stolen data
confidential with ransom payment.

A representative victim’s expected utility in the risky environ-
ment is

uu = −pR − (1 − pβr )Vr − (1 − pβd )Ld (9)

From Equation (9), the victim receives a payoff of −Vr −Ld if not
paying ransom (p = 0, βr = 0, βd = 0). The victim’s expected utility
is −R − (1 − βr )Vr − (1 − βd )Ld if paying (p = 1). Apparently, the
victims will choose to pay the ransom if doing so generates a higher
expected payoff, i.e.,p = 1 if −R−(1−βr )Vr −(1−βd )Ld ≥ −Vr −Ld .
That leads to Proposition 6.

Proposition 6. In the competitive game, the victims will choose
to pay ransom if R ≤ βrVr + βdLd .

Proposition 6 specifies the victims’ willingness-to-pay in the im-
perfect reputation case. There are two parts of the victims’ willingness-
to-pay, the expected value of the locked files and the expected value
of the stolen data. The no-reputation case and the perfect-reputation
case are two special cases of the general expression: βr = βd = 0
for the former and βr = βd = 1 for the latter. The reputation of the
attacker increases the victims’ willingness-to-pay.

The attacker’s profit with one victim is

πu = pR − pβrCr + (1 − pβd )Ai (10)

From Equation (10), the attacker will receive a profit of Ai from
a victim if ransom not paid, and a profit of R − βrCr + (1− βd )Ai if
ransom paid.

Suppose n victims choose to pay the ransom, the expected profit
of the attacker among all victims is

Πu = n(R − βrCr ) +
n∑
i=1

(1 − βd )Ai +
N∑

i=n+1
Ai (11)

Proposition 7. In the competitive game, the attacker sets βd = 0
if βdLd ≤ Ai and βd = 1 otherwise.

βdLd is the upper-bound on the potential increase in ransom
demand with data threat. If the expected ransom gain is no higher
than the profit of selling data, the attacker chooses to sell data.
Suppose the condition βdLd ≤ Ai holds true form out of N victims,
the attacker has the likelihood of βd = 1 −m/N to keep the stolen
data confidential for a random victim.

In the baseline model, it is optimal for the attacker not to return
files. In the cooperative game, the attacker should always return
the files with ransom payment. When the game is competitive with
imperfect reputation, it may not be optimal to always return files
with ransom payment or never to return.

Proposition 8. In the competitive game, the attacker shall return
files with ransom payment if βrVr ≥ Cr .

Comparing the profit of ransomware in the cooperative game and
the competitive game, as in Equations (8) and (11), it is ambiguous
which is more profitable. The attacker faces dual tradeoffs. The first
is common to ransomware: the tradeoff between building reputation
and gaining from defaulting. The second is unique to the data-
selling ransomware: the tradeoff between ransom demand and the
revenue from selling data.

For example, suppose the number of victims who are willing to
pay the ransom is the same in the two games, i.e., the two n’s in
Equations (8) and (11) take the same value. The ransom demand is
Rt in the perfect reputation game and Ru in the competitive game.
Then

Πu − Πt = n{(1 − βr )Cr − (Rt − Ru )} +
n∑
i=1

(1 − βd )Ai (12)

In the competitive game with imperfect reputation, the attacker
may gain from the saved cost of returning files ((1 − βr )Cr ) and
selling the stolen data ((1 − βd )Ai ). The sacrifice is a potential loss
in ransom (Rt − Ru ). The data-selling component of ransomware
adds uncertainty to the competitive game. It not only strengthens
the existing tradeoff, it also adds a new layer of tradeoff to the game,
applicable to both the attacker and the victims.

4 SIMULATION RESULTS
We compare the profit of the data-selling ransomware to tradi-
tional ransomware with simulation experiments in three cases
discussed in Section 3: the baseline game model with no reputation,
the cooperative game model with perfect reputation, and a general
competitive game model with imperfect reputation.
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Table 2: The comparison of profit between the traditional ransomware and the data-selling ransomware

various cases of reputation traditional ransomware data-selling ransomware

βr = βd = 0 0
∑N
i=1Ai

βr = βd = 1 n(R −Cr ) n(R −Cr ) +
∑N
i=n+1Ai

0 < βr < 1, 0 < βd < 1 n(R − βrCr ) n(R − βrCr ) +
∑n
i=1(1 − βd )Ai +

∑N
i=n+1Ai

4.1 Simulation Setup
The profit formulas of traditional ransomware and the data-selling
ransomware in the three cases are in Table 2 where n is the number
of victims choosing to pay the ransom. It varies from case to case.

Suppose there are N = 30 victims, and the ransom demand
be R = 50. The victims’ valuation of the locked files (Vr ) and the
stolen data (Ld ) are randomly generated in the range from 0 to
100. Without loss of generality, we set the cost of returning files at
Cr = 5, the cost of selling data at Cd = 10, and Di = Ld ,i .

4.2 The comparison of profit in the
no-reputation and perfect-reputation cases

At the specified parameters and randomly generated values of Vr
and Ld , the profit of the data-selling ransomware in the case of
no reputation (βr = βd = 0) is 1, 018 (earned from selling data),
compared to 0 for traditional ransomware. In the case of perfect
reputation (βr = βd = 1), a victim chooses to pay the ransom if
R ≤ Vr for traditional ransomware. The simulation results show
that 15 victims choose to pay, generating a profit of 675 at per-victim
profit of 45. For the data-selling ransomware, a victim chooses
to pay the ransom if R ≤ Vr + Ld . The simulation results show
that 25 victims choose to pay, generating a ransom profit of 1, 125.
Meanwhile, the attacker receives an additional profit of 30 from
selling the data of the 5 victimswho do not pay the ransom, bringing
the profit of the data-selling ransomware to a total of 1, 155.

Therefore, the data-selling ransomware is more profitable than
traditional ransomware in both the no-reputation case and the
perfect-reputation case. The increase in profit comes from the in-
creased number of victims paying the ransom and the additional
revenue from selling the stolen data.

4.3 Profits in the imperfect-reputation case
In the imperfect-reputation case, the victims’ willingness-to-pay is
capped at βrVr + βdLd . Given the victims’ valuation of the locked
files and the stolen data, the attacker’s choices of returning files (βr )
and selling data (1− βd ) determine the number of victims choosing
to pay the ransom. The attacker faces a tradeoff between ransom
income and data income when setting βr and βd . If the attacker
sets higher probabilities of returning files and keeping the data safe,
the attacker will gain from increased ransom payments but lose
from forgone data income.

4.3.1 How selling data affects ransomware profit. We first study
how the probability of selling data affects the ransomware profit
at various probability of returning files. The simulation results
suggest the tradeoff that the attacker faces when setting βr and βd ,
as in Figure 1. There are five data series in the figure. The two flat

Figure 1: Profitability of the data-selling ransomware
changes with the probability of selling data at various prob-
ability of returning files. A low probability of returning
files and a high probability of selling data decrease the vic-
tims’ willingness-to-pay. As the probability of selling data
increases, fewer victims pay the ransom but the data rev-
enue increases. The net change in ransomware profit de-
pends on the relative changes in ransom profit and data-
selling profit.

lines are the data-selling ransomware profit in the no-reputation
and perfect-reputation cases for reference. The other three curves
illustrate how the data-selling ransomware profit changes when
the probability of selling the stolen data changes, given a certain
probability of returning files (βr ).

Because of the tradeoff between ransom revenue and data rev-
enue, none of the three curves is monotonic. Increasing the prob-
ability of selling data is not necessarily profit increasing because
it decreases the victims’ willingness-to-pay the ransom. Since a
lower βr also decreases the victims’ willingness-to-pay, the profit-
maximizing probability of selling data appears to be at a low or
moderate level when βr is smaller. When βr is big, a higher proba-
bility of selling data tends to be more profitable because a high βr
helps maintain the victims’ willingness-to-pay the ransom while
the attacker gains additionally from selling data.

4.3.2 How returning files affects ransomware profit. Now we study
the effects of the file-returning probability on ransomware profit at
various data-selling probabilities, as shown in Figure 2. The two flat
lines are the data-selling ransomware profit in the no-reputation
and perfect-reputation cases for reference. The other three curves
illustrate how the data-selling ransomware profit changes when the
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Figure 2: Overall, profitability of the data-selling ran-
somware increaseswith higher probability of returning files
resulting in more victims paying the ransom. Selling data at
(0.5) rate performs better than no selling (0) or always sell-
ing (1). Attacker’s optimal strategy is a mixed strategy with
a combinations of returning files and selling data.

probability of returning files changes, given a certain probability of
selling data (1 − βd ).

The results confirm the tradeoff the attacker faces when setting
βr and βd . Increasing the probability of returning files increases the
victims’ willingness-to-pay the ransom, generating more ransom
income, potentially causing a loss in data profit. The probability of
selling data for the victims who do not pay the ransom is 1, but the
probability of selling data for the victims who pay the ransom is
1−βd . As more victims pay the ransom, the data profit decreases but
not by as much. Although there are fluctuations, overall the data-
selling ransomware is more profitable when the attacker increases
the probability of returning files, at a given probability of selling
data.

Based on the above results, we summarize that data-selling ran-
somware is always more profitable than traditional ransomware in
both no-reputation and perfect-reputation models. For traditional
ransomware, it is profit maximizing to build perfect reputation
by always returning the data files. Building perfect reputation is
not necessarily profit maximizing for the data-selling ransomware
because the attacker faces a tradeoff between gaining from ransom
and gaining from selling data. The relative profit of ransomware
in the imperfect-reputation case is nondeterministic, as shown in
Figures 1 and 2. It implies that the optimal strategy of the attacker
is a mixed strategy with certain combinations of βr and βd , in
accordance with the victims’ valuation of locked files and stolen
data.

4.4 Profit under data leakage threat
Under the threat of data leakage as in data-selling ransomware, vic-
tims may or may not value the locked files as much as in traditional

Figure 3: Profitability of the data-selling ransomware de-
creases as victims’ valuation of their locked files decreases
under the data leakage threat at various data-selling prob-
abilities. In the case when average market value matches
average victims’ expected value of their locked data, the
data-selling ransomware is always more profitable than tra-
ditional ransomware.

ransomware. This may inversely affect the victims’ willingness-to-
pay. For example, a leaked customer database becomes less valu-
able to the victims since that means mandatory resetting pass-
words for all customers or closing accounts. The decreasing victims’
willingness-to-pay has a potential to negatively affect the relative
profit of the data-selling ransomware.

When factoring in the plausible negative effect of data threat on
the value of locked files, the leftover value of the files is a fraction
of the data-threat-free value of the files, γVr where γ ∈ [0, 1]. A
representative victim’s expected utility is

uu = −pR − (1 − pβr )γVr − (1 − pβd )Ld (13)

From Equation (13), the victim receives a payoff of −γVr − Ld
if not paying ransom (p = 0, βr = 0 and βd = 0). The victim’s
expected utility is−R−(1−βr )γVr −(1−βd )Ld if paying (p = 1). The
victims will choose to pay if doing so generates a higher expected
payoff, i.e., if βrγVr + βdLd ≥ R.

4.4.1 Case 1: average market value matches average victims’ ex-
pected value. We study how γ affects the profit of the data-selling
ransomware with the same randomly generated values of Vr and
Ld as above. During simulation,Vr and Ld are drawn from the same
range between 0 and 100. Let ransom demand be 50 and βr = 1.
The profit of the data-selling ransomware remains at 1, 018 in the
no-reputation case, regardless of γ as the attacker profits only from
selling the stolen data. In the perfect-reputation case, the victims’
willingness-to-pay is γVr + Ld . We let γ to vary from 0 to 1 to
calculate the profit of the data-selling ransomware.

Figure 3 shows the results. The flat line is the profit of traditional
ransomware in the perfect-reputation case for reference. The other
three curves are the profit of the data-selling ransomware at various
probabilities of selling data. The general trend of profitability of the
data-selling ransomware is decreasing as the victims’ valuation of
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Figure 4: Profitability of the data-selling ransomware de-
creases as victims’ valuation of their locked files decreases
under the data leakage threat at various data-selling proba-
bilities. In the case when average market value is less than
average victims’ expected value of their locked data, the
data-selling ransomware may be less profitable than tradi-
tional ransomware.

their data decreases. At any given 1−γ , not selling data is the least
profitable because the attacker would not be able to compensate as
much the lost ransom income from selling the stolen data. While
not selling data performs the worst, selling at a higher rate does
not necessarily mean more profitable than selling at a lower rate.

Also shown in Figure 3, the data-selling ransomware stays more
profitable than traditional ransomware since even if selling data
completely wipes off victims’ valuation on the locked files, the
attacker can still profit no less from the stolen data.

4.4.2 Case 2: average market value is less than average victims’
expected value. In this simulation, we keep βr = 1, R = 50, and set
the average market value at 50% of the average victims’ expected
value on their locked data. In an analogy of housing market, a
house’s market value may be $200,000 but the owner’s expected
value may be $400,000 due to affection.

Figure 4 shows the data-selling ransomware profit exhibits a
similar trend of decreasing profit as victims’ expected valuation de-
creases as in Figure 3. However, not selling data generally performs
better than the other two curves. Another interesting result is that
in this case data-selling ransomware is not always more profitable
than traditional ransomware (the middle flat line). The above result
suggests that using the stolen data as additional threat to force
the victims to cooperate may back fire when the potential data-
selling profit is limited. If the data is not valuable enough and the
data leakage threat reduces the victims’ valuation of their locked
files, the data-selling ransomware is less profitable than traditional
ransomware.

5 CONCLUSION
In this paper we studied a new type of ransomware that gains po-
tential profit by selling stolen data in addition to ransom demand.

The game-theoretical models we built analyze the best strategies
of both the attacker and the victims in various cases, i.e., baseline
game with no reputation, cooperative game with perfect reputation,
and the general competitive game with imperfect reputation. The
modeling analysis and simulation studies suggest that the data-
selling ransomware is more financially rewarding than traditional
ransomware in most cases. However, the realization of the potential
financial gains largely depends on the marketability of the stolen
data and whether and how the threat of data leakage affects the
victims’ willingness-to-pay ransom. In this sense, the data-selling
ransomware is more risky to both the attacker and the victims. Hav-
ing established reputation is mutually beneficial to both the attacker
and the victims, but having perfect reputation is not necessarily
profit-maximizing for the attacker of the data-selling ransomware.
The finding suggests that the attacker may play strategically with
combinations of unlocking and selling data, and manipulate the
perception of the victims to gain profit.
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