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a b s t r a c t

Hierarchical abstraction is a scalable strategy to deal with large networks. Existing visualization
methods have allowed to aggregate the network nodes into hierarchies based on the node attributes or
network topology, each of which has its own advantage. Very few previous system has the capability
to enjoy the best of both worlds. This paper presents OnionGraph, an integrated framework for
the exploratory visual analysis of heterogeneous multivariate networks. OnionGraph allows nodes
to be aggregated based on either node attributes, topology, or a hierarchical combination of both.
These aggregations can be split, merged and filtered under the focus+context interaction model,
or automatically traversed by the information-theoretic navigation method. Node aggregations that
contain subsets of nodes are displayed by the onion metaphor, indicating the level and details of
the abstraction. We have evaluated the OnionGraph tool in three real-world cases. Performance
experiments demonstrate that on a commodity desktop, our method can scale to million-node
networks while preserving the interactivity for analysis.
© 2020 ZhejiangUniversity and ZhejiangUniversity Press. Published by Elsevier B.V. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Information networks are intensively studied nowadays and
many of them are multivariate in that their nodes and edges
are associated with multiple variables. For example, in a co-
authorship network, each node (the author) has its affiliation
and research interest information, each edge (the co-authorship)
has the collaboration date and a frequency. They are known
as the node/edge attributes. In this paper, we consider an ad-
vanced version of the multivariate network, that further mixes up
nodes/edges of different types, also known as the heterogeneous
network. In the bibliographic network, the nodes can be an author
from a university, a paper on certain topic, or a venue (i.e., confer-
ence/journal) happened in a location. The edge can represent the
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relationship of citation, authorization, etc. Each type of node/edge
has its own set of attributes. Analyzing the heterogeneous multi-
variate network can lead to more insights than its homogeneous
univariate counterpart. Besides knowing the authors in the center
of a co-authorship network, it is also possible to detect the
authors with highly cited papers at prestigious venues.

Visualizing heterogeneous multivariate networks is techni-
cally challenging. First, bringing multiple types of information
together in real-world scenarios makes the underlying network
large and complex. To allow users to perceive the overview of
the network, there is the summarization problem: how to create
the visual abstraction of a large heterogeneous network with
both topology and attribute information? The popular multi-scale
visualizations by the hierarchical graph clustering (Auber et al.,
2003; Abello et al., 2006) serve large-scale networks well, but
do not consider the additional node/edge attributes. Second, the
multivariate nature of the network prohibits the visualization
of all details of the topology and attribute information in the
same picture. There is the navigation problem: which interaction
model to apply to guide users from an initial high-level visual
abstraction to detecting and analyzing the low-level network
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Fig. 1. OnionGraph interface showing the bibliographic network in the visualization community. (a) Main OnionGraph panel visualizing the author-paper-venue
network. Venues (right column) are expanded into single journal/conference entities; papers (central column) are expanded by their citation counts; authors (left
column) are expanded by their neighborhood attributes, i.e., the publication profile of low/medium/high-citation papers. The layout improves PivotGraph grid-like
layout (Wattenberg, 2006). (b) Abstraction control panel. The current abstraction profile is applied on the selected author group in the main panel. (c) Filter panel
configured to only show authors who publish more than 10 papers, and edges which connect author-paper (‘‘authorize’’ type) and paper-venue (‘‘publish’’ type). (d)
Legend panel showing the icons used in the current abstraction. (e) The selected node (author) list. (f) Details of ‘‘Kaufman, A’’, all the statistics (e.g., h-index) are
computed within the visualization community.

and its attribute pattern? For example, in the multi-scale net-
work visualization, the hierarchy-traversing model is applied for
exploring the network structure.

Despite a wealth of literature in the network visualization
research (Herman et al., 2000; Battista et al., 1998), only a few
are designed for multivariate networks. PivotGraph (Wattenberg,
2006) and OntoVis (Shen et al., 2006) are early works addressing
such needs. They generate visual abstractions using either the
network topology or node attributes, but not both. Moreover,
they focus on the static abstraction, but do not support the
interactive network exploration. Essentially, existing visualization
methods fail to deal with heterogeneous multivariate networks.
First, the algorithm to summarize the network based on either
topology or attribute information alone will not produce consis-
tent node clusters. For example, by topology-based graph clus-
terings, each cluster indicates a group of nodes with denser in-
ternal connections than external ones. Nevertheless, these dense
node groups can have rather diversified internal attribute dis-
tributions. Second, the standard hierarchy-traversing interaction
model works well on topology-based clusterings where each
cluster has a self-contained local structure. On heterogeneous
networks, the hierarchy-traversing interaction may not be ap-
propriate, as the cross-cluster connections are sometimes more
important than the internal ones.

In this paper, we present OnionGraph,1 an integrated frame-
work for the exploratory visual analysis of large, multivariate and
heterogeneous networks. Fig. 1 gives an overview to the Onion-
Graph visualization interface. The main panel in Fig. 1(a) depicts
a sample OnionGraph network abstraction. Each node group in
the view is associated with an abstraction profile in five possible
hierarchies ranging from the top/coarsest-level heterogeneous
abstraction to the bottom/finest-level per-node granularity. This
profile is customized by users through the abstraction control

1 The ‘‘onion’’ notation is also used in Sindre et al. (1993). However, both the
visual metaphor and the application are significantly different.

panel (Fig. 1(b)). The network abstraction can be further simpli-
fied by node/edge attribute filters (Fig. 1(c)), and the interesting
part of the network is enlarged for analysis.

This work makes three contributions. First, we invent the hi-
erarchical topology+attribute abstraction on heterogeneous mul-
tivariate networks, and develop the focus+context interaction
model in navigating these abstractions (Section 3). Users can
micro-manage the abstraction profile on each group of nodes
to generate a fully customized network visualization, which can
potentially reveal novel patterns. Second, we propose a suite
of network partition/clustering algorithms organized in a top-
down manner to generate such hierarchies in the abstraction
(Section 4). These algorithms explicitly combine the topology and
attribute information while guaranteeing a finer granularity as
the user drills down to a lower hierarchy. Third, we introduce the
‘‘onion’’ visual metaphor to naturally represent the node group in
the resulting network abstraction (Section 6). Notably, we design
an information-theoretic framework to guide users in navigating
the OnionGraph abstraction (Section 5). Our framework is evalu-
ated in three real-world information networks (Section 7). All re-
sults demonstrate the effectiveness of OnionGraph in exploratory
tasks over large, heterogeneous and multivariate networks.

2. Related work

This section summarizes the literature on multivariate net-
work visualization. While there are a few surveys on this topic
very recently, e.g., the book by Kerren et al. (2014) and the STARs
paper by Hadlak et al. (2015), we take a different view by clas-
sifying the literature according to the classical InfoVis reference
model (Card et al., 1999). As shown in Fig. 2, it is found that
most related work can be categorized into five processing stages.
There is only one modification to the original InfoVis model after
incorporating the concept in the data state model (Chi, 2000):
in the first stage, we separate the data transformation serving
for the network generation from the visualization transformation
which simplifies the network for the effective visualizations.
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Fig. 2. Taxonomy of multivariate network visualization literature by the InfoVis reference model.

2.1. Data transformation

The first class of techniques cover the algorithm and frame-
work on the data transformation from multiple raw data sources
to multivariate graphs and networks, which our OnionGraph
framework can take as the input. The Ploceus system by Liu
et al. (2011) proposed an interactive interface for this purpose.
It helps to construct networks over the tabular data for visual
analysis. A comprehensive set of elemental operations are defined
in Ploceus, consisting of both the low-level network generations
and the high-level visualization transformations. The Orion sys-
tem by Heer and Perer (2011) is similar to Ploceus in that it
also generates networks from raw data tables. Compared with
Ploceus that relies on the human supervision in the process, Orion
supports semi-supervised network construction by automatically
computing feasible network paths from a linking graph. In an-
other approach of the attribute relationship graph by Weaver
(2010), the construction of multivariate graphs is further com-
bined with cross-filtered views to enable the effective discovery
and dissection of the relationship data. The NetLens interface
by Kang et al. (2007), though not designed to explicitly display
relationships, introduced the content-actor model that captures
the essence of many real-life multivariate networks.

2.2. Visualization transformation

Same with the data transformation, the output of the visual-
ization transformation is again the multivariate graph. The major
difference lies in that the input of this stage is already the graph
data, and the goal is to simplify the large and complex graph for
effective visualization. The idea of abstracting network topologies
has been intensively studied in the literature, by applying graph
clustering (Quigley and Eades, 2000; Abello et al., 2006), motif
simplification (Dunne and Shneiderman, 2013) or graph compres-
sion techniques (Shi et al., 2013; Dinkla et al., 2012) (see the
survey in Elmqvist and Fekete (2010)). On the attribute-centric
transformation over multivariate networks, Wattenberg (2006)
pioneered PivotGraph. It leverages a roll-up operation to pivot the
nodes with the same value on one or two user-selected attributes
into node aggregations. In another data selection operation, the
network can be reduced to only node aggregations with spec-
ified attribute values. OntoVis by Shen et al. (2006) proposed
the method of semantic and structural network abstraction over
the ontology graph of heterogeneous social networks. On the
attribute analysis, the network is filtered by selected nodes in the
ontology graph. On the structural abstraction, OntoVis provides
methods such as degree-one node and duplicate path reductions.

The OnionGraph framework shares the similar idea to abstract
multivariate networks by node attributes. Beyond the singular
attribute-centric aggregation in PivotGraph and the separate se-
mantic/structural abstraction in OntoVis, OnionGraph allows the
node aggregation by a combination of the topology and attribute
information.

2.3. Visual mapping and representation

By comparing with the popular node-link visual metaphor de-
sign, we classify the visual representation method of multivariate
networks into three classes: the singular node-link design, the
hybrid approach combining the node-link graph with non-graph
visual metaphors, and the non-graph design. For the singular
node-link design, the additional node/edge attributes are either
encoded into separate visual channels (Wattenberg, 2006; Tomin-
ski et al., 2009; Auber, 2004;node size, color, link thickness, etc.),
or they are revealed by the node placement via the attribute-
driven graph layout (discussed later in the view transformation
stage).

On the hybrid approach, GraphDice by Bezerianos et al. (2010)
introduced the scatterplot matrix design in visualizing multivari-
ate social networks. Each node attribute on the network behaves
as one row/column in the scatterplot matrix. The correlation
between each pair of attributes is shown in the intersection of
the matrix, where a node-link graph of the whole network is
replicated. On multivariate state transition graphs, Pretorius and
Van Wijk invented the bar tree to visualize both the clustering
hierarchy and the metric data on graph nodes (Pretorius and van
Wijk, 2006). Later, they introduced the parallel coordinates like
visual metaphor in Pretorius and van Wijk (2008). The source
and target nodes are aligned on two parallel coordinates which
are clustered hierarchically according to node attributes. The
GraphScape method by Xu et al. (2007) superimposed a landscape
metaphor over the 2D node-link graph to visualize multivariate
networks. The additional node attribute is displayed by the sur-
face height in the third spatial dimension. FacetAtlas by Cao et al.
(2010) overlays a contour map on the node-link representation
to display the local context of multivariate networks.

Another sub-class of the hybrid approach juxtaposes the node-
link graph with other visual metaphors in coordinated multiple
views. Interactive visual queries and filters are often enabled
for the iterative analysis over multivariate networks. For exam-
ple in the attribute relationship graph (Weaver, 2010), cross-
filtered views including the node/edge/attribute lists and the
attribute correlation scatterplot, are displayed side by side, with
the attribute relationship graph shown in the main view. In Ko
et al. (2014), the node-link graph is overlaid on a geographi-
cal map and coupled this visualization with several coordinated
views to display the associated spatial, temporal and contextual
information.

The last class of methods replace the node-link graph design
with other visual metaphors. ZAME by Elmqvist et al. (2008)
proposed the adjacency matrix visualization through the use
of multi-scale data aggregation. Edge attribute statistics on the
aggregation are displayed on matrix tiles by eight types of glyphs
designed for different tasks. NetLens (Kang et al., 2007) creates
a series of statistical charts (e.g., bar charts) upon elemental
attribute queries to serve the attribute-centric analytical tasks
over multivariate networks. GraphTrail by Dunne et al. (2012)
exhibits the similar statistical chart design to illustrate node/edge
attributes. By linking sequential network attribute views into a
trail, it enables the user to surf within the analysis history.
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2.4. View transformation

View transformations in the InfoVis reference model include
three sub-classes of methods: location probes, viewpoint controls
and distortions. On multivariate networks, the first sub-class of
the location probe is the most popular, which uses graph layouts
to reveal the attribute information on networks. This is referred
to as attribute-driven layouts.

PivotGraph (Wattenberg, 2006) proposed the grid-based lay-
out which places each node by its value on one or two se-
lected node attributes. The parallel coordinates metaphor can
be viewed as an extension of this grid-based layout in that one
coordinate is determined by the node type and another by the
sorting attribute on each node type. Typical examples include
Jigsaw (Stasko et al., 2008), PivotPaths (Dork et al., 2012), and
state transition graphs (Pretorius and van Wijk, 2008). Seman-
tic Substrates by Shneiderman and Aris (2006) introduced the
user-defined layout by placing all the nodes into several non-
overlapping regions according to one specified categorical node
attribute. Essentially, many other types of node attribute, beyond
numerical and categorical ones, can be used to drive the graph
layout, such as the geographical information (van den Elzen and
van Wijk, 2014).

Some attribute-driven layouts further incorporate the net-
work structure to preserve the topology to some extent. Graph-
Scape (Xu et al., 2007) modified the original spring-electrical
force-directed model to reveal the attribute affinity on graph
nodes. Wu and Takatsuka (2006) visualized multivariate net-
works on the surface of a sphere by the 3D self-organizing map.
JauntyNets (Jusufi et al., 2013) creates attribute nodes and places
them in the circle around the main graph view. The nodes with
attribute value above certain threshold are linked with the corre-
sponding attribute node to plug-in the attribute information into
the topology-based layout.

2.5. Interaction

Interaction controls are often integrated into the process-
ing stages mentioned above. On the data transformation, Pivot-
Graph (Wattenberg, 2006) allows users to pick a pair of node
attributes to roll-up and to query by node attribute values for
the sub-graph selection. On manipulating graph views, the lat-
est interaction technique from Detail to Overview via Selection
and Aggregation (DOSA) (van den Elzen and van Wijk, 2014)
proposed the method to directly brush and/or select on the
attribute-driven graph layout, and then aggregate the selected
nodes by the PivotGraph-like transformation. On visualizing net-
work attributes, NetLens (Kang et al., 2007) offers interactions
to iteratively refine the query on multivariate networks. Graph-
Trail (Dunne et al., 2012) integrates the multiple chart design
with the drag-and-drop interaction to capture the user’s explo-
ration history.

Another thread of relevant interactions target at manipulating
network hierarchies, mostly the hierarchy navigation and editing.
Elmqvist and Fekete (2010) classified the hierarchical aggregation
based visualization into five types: above traversal, below traver-
sal, level traversal, range traversal and unbalanced traversal. The
navigation methods generally work to change the hierarchy set-
ting within each type of the classification or switch between two
different types. Auber et al. (2003) proposed the method to start
from an above traversal and leverage an overview+detail navi-
gation to create a below/range traversal. ASK-GraphView (Abello
et al., 2006) allows the user to click on each node aggregation
to expand under any traversal type and finally generates an
unbalanced traversal. Topological Fisheye (Gansner et al., 2004)
enables an interactive switching among unbalanced traversals
by specifying focuses on the network. GrouseFlock (Archambault
et al., 2008) provides high-level hierarchy modification operators
based on the low-level delete and merge operations.

3. OnionGraph Framework

3.1. Principle

Hierarchical Topology+Attribute Abstraction. As mentioned,
neither the attribute-based nor the topology-based network visu-
alization method alone can serve the exploratory analysis tasks
such as ‘‘Is there any VAST paper heavily cited by both TVCG
and CGF papers?’’. Moreover, a flat combination of these two
methods leads to fragmented network abstractions. For exam-
ple, partitioning a social network according to both the user’s
community and their profile generates too many tiny clusters to
be interpretable. In OnionGraph, we introduce the hierarchical
topology+attribute abstraction principle. In high-levels, the orig-
inal large multivariate network is aggregated by the semantic
information (the node type and attributes). Interesting part of this
network abstraction can be further drilled down into lower levels
by exploiting topological features, both interactively and in-situ
on the same abstraction view. The full picture of the abstraction
is illustrated in Fig. 3 and more details are given in Sections 3.2
and 4.

Such a hierarchical design achieves the level-of-detail view-
ing on multivariate networks in that each lower-level hierarchy
presents significantly more network details than its parent hi-
erarchy. This is also why the semantic aggregation (level-I/II) is
placed on top of topological methods (level-III/IV) in the design
of the five-level hierarchy. With the appropriate node attribute
selection and an optional binning operation, semantic aggregation
can always create a compact abstraction of the entire network.
On the other hand, most real-world networks have limited topol-
ogy redundancy. Compressing these networks by topology-only
methods leads to yet another cluttered network.

Focus+Context Exploration. State-of-the-art hierarchical net-
work visualization methods assume a pre-computed hierarchy
either by algorithms or by the inherent data organization. User
explorations are limited to traversing fixed trails according to the
hierarchy. This places many constraints on the analytics capabil-
ity. Moreover, the network hierarchies, such as those by graph
clustering, are sensitive to the parameters applied. Users can
hardly understand why some parts of the network are grouped
together.

In contrast, OnionGraph features the user-defined focus+
context visual exploration design. First, we apply well-defined
network abstraction algorithms by the topology+attribute princi-
ple. They generate network partitions without any unambiguity.
Users are guided by algorithm heuristics, so that they can under-
stand the output in exploring each network hierarchy. Second,
multiple exploration steps can be spliced on the fly, then users
can define the analysis flow and generate the customized view on
demand according to different tasks and network characteristics.
For example in Fig. 3, after a few steps of user navigation, a
stratified network view having different levels of abstraction
is created on demand to serve the complicated multivariate
network analysis tasks.

Local Refinement + Global Filtering. In the OnionGraph ex-
ploration, each higher-level node is expanded in-situ into lower-
level sub-nodes, leading to a local refinement approach. Fol-
lowing the visual information seeking mantra (Shneiderman,
1996), OnionGraph also implements attribute filters on network
nodes/edges to let the user focus on important information. In
the straightforward design, a separate filter can be attached to
the profile of each local refinement, however, in reality users
can hardly remember the detail of each filter. Therefore, it is
hard to restore the network that is filtered entirely, as the filter’s
setting only governs the local network and cannot be accessed for
changes. Finally, we adopt the global filtering mechanism which
applies the same filter on the entire network. The filtered network
is subsequently abstracted according to OnionGraph settings.
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Fig. 3. OnionGraph data structure featuring five hierarchies below the original
network: networks by semantic aggregations (SA) on node type (heterogeneous
abstraction) and node attributes, Relative Regular Equivalence (RRE), Strong
Structural Equivalence (SSE), and the node-level network in the finest granu-
larity. In each hierarchy, the network can be expanded on certain focuses (red
regions) into their lower-hierarchy details (blue regions). (For interpretation of
the references to color in this figure legend, the reader is referred to the web
version of this article.)

3.2. Data structure

Fig. 3 shows the five-level hierarchy of OnionGraph: the se-
mantic aggregations (SA) in level-I/II are semantic, the level-III
Relative Regular Equivalence (RRE) combines semantic and topo-
logical information, the level-IV Strong Structural Equivalence
(SSE) is mostly topological.

In more details, the level-I abstraction groups the original
network by the node type, level-II abstractions consider the cat-
egorical/nominal node attributes. Once a set of attributes are
selected, the network is aggregated by grouping all the nodes
with the same value on these attributes together. The network
links are formed accordingly. In level-III, the RRE method extracts
role sub-groups from the higher-level semantic aggregation. The
role in the network is defined recursively in that, the nodes with
the same set of roles in their neighborhood are considered having
the same network role. The initial role partition is constructed
through the semantic aggregation. The SSE method in level-IV
is similar to RRE, except that the role definition is different. It
defines the nodes having exactly the same set of neighborhoods
to preserve the same role. The SSE role definition is stricter than
that of RRE which only considers the role of neighborhoods.
In the finest node-level (level-V), each SSE node group is split
into individual network nodes, rolling back to the input network
granularity.

3.3. Hierarchical navigation

An example of the OnionGraph navigation trail is shown in
the bottom-right part of Fig. 3. By the interactive exploration,
users can create multiple, hierarchical focuses over the network
abstraction. Each focused sub-network is associated with an in-
dependent user-defined abstraction profile. The profile specifies
both the current network hierarchy and the abstraction setting.
In the OnionGraph visualization, the focused sub-network is ex-
panded in-situ by the focus+context principle. The network view
in the middle can juxtapose sub-networks with multiple hier-
archy settings. This is quite different from the overview+detail

network visualization and the hierarchy-traversing navigation
that do not preserve context. More details on the actual user
interaction are introduced in Section 6.2.

4. Algorithm

We implement the OnionGraph abstraction through a suite
of algorithms that partition the network into node groups in
multiple levels. To describe these algorithms, we first introduce
the notations used throughout this section.

Heterogeneous Multivariate Network. Let G = (V , E) be a
directed and weighted network, where V = {v1, . . . , vn} and
E = {e1, . . . , em} denote the node and link sets. Define W as
the adjacency matrix where wij denotes the link weight and
wij > 0 indicates a link from vi to vj. On each node vi, let
N+(vi) = {j|wij > 0} and N−(vi) = {j|wji > 0} be its outbound
and inbound neighborhood set, both representing the node’s con-
nection pattern. Let D = {d1, . . . , ds} be the type and attributes
of the network nodes in G, with s dimensions in total. D(vi) =

{d1(vi), . . . , ds(vi)} denotes the type/attribute vector of the node
vi, where dk(vi) is the value on the kth dimension.

Network Partition. Let P : V → {1, 2, . . . , t} be a partition
function (role assignment, coloration, or grouping interchange-
ably) of the network G into t groups of nodes. P(vi) returns the
group index of node vi after the partition. The algorithms to
create the OnionGraph abstraction are equivalently defined by
the network partition achieved. Below we describe these partition
functions, their actual implementation, as well as the running
performance.

4.1. Semantic aggregation

Semantic Aggregation (SA) creates partitions of the network
by the selected set of node type or attributes. Formally, for any
nodes vi and vj in a network G, given the selected attribute set
D ⊆ D, the semantic aggregation network partition P satisfies:

P(vi) = P(vj) ⇔ D(vi) = D(vj) (1)

Fig. 4(a) illustrates such a partition based on the node attribute
having values ‘‘I’’ or ‘‘II’’.

In OnionGraph structure (Fig. 3), the level-I abstraction is by
SA partition using the node type. For example in Fig. 9(a), an
initial OnionGraph view of the bibliographic network shows three
node-type groups, i.e., papers, authors and venues. The level-
II abstraction also follows the SA partition, but works over the
user-selected node attributes. Multiple network hierarchies can
be created when these attributes are applied sequentially.

4.2. Relative regular equivalence

The original regular equivalence concept is defined recur-
sively on the network node by the same set of neighborhood
roles (White and Reitz, 1983). For any nodes vi and vj in a network
G, a regular equivalence network partition P satisfies:

P(vi) = P(vj) ⇒ P(N+(vi)) = P(N+(vj))and P(N−(vi)) = P(N−(vj))

However, directly applying the regular equivalence on a net-
work leads to many possible partitions. Fig. 4(b) gives a particular
case. In the extreme, the identity partition (each node has a differ-
ent role) and the complete partition (each node has the same role)
are both regular. In OnionGraph, motivated by the hierarchical
design, we propose a practical solution to apply Relative Regular
Equivalence (RRE) on top of the existing SA partition. Formally,
the RRE partition P over a SA partition P0 satisfies:

P(vi) = P(vj) ⇔ P0(vi) = P0(vj) and
P0(N+(vi)) = P0(N+(vj)) and P0(N−(vi)) = P0(N−(vj))

(2)
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Fig. 4(c) gives an example of the RRE partition relative to the SA
partition in Fig. 4(a).

4.3. Strong structural equivalence

More stringent to the regular equivalence, Strong Structural
Equivalence (SSE) partition (Lorrain and White, 1971) requires
the network nodes to have exactly the same neighborhood set.
For any nodes vi and vj in a network G, the SSE network partition
P over a RRE partition P0 satisfies:

P(vi) = P(vj) ⇔ P0(vi) = P0(vj) and
N+(vi) = N+(vj) and N−(vi) = N−(vj)

(3)

Besides the above definition on the directed networks, there
are other variations of the RRE/SSE partition. The undirected
RRE/SSE (Fig. 4) considers the union of inbound and outbound
neighborhood sets, the weighted RRE/SSE considers the num-
ber of neighborhood role occurrences (RRE) and the weight of
the connecting edges (SSE). These options are included in the
OnionGraph design and configurable by the user.

4.4. Fuzzy equivalence

In many real-world cases, the strict RRE/SSE partition leads to
an excessive number of groups as these networks are too complex
to have strict structural equivalences. We introduce the fuzzy
RRE/SSE partition which allows users to control the number of
partitions in the abstraction.

The first step is to represent each node vi by its neighbor-
hood vector R(vi) = {ci1, . . . , cit , c1i, . . . , cti}. For RRE, t is the
number of roles out of the upper-level SA partition. For SSE, t
is the number of nodes in the network. For unweighted RRE/SSE,
cij(cji) = {0, 1} denotes whether the jth role/node is present in the
outbound (inbound) neighborhood set of node vi. For weighted
RRE, cij(cji) denotes the number of occurrence of the jth role in
the neighborhood of node vi. For weighted SSE, cij(cji) denotes the
weight of the edge connecting vi and vj. In a normalized setting,
the neighborhood vector is refined by cij = cij/

∑
j=1,...,t (cij + cji).

Next, over all the nodes to be partitioned, a pairwise similarity
score is computed using the node’s neighborhood vector. Though
there are many candidate criteria, we choose the Euclidean dis-
tance, because we care the similarity in both orientation and
magnitude. Finally, to compute the fuzzy equivalence partition,
we apply the k-means clustering algorithm (MacQueen, 1967).

4.5. Implementation and performance

For deterministic OnionGraph abstractions, we introduce a
unified method to compute the partition at all five levels. The
core concept is the design of the row vector, representing both
the semantic and topological information on each node. As shown
in Fig. 5, the row vector is composed of the node attribute
(type) field, the neighborhood relationship, as well as an explicit
node identifier when the network is partitioned into per-node
groups. The extensions of partition algorithms, e.g., directed and
weighted partitions, are supported by design. Finally, the network
partition is achieved through an appropriate hash function over
the row vectors of all the nodes. This implementation has a linear
complexity of O(m+ dn), where n, m, d are the number of nodes,
links, and node attribute values of the input network.

The fuzzy equivalence computation using the k-means clus-
tering has an intrinsic complexity of O(k · n · d · l). Here k is the
number of desired clusters and l is the number of iterations in the
computation, generally small for most graphs. n is the number of
nodes in the network. d is the maximal number of dimensions of
the neighborhood vector. For fuzzy RRE, k, l and d are bounded,

Table 1
OnionGraph network abstraction performance.
Dataset Version #Node #Link SA (s) RRE (s) SSE (s)

VASTC D 2596 36669 0.058 0.19 0.25
Vis-Bibli. D 20615 106316 0.22 0.75 1.16
Vis-Bibli. F 20615 106316 N/A 1.04 111.89
Twitter D 306126 1424427 2.26 4.60 12.20
Twitter F 306126 1424427 N/A 7.08 >1000
Honeypot D 1051595 1158150 12.06 19.90 27.43
Honeypot F 1051595 1158150 N/A 59.08 >1000

therefore still holds a linear computational complexity. For fuzzy
SSE, d = n, the complexity is quadratic to the number of nodes
and is slow for large networks.

We evaluate the OnionGraph performance on a Windows
desktop (Quad-core Intel Xeon@3.30 GHz with 6 GB of memory).
Four heterogeneous network data sets from medium to large size
are used as the input for the abstraction, as shown in Table 1. In
the same table, the abstraction time by SA, RRE and SSE partitions
are presented. These results suggest that our theoretical analyses
correspond well with the actual performance. The completion
time of the deterministic version (D) of all three partitions is
almost linear to the number of nodes and links. The slowest SSE
partition completes in 27 s on a network with a million nodes
and links. In the fuzzy version (F, with five clusters) of partitions,
there are moderate penalties on the RRE, but the running time
becomes too long for SSE, even on a medium-size 20000-node
network.

5. Information-theoretic navigation

In the initial proposal, the OnionGraph navigation is achieved
through the focus+context user interactions. These interactions
can provide a full flexibility to customize the network abstraction
based on the analysis tasks, however, require user’s prior knowl-
edge on the underlying network to plan the navigation path. This
can be difficult, if not impossible, for users working with either a
new data set or explorative analysis tasks.

Motivated by this problem, we develop another suite of nav-
igation techniques that automatically recommend the optimal
navigation path and guide users in their network discovery trail.
The key idea is to model the multivariate network navigation pro-
cess using the information theory. Recently, information theory
has been introduced to the visualization community to interpret
the visualization process (Chen and Jäenicke, 2010) and to cor-
respond elements of data visualization with those in the data
communications (Wang and Shen, 2011). Specially in scientific
visualization, the concept of entropy is used to locate important
regions in the volumetric data, such as selecting the optimal
view (Bordoloi and Shen, 2005; Takahashi et al., 2005), improving
the LOD map (Wang and Shen, 2006) and automatically focus-
ing on important features (Viola et al., 2006). Similarly in the
information visualization, information theory has been applied
to help present and explore multivariate and time-varying data
sets (Biswas et al., 2013; Wang et al., 2008, 2011). Despite the
existing literature, to our knowledge, the principle of information
theory has not been considered in the navigation of multivariate
networks.

5.1. Information entropy model

Denote the original multivariate network by a random vari-
able G and its abstraction under a given OnionGraph setting
by another random variable C . Without loss of generality, all
instances of G are assumed to be undirected and unweighted. The
directed case will be a plain extension of the study here, while
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Fig. 4. OnionGraph partitions on the undirected network. In each subfigure, node colors indicate the partition index: (a) semantic aggregation, the selected attribute
value is labeled on each node; (b) a sample of the regular equivalence partition; (c) the regular equivalence partition relative to the semantic aggregation in (a); (d)
strong structural equivalence partition. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Row vector design in OnionGraph. NG = per-node group.

the weighted case is more sophisticated and will be a subject of
future work. We derive the information gain of seeing G and C by
their information entropies which are defined as H(G) and H(C).
Take H(G) as an example, by the information theory, it is written
as:

H(G) = −

∑
i

pi log pi (4)

where pi denotes the probability for G to be its ith feasible graph
instance gi.

The computation of H(G) and H(C) can be complicated, which
relates to the theory of graph enumeration and compression.
Fortunately, to model the navigation process of OnionGraph, we
do not need to calculate H(G) and H(C). Instead, we focus on
the conditional entropy of H(G|C), which defines the remaining
information of G given (i.e., after seeing) the instance of the
abstraction C . By the chain rule of information theory (Cover and
Thomas, 2006), we have

H(G, C) = H(C) + H(G|C) = H(G) + H(C |G) (5)

where H(G, C) represents the joint entropy of G and C . Because
the OnionGraph abstraction C is uniquely constructed from the
original network G if the OnionGraph setting is known, we have
H(C |G) = 0. Eq. (5) becomes

H(G|C) = H(G) − H(C) (6)

This shows that H(G|C) explicitly quantifies the additional infor-
mation users can obtain from G beyond the initial abstraction
C . The conditional entropy also captures the maximal possible
information gain during the navigation process over C . On the
opposite side, H(G|C) can be viewed as the uncertainty of the
graph abstraction C given the many possible original full network

G. Fig. 6 illustrates the relationship of the above mentioned quan-
tities, as well as their dynamics during the OnionGraph navigation
process. When the initial abstraction of C is expanded gradually
to the full network G, users gain more information whereas the
uncertainty of the abstracted visualization drops.

In the application, the value of H(G|C) is not enough to serve as
the guide to the network navigation process, because users need
to know where to expand/collapse on the abstraction. We follow
up to decompose H(G|C) into

∑
i H(πi|C), where πi ∈ C denotes

the ith node group in the abstraction C and H(πi|C) denotes the
conditional entropy of the connections of all the nodes in πi given
C . H(πi|C) represents the uncertainty attached to the node group
πi. Computing H(πi|C) involves the examination of all possible
connection cases of nodes in πi. Consider the network abstraction
in Fig. 7(a) as an example, the node group π0 is expanded into
three original nodes {v1, v2, v3}. A more general case is given
in Fig. 7(b) where the node group πi contains N original nodes
{v1, . . . , vN} and connects to d adjacent node groups π1, . . . , πd.
The d corresponding edge groups have the size ofM1, . . . ,Md. The
loop edge group from πi to itself has a size of M . By the principle
of maximum entropy, we assume an equal probability for each
connection case, and compute H(πi|C) by

H(πi|C) = −

∑
i

pi log pi = −

#Case∑
i=1

log 1
#Case

#Case
= log #Case (7)

Here #Case denotes the number of possible connection cases
of πi. To compute #Case, we notice that in the general setting of
Fig. 7(b), each possible connection case of πi can be defined by
N + 1 case variables. The first N variables are the neighborhood
vector of all original nodes in πi, denoted by Rj for vj (j ∈ [1,N]).
Rj defines the number of connections between vj and all the d
neighboring node groups of πi. The last case variable by G(πi)
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Fig. 6. The dynamics of information gain and uncertainty in the navigation from the abstraction (C) to the original network (G).

Fig. 7. The expansion of node groups in the OnionGraph abstraction. The size of node/edge groups are labeled unless a trivial size of one: (a) a sample case; (b) the
general case.

defines the internal graph structure of πi. Each connection case
is feasible if its case variables satisfy a few constraints subject
to the given size of node groups (N1, . . . ,Nd) and edge groups
(M1, . . . ,Md). As shown in Fig. 7(b), the constraints by the group
edge from πi to π1 is exactly a restricted version of the weak

composition of M1 by N nonnegative integers (Eger, 2013). In Ap-
pendix A, we show that the restriction by N1 will not reduce the
number of feasible cases much. The computation of #Case then
degenerates to d standard weak composition problems. The num-
ber of cases by solving each problem is given by (8). Additionally,



L. Shi, Q. Liao, H. Tong et al. / Visual Informatics 4 (2020) 43–57 51

on the internal graph structure of πi, the expanded graph should
have exactly N nodes and M edges, where the number of cases
is computed by (9). Approximations are introduced assuming a
large N .

#Case_by_(Mj,Nj) =

(
Mj + N − 1

N − 1

)
≈

(Mj + N)!
N!Mj!

(8)

#Case_by_G(πi) =

(
N(N − 1)/2

M

)
≈

(N2/2)M

M!
(9)

Summing together, the conditional entropy of πi becomes

H(πi|C) = log(#Case_by_G(πi) ×

∏
j=1,...,d

#Case_by_(Mj,Nj))

= M logN2/2 − logM!N!
d
+

∑
j=1,...,d

[log (Mj + N)!/Mj!] (10)

The computational complexity is O(M + N + maxMj). Using
Stirling’s approximation in (11), it is reduced to O(1).

logN! ≈ N(logN − 1) + log
√
2πN (11)

In the OnionGraph visualization, H(πi|C) is displayed on each
node group as a visual hint of the unobserved information beyond
the network abstraction C . As shown in Fig. 9(b), the author
and paper node group with larger conditional entropies will be
drawn in more opaque colors than all the venue nodes, which
contain zero unobserved information. On the other hand, during
the interactive analysis with OnionGraph, users are more likely to
proceed from an initial abstraction to an expansion state in the
middle. They hardly reach the full details of the original network.
In this sense, H(πi|C) is still not the most appropriate metric to
guide each single step of the network exploration. In the follow-
ing, we base on the proposed information entropy model and
introduce two new information-theoretic OnionGraph navigation
methods by maximizing the change of the conditional entropy.
These methods provide users with the largest information gain
in their navigation process.

5.2. Guided semantic aggregations

On the OnionGraph abstraction C , consider the scenario that
users want to drill down on the node group πi to check its
detailed connections and suppose that they will apply the se-
mantic aggregation in the next-level abstraction. In case the node
attribute D is used, we define the corresponding sub-groups ex-
panded from πi by W = {ω1, . . . , ωc}. User’s information gain in
this process can be modeled by the decrease of the conditional
entropy:

I(πi → W |C) = H(πi|C) −

c∑
i=1

H(ωi|(C − πi) ∪ W ) (12)

where (C − πi) ∪ W denotes the network abstraction after ex-
panding πi to W . H(ωi|(C − πi) ∪ W ) can be computed similar to
H(πi|C).

On exploring the abstraction C with the semantic aggregation,
the key user choice is which node attribute to apply in the
expansion. Denote all feasible node attributes by D1, . . . ,Dd and
the corresponding sub-groups expanded from πi by W1, . . . ,Wd.
According to the information theory, the attribute that leads to
the largest information gain will be the best choice. This is then
recommended to the user. The optimal node attribute can be
formally defined as

argmax
j

I(πi → Wj|C) (13)

In the visualization design, after users select part of the net-
work abstraction for the semantic aggregation, the information
gain by applying each feasible node attribute is pre-computed and
visually mapped to the attribute selector as the information hint.
An example is shown in the OnionGraph abstraction control panel
of Fig. 9(b).

5.3. Optimal network partitions

In another scenario, users choose to adopt the fuzzy equiva-
lence based partition (the level-III/IV OnionGraph abstraction) on
the node group πi. They need to specify the number of sub-groups
to divide, which can be difficult without the prior knowledge on
the underlying network. Here we apply the information-theoretic
approach, which automatically computes the optimal number of
sub-groups by maximizing the information gain in the navigation
process. Note that there is a subtle difference from the case of the
semantic aggregation. As the number of sub-groups increases, the
perceived information gain will grow asymptotically to the full
value of H(πi|C). The maximal gain will be achieved when the
node group πi is split thoroughly into original nodes, which may
not meet the user’s requirement.

To solve this problem, we introduce a new information-
theoretic metric, namely the information efficiency, which is
defined as the average information gain obtained by each new
sub-group (visual element). Suppose the node group πi is divided
into k sub-groups defined as W (k), the final choice to maximize
the information efficiency is given by

argmax
k

I(πi → W (k)
|C)

k − 1
(14)

6. Visualization

Fig. 1 illustrates the OnionGraph user interface. It is com-
posed of three parts: OnionGraph visualization in the center
(Section 6.1), the control/filter panel on the left and the leg-
end/list/detail panel on the right (Section 6.2).

6.1. Oniongraph visual metaphor

A typical OnionGraph visualization is shown in Fig. 8 by ab-
stracting the bibliographic network. Each node in the view rep-
resents a group of individual nodes from the original network.
The initial SA abstraction aggregates all the nodes into three
type-based groups (‘‘author’’, ‘‘paper’’ and ‘‘venue’’, as shown in
Fig. 9(a)). These groups are drawn in filled nodes where the fill
color and the icon on the top-right of each node indicate the node
type. In Fig. 8, the spring-green node in the center represents all
9557 papers. All the other nodes in Fig. 8 have been drilled down
from the top-level heterogeneous abstraction. They are drawn
by the ‘‘onion’’ metaphor composed of several concentric circles.
The number of circles indicates the abstraction hierarchy: the SA
group on node attributes has three circles (e.g., the venue nodes
in Fig. 8), RRE has two (e.g., the author nodes in Fig. 8), SSE
has one, the individual node only leaves a solid dot. Upon the
top-down exploration, the visual complexity of each node group
in OnionGraph is reduced whereas the number of node groups
increases, so as to keep the overall complexity of the OnionGraph
view in a sustainable level.

In OnionGraph visualization, the size of the node encodes the
number of individual nodes inside the group. Note that we apply
normalization here, each group size is divided by the total num-
ber of nodes in the same node type. The visual result is a balanced
view that will not bypass the minority node type (e.g., the venues)
and still show variations on the group size. The color of each node
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Fig. 8. An OnionGraph visualization of the author-paper-venue bibliographic
network in the visualization community. Three yellow groups indicate the
authors with different connection patterns: normal authors with co-authors
and publications, special authors who only write single-authored papers, and
anomalous authors without a publication (potential errors in the data set). Four
indigo groups indicate the venues (conferences/journals) on different topics. The
spring-green group indicates all the papers. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this
article.)

is determined by the type/attribute values of each node group.
Initially on the AS abstraction by node type, the colors are picked
uniformly on the color hue. After the expansion of the top-level
node group into sub-groups, new colors are assigned with linear
hue and saturation offsets from the original group. An example is
shown by the legend in the bottom-left part of Fig. 8. The node
label by default displays the value of the node type/attributes
used for the abstraction. When the node group contains only one
node, the node title is used as the label. The selected nodes are
drawn with dark-red outlines and labels, coupled with a ‘‘+/−’’
sign upon mouse hovering to indicate the potential lower/upper
level to explore. The link thickness and the link label encode the
number of individual links between the node groups. Different
from the ordinary network, OnionGraph usually has a loopback
link on each node group indicating the internal connection, as
shown by the arc above the node.

6.2. Interaction

Apart from the traditional interaction methods on the network
visualization (node selection, drag&drop, etc.), the OnionGraph
interface provides users two extra controllers to interact with
the OnionGraph visualization. First, the abstraction control panel
as shown in Fig. 1(b). After users select the interested part of
the network, they can specify a new abstraction profile in the
control panel, including setting the abstraction level, selecting
the node attributes and turning on/off several switches of the
abstraction profile (e.g., directed, weighted and fuzzy versions
of RRE/SSE). The selected network is processed after clicking the
‘‘abstract’’ button, and finally shown as the finer/coarser-grained
visual abstraction. In another usage, users can double-click on
the selected nodes to expand/collapse to the lower/upper level of
abstraction. Before the abstraction, users can plug in node/edge

attribute filters as in Fig. 1(c). These filters work in a global
manner and generate the input for the OnionGraph abstraction.

Second, through the pop-up menu of the OnionGraph inter-
face, visual parameters can be configured, such as the layout
algorithm, the node/link visual encodings. Notably, OnionGraph
allows a neighborhood charting mode. As shown in the left col-
umn of Fig. 1(a), each node group abstracted by RRE is drawn
by a chart instead of the onion metaphor. These charts illustrate
the distribution of attribute values in the node’s neighborhood.
The right part of the OnionGraph interface shows network details
upon the visualization and user interaction. The top-right panel
(Fig. 1(d)) displays the node legend indicating the icon/color as-
signed to each node group. The center-right panel (Fig. 1(e)) dis-
plays the list of nodes currently selected in the main view. Upon
choosing one node in the list, the node attributes are displayed
in a key–value table in the bottom-right panel (Fig. 1(f)).

6.3. Network layout

We design two kinds of layouts for OnionGraph. The first
is a grid-based layout improved from PivotGraph (Wattenberg,
2006). The initial PivotGraph layout explicitly selects two node
attributes and places each node by its attribute values. On each
OnionGraph view, there can be more than one abstraction pro-
files, each managing part of the network. Applying two global
node attributes may not meet the nature of all abstraction pro-
files. In our improved algorithm, we pick only one global at-
tribute, i.e., the node type, which is mapped to the X axis of the
layout. After that, each group of nodes with the same abstraction
profile selects their own second node attribute, which is mapped
to the Y axis. An example result is shown in Fig. 1(b). This
grid-based layout works for most OnionGraph settings, but does
not guarantee an efficient use of the space. Therefore, we also
implement the force-directed layout which optimizes the space
utilization and highlights the network topology.

7. Case study

7.1. Academic network

In the first case study, we apply OnionGraph to analyze the
academic network of the visualization community. The data set
was extracted from ArnetMiner (Tang et al., 2008), which includes
scientific papers at nine major visualization conferences and jour-
nals (SciVis, InfoVis, VAST, TVCG, etc.). Each paper entry in the
database has multiple attributes: title, authors, publication venue,
date, citations, keywords, abstract, etc. We built a multivariate
bibliographic network with three node types: 11049 authors,
9557 papers and nine venues. Five types of links are identified:
the co-authorship among authors, the citation between papers,
the author-paper affiliation, the publication of a paper in a venue,
and the presentation of an author in a venue. Apart from the
existing data fields, more node attributes are derived by analytics:
the papers are classified into 10 topics using LDA (Blei et al., 2003)
on their textual content; each author is computed an h-index
from his paper citations in the community.

We invited a senior visualization researcher to use the Onion-
Graph tool to explore the academic network and gain insights.
Initially, he was provided with the default overview in the het-
erogeneous abstraction level, as shown in Fig. 9(a). He proceeded
to expand the venue group by venue name in the SA abstraction
level and obtained Fig. 9(b). The layout was changed to the grid-
based one for clarity. The venues with the highest number of
papers are CG&A and CGF (the right column of Fig. 9(b)), which
both publish more than 2000 papers as shown by the edge
labels. The node/edge lightness indicates the uncertainty on the
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Fig. 9. Academic network analysis in the visualization community.

node/edge group. The author and paper group have not been ex-
panded and are drawn in the most opaque color to represent the
largest uncertainty. Meanwhile, the nine venue nodes are fully
expanded and there is no more uncertainty, so their node colors
are in the lowest lightness scale. To continue the analysis, he
needed to decide where and how to explore next. After selecting
the paper node group, OnionGraph pre-computed all the feasible
node attributes for the next SA abstraction. The information gain
by applying each attribute is visually mapped to the selection
panel, as shown in the top-left list of Fig. 9(b). Following the
recommendation of the system, he expanded the paper node into
three sub-groups by their citation counts: low (<10), medium
(10 ∼ 100) and high-citation (>100). In the same way, the
author group was expanded by the number of paper published.
The OnionGraph view becomes Fig. 9(c). He had switched the
mapping of link thickness to the average number of links in a
link group, aka the probability of each paper published in a venue.
This measure is more relevant to the academic performance. From
Fig. 9(c), he found through interactions that though CG&A and
CGF published a lot of medium and high-citation papers, their
shares in these two groups (CG&A: 0.22, 0.18; CGF: 0.24, 0.21)
are lower than those in the low-citation papers (CG&A: 0.34; CGF:
0.26). In comparison, TVCG (highlighted node in the right column
of Fig. 9(c)) has a dramatic increase in the share of medium
and high-citation papers (0.14, 0.22) than the low-citation papers
(0.1). In the following, he applied a filter to get rid of the author
groups with low publications (≤10 paper) and located 394 most
active people in the visualization community. He further analyzed
their citation performance by a lower-level fuzzy RRE abstraction
and the entropy-based navigation. These active authors were
automatically classified into four sub-groups according to their
publication numbers in different citation groups, as shown in
Fig. 1(a). The onion metaphor on the author nodes was switched
to the neighborhood charts to illustrate their distribution pat-
terns. The sub-group with the largest author icon indicates 309
active authors whose average publication includes a few low
and medium-citation papers (7.4, 6.9) and almost only one high-
citation paper. The second largest group contains 75 authors with
more low, medium and high-citation papers (17.7, 16.5, 2.5 on
average). The next group (focused node in Fig. 1(a)) probably
indicates seven long-standing fellows in the community, who
published 40.7 low, 47.6 medium and 5 high-citation papers on
average. Interestingly, there is another small group (3 authors)
who published 74 papers on average, but only 0.3 of them are
high-citation papers.

7.2. Brain network

In another case, we study the human brain network created
by multimodal Magnetic Resonance Imaging (MRI) (Gray et al.,

2012), also known as the human connectome. The data set con-
tains the brain network of 113 people, each consisting of 70
cortical regions as nodes and the fiber connections between these
regions as links. Each link is measured with a fiber strength, and
the brain network becomes a undirected, weighted graph. The
multivariate nature of the network comes from the demographics
of each people, including age, gender, the intelligence level by
full-scale IQ (FSIQ), and the degree of personality traits (Open-
ness, Extraversion, etc.). We classify these numerical measures
into categories, e.g., the raw FSIQ is mapped into four intellectual
grades.

An example of the 70-region connectome is shown in
Fig. 10(a). Over all the 113 brain networks, the number of con-
nections in each network ranges from 800 to 1200, forming
very dense graphs. To adapt to this nature, we apply the Onion-
Graph tool with the attribute-based abstraction, edge statistics
visualization, but do not use the topology analysis by SSE/RRE.

Consider an investigator attempting to analyze the correlation
between people’s connectome and their demographics such as
FSIQ. He starts from aggregating all the 113 brain networks by
the node region index, as shown in Fig. 10(b). This abstraction
is similar to the single brain network, except for the higher
node degree and the larger link density. Mapping the number
of original link into the edge color lightness reveals an overall
pattern that quite a lot connections are shared by most people, as
shown in Fig. 10(c). Almost a half of links are shared by at least
50 people in the data set. The investigator further compares brain
networks of different FSIQ categories by the expansion opera-
tion. The comparative graphs with edge color lightness showing
the average fiber strength is illustrated in Fig. 11. Initially, it is
clear that the connectome of different FSIQ scales are almost
the same, even considering the fiber strength. A further analysis
with edge statistics filter discovers more interesting findings.
The investigator first applies filters to only leave the popular
connections shared by more than a half of people in each group,
and again he notices no significant difference among the different
FSIQ groups. However, when he reverts the filter to only leave
the bottom 25% connections that are less frequently shared by
individuals, clear patterns relating to the ordinal characteristics of
the FSIQ group are identified. As shown in Fig. 12, the lower the
FSIQ (talented→super→high→average), the stronger fiber con-
nections that are shared by only a minority group of people. This
may indicate the negative impact of minority fiber connections in
the brain network to the human intelligence.

7.3. Security network

The security Host-User-Application (HUA) network is gener-
ated in a typical lab setting. There are four basic node types: H
node denotes the host, which is further partitioned into internal
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Fig. 10. Brain network visualizations with nodes representing cortical regions and links indicating fiber connections. The node layout is using the central of each
brain region in the top-down view, i.e. (X, Y) out of the 3D coordinate: (a) The connectome of one people, the node color shows the node degree in the graph
and the node label indicates its brain region index (a full region list is given in the left); (b) The aggregated connectome of 113 people in our data set, nodes are
grouped by the region index; (c) Visually map the number of original link in each link aggregation the color lightness scale.

Fig. 11. The comparative brain network view of different FSIQ categories. Link color indicates the average fiber strength. The numbers in parentheses (e.g., average(28))
indicate the number of subjects in each group.

hosts in the Intranet and external domains in the Internet. U
node denotes the user connectivity (usr). A node denotes the
application connectivity (app).

We recruited a network administrator to analyze his own lab
traces with OnionGraph. He started with the typical HUA network

in Fig. 13(a). From the graph, he found that there were 128 users
logged on 601 internal hosts running 298 unique applications,
which connected either internal hosts or 2802 external domains.
He had a few interesting observations when moving from the
initial heterogeneous abstraction to the RRE abstraction on each
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Fig. 12. The filtered view that only compares the bottom connections shared by less than 25% people in each FSIQ group.

Fig. 13. HUA communication network visual analytics.

node type. First, the app nodes were split into five sub-groups,
as shown in Fig. 13(b) displayed by the neighborhood charts: (1)
the majority of apps (217) connected to only internal hosts by
users (focused node in the graph); (2) 6 apps connected to only
external domains by users; (3) 69 apps connected to both internal
hosts and external domains by users; (4) 5 apps did not make

network connections; and (5) one app run by an unknown user
talked to a few internal hosts. Type-1 apps contain predominantly
scientific computing programs while Type-2 and Type-3 apps
have significantly more generic network applications such as ssh,
firefox, ftp, etc. In particular, the Type-5 node containing only
one app (wireshark) is clearly suspicious, possibly leveraged by a
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Fig. A.14. The approximation error rate using the unrestricted weak composition. Darker color indicates a larger error rate.

malicious user to sniff packets on the network. Second, the user
node had been divided into two groups (Fig. 13(c)): (1) 127 users
that had run apps to connect to other computers; and (2) the
only user who never ran apps. The Type-1 users are primarily
enterprise users who are allowed to run scientific programs. The
Type-2 user is the system administrator. It is clear that normal
users and privileged users have distinguished activity patterns.

8. Conclusion

OnionGraph is a visual analysis framework for the exploration
of heterogeneous multivariate networks. It is realized by scalable
algorithms creating attribute-based and various structural equiv-
alence network partitions. By combining semantic and topological
information for a hierarchical abstraction, OnionGraph enables
the level-of-detail viewing of large multivariate networks. The
navigation and filtering interactions in complement to each other
are shown to be effective in customizing the OnionGraph anal-
ysis process. The evaluation result in case studies demonstrates
that OnionGraph is useful in many multivariate network anal-
ysis scenarios where the task is exploratory and involves both
attribute-centric and structural problem solving.
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Appendix A. Approximation of the S-restricted weak compo-
sition problem

After a full expansion of the group node πi in the graph
abstraction C , each possible connection case corresponds to mul-
tiple S-restricted weak compositions of number Mj(j = 1, . . . , d)
and a sample graph out of πi. We focus on the composition of M1
as an example, which is defined by (A.1). The restriction in (A.2)
describes the constraint by the size of the group node in the other
endpoint.∑
j=1,...,N

rj1 = M1 (A.1)

rj1 ∈ S = {0, 1, . . . ,N1}, ∀j = 1, . . . ,N (A.2)

Then the number of cases is given by the extended polynomial
coefficient:

[xM1 ](
∑

a=0,1,...,N1

xa)N

According to Eger (2013), when the restriction is part of
{0, 1, . . . ,N1}, the extended polynomial coefficient can be com-
puted by

#Case_by_(M1,N1)_restricted =∑
j=0,1,...,N

(−1)j
(
N
j

)(
M1 + N − (N1 + 1)j − 1

N − 1

)
(A.3)

In the worst case, this needs O(N2) time to calculate. We then
look at the unrestricted version, motivated by the assumption
that rj1 > N1 happens in rare cases. The unrestricted weak
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composition leads to the number of cases

#Case_by_(M1,N1)_unrestricted =

(
M1 + N − 1

N − 1

)
(A.4)

To validate our assumption, we conducted numerical simulations
to compute the error rate (denoted by ρ) of using unrestricted
calculation to approximate the restricted number:

ρ =
#Case_by_(M1,N1)_unrestricted − #Case_by_(M1,N1)_restricted

#Case_by_(M1,N1)_restricted

(A.5)

Results in Fig. A.14 show that the approximation only leads to a
significant error when N (the size of the node group to expand)
is small and M1 (the size of the connecting group edge) is much
larger than N1 (the size of the node group in the other endpoint).
By looking at the data set, we confirm that such cases happen
extremely rarely.

Appendix B. Supplementary data

Supplementary material related to this article can be found
online at https://doi.org/10.1016/j.visinf.2020.01.002.
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