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Abstract—Managing large-scale networks involving users and
applications is challenging due to the complexity and dynamic
nature of the heterogeneous graphs. How to quickly identify
the meaningful changes and hidden anomalous activities in the
spatiotemporally dynamic network graphs is essential in many
aspects of network management, such as security, performance
and troubleshooting. In this paper, we explore the viability
and efficacy of a novel graph differential anomaly visualization
(DAV) model in the area of network management. Our approach
combines algorithmic graph analysis methods and visualization
technologies by taking advantages from both computer and
human intelligence. We focus on DAV at various levels, i.e., nodes,
links and communities. Specifically, a novel community-based
DAV scheme is proposed that can help understand the managed
networks with a right balance of granularity and complexity.
More importantly, the community-based DAV algorithm is less
susceptible to network dynamics and high churn. The developed
visual analytic tool can not only detect but more importantly find
the root causes of anomalies in a time efficient manner.

I. INTRODUCTION

Managing large-scale enterprise networks is hard due to the
complexity and dynamics of the network activities. Particu-
larly, the context of connections, i.e., the users (who) and
applications (what) that are responsible, is more difficult to
manage than simply where (address/port). With the trend of
moving computation and data into the cloud, the traditional
sense of physical location of hosts becomes less precise in
describing what is going on in the networks. Instead, users,
applications and data are receiving increasing attention from
the perspective of network management [1]–[3].

Effective network management requires network operators
and managers to understand not only what is happening on
the network but what are the abnormal changes as well.
However, the challenge brought by the user and application
activities makes the network more complicated and dynamic as
network graphs are constantly changing. Being able to quickly
understand and identify what the important changes are can
have a significant impact on many aspects of network man-
agement. For example, for security management, anomalous
user or application behaviors could indicate intrusions and
attacks. In performance management, anomalous changes of
routing paths or traffic patterns may indicate degraded services
and utilization. For fault management, the difference between
two snapshot network graphs could help troubleshooting con-

nectivity problems, e.g., application A should have (but not)
contacted a specific server S at time t.

While techniques in data mining and machine learning
can help to some degree (despite high false positives), these
approaches alone are less effective in network management
[4], [5]. Visualization, on the other hand, can be useful for
network managers to quickly overview the managed network
(situation awareness) [6], but is only useful if the investigator
knows exactly what to look for.

In this paper, we explore the feasibility and efficacy of
a smarter network management scheme by combining both
algorithmic data analysis methods and interactive visual data
exploration. Specifically, we developed a visual analytic tool
based on a technique named graph differential anomaly visual-
ization (DAV). In addition to magnitude-based anomalies (e.g.,
massive port scans and DoS attacks), which can be relatively
easily picked up by traditional intrusion detection system
(IDS), we focus on more general term of anomalies (e.g.,
users and applications may not necessarily incur lots of traffic
but slightly change their connection behaviors perhaps due to
malicious intention or misconfiguration). Essentially, we are
looking at a harder problem that given only snapshot of time-
series network graphs without any priori knowledge of good
or bad, can we detect abnormal changes and the underlying
causes? The key challenge is therefore how to effectively
visualize the dynamics and similarity (or conversely difference)
among the heterogeneous network graphs consisting of hosts,
users, and applications. The ability to extract the meaningful
changes from otherwise dynamic and noisy network data and
present them in a visually appealing manner that can provide
insight to network management is non-trivial.

The contribution of the paper consists of a visual analysis
framework that utilizes the differential anomaly visualization
(DAV), which is based on the evolution of network graphs
ranging from the details of nodes/edges to the abstraction of
communities. While analyzing the overall network properties
might be too coarse to be useful for network management,
a novel community-based DAV scheme is proposed that can
help understand the managed networks with a right balance of
granularity and complexity. More importantly, the community-
based DAV algorithm is more tolerant to the high dynamics of
network by treating communities rather than individual nodes
or edges. In addition, a novel link anomaly detection and978-1-4673-0269-2/12/$31.00 c© 2012 IEEE



(a) Complete view: Blue: appeared only in the first graph; Red:
appeared only in the second graph; Purple (red+blue): appeared in
both graphs.

(b) Filtered view: shows nodes/edges (blue) that disappeared from time t to t′

relative to more stable nodes (purple).

Fig. 1: Differential visualization of HUA graphs at the node/edge level.

visualization algorithm is also proposed that has a potential
impact on research community of network operation and
management. While security management is the focus of
this study, the proposed anomaly analytic methodologies has
potential applications to other important aspects of network
operations and management such as performance management
and fault management.

II. RELATED WORK

In areas of network security management, intrusion
and anomaly detection [7] can be roughly categorized as
signature-based, statistical/mining-based, and visual-based.
While signature-based schemes have the advantage of low
false positives, signatures require well defined patterns in ad-
vance making the detection of zero-day exploits impossible as
well as less effective for encrypted activities or self-modifying
worms. Machine learning based anomaly detection is promis-
ing since pre-defined signatures are not required. However,
data mining and machine learning technologies alone are not
enough because there is lack of attack-free clean training
data [4] and there are certain patterns or knowledge that
can be missed by traditional automatic data mining methods
[5]. Furthermore, it is hard to bridge the gap between the
data mining results and their operational interpretation (e.g.,
if an IDS gives alarms, one needs to know why and what
the alarms mean?). How to effectively analyze the causes of
those anomalies is the key for successful and time efficient
troubleshooting and diagnosing of network problems.

Visualization-based anomaly detections require human in-
teraction and domain knowledge. While visualization can be
a promising approach to find and understand the root cause
of various network abnormalities, out of the few existing
visualization tools [8]–[12], most rely on either packet-level
or flow-level information. These visualizations often fall short
in enterprise settings where users and applications are more
important from a security policy perspective than the particular
host IP and/or port [1], [2]. To understand and troubleshoot
dynamic, large-scale enterprise networks that involve users

and applications with unknown anomalies, our work aims
at bringing both computer and human intelligence that can
effectively analyze the causes for hard-to-detect anomalies
which are essential in network security, performance and fault
management.

Complex systems can often be represented as network
graphs. There have been research communities focusing on
graph mining [13], [14], in which community detection or
clustering [15], [16] algorithms and link prediction algorithms
[17], [18] can be useful in understanding the networks. How-
ever, most works in link prediction are only interested in
predicting whether a pair of nodes that are previously not
connected will ever be connected in the future. Therefore,
link predictions do not focus on the task of link anomalies
[19], [20] and do not address more dynamic anomaly is-
sues, e.g., whether a previously connected link will become
disconnected, or whether and when links will have “on/off”
behavior. The visual analysis framework in this work allows
easy integration of any link anomaly detection algorithms,
which is an interesting yet challenging topic that can have
great potential in network management.

This work extends our earlier work ENAVis [3], [21],
which primarily focused on the visualization and exploration
aspect of network management data involving hosts, users
and applications. This paper focuses on dynamics, particu-
larly high churn (user/app nodes come and go). Measuring
the differences at node and edge level will produce lots of
fluctuation. We argue the view from the community level is
less susceptible to network dynamics. In particular, this paper
presents a novel community-evolution-based graph differential
anomaly visualization (DAV), which is more tolerant to the
high dynamics typically involved in users and applications. In
addition, the proposed link anomaly visualization is another
interesting topic that may, in our hope, invoke discussions with
other researchers in network management area.



Fig. 2: Screenshot of link anomaly visualization. Filtering options on the right panel allow users to adjust anomaly threshold
and range of graphs under investigation.
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Fig. 3: Example of link anomaly visualization: three condor-
related applications and the condor users should have run on
a host 10.0.154.48 but did not.

III. DIFFERENTIAL ANOMALY VISUALIZATION ON NODES
AND EDGES

Understanding the spatio-temporal differences (or con-
versely similarities) among network snapshot graphs is usually
the first important step to detect and analyze network abnor-
malities. In this section, we focus on the differential anomaly
visualization (DAV) in detail of nodes and edges and link
anomaly visualization. In Section IV, we will study DAV in
terms of evolution of graph community structures.

univ

university
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Fig. 4: Example of link anomaly visualization of a HUA graph
showing both two types of anomaly links.

A. Data collection and graph construction

Based on the observation that only the end hosts can offer
maximum visibility of the user and application activities, data
collection agents [3] have been deployed at the university
campus that includes a mixture of faculty/students’ desktop
computers, machines from computer labs and scientific com-
puting pools (e.g., condor [22]). The data gathering component
of the Linux version of the agent utilizes commonly available



system tools such as netstat and ps in order to take
advantage of administrator familiarity, development easiness
and robustness. The several hundred nodes we monitor are
maintained by a simple up2date script for install and health
checking. The primary purpose of the agents is to collect
the local context information, i.e., which users running what
applications associated with each network connection. The
context graph data in GraphML [23] format is then fed into
the visualization tool.

B. DAV on nodes and edges

To analyze the dynamic network graphs, one can focus
on the overall graph properties. While this may be a useful
starting point, many times analyzing graph property changes
is too coarse to be of any particular usefulness for network
administrators, who usually want to find out what exactly goes
wrong. For example, two networks can have exactly the same
degree distribution but are totally different. On the other hand,
one can analyze the exact graph changes in terms of individual
nodes and edges, which is similar to graph edit distance [24].
Our tool incorporates information visualization techniques that
allow investigators to explore the data in intuitive graph views
with the changes among snapshots highlighted in appropriate
color codings.

Figure 1a shows DAV on HUA snapshot graphs. The tool
allows zoom-in/out function on the graphs for both overview
and details. Options are also available to allow filtering. For
example, Figure 1b shows a combination of old nodes/edges
(blue) with invariant nodes only (purple). It clearly shows
all nodes/links that disappear from the previous snapshot
graph. This visual analysis can be very helpful for human
investigators to gain a quick overview on temporal changes.
For example, comparing a healthy network at time t with a
faulty or compromised network at time t′ can reveal insights
on possible reasons causing the problem.

C. Link Anomaly Visualization

Figure 2 shows a screenshot of link anomaly visualization.
Different threshold can be selected on the right filtering-option
panel. If there are links that should appear but did not appear
on a specific snapshot graph, red colors are used to denote
the anomalous edges (Type-I). On the other hand, if there are
links that should not appear but actually appeared at a specific
time, then blue colors are used to denote the anomalous links
(Type-II).

1) Link Anomaly Detection: A proof-of-concept algorithm
for detecting the above Type-I and Type-II link anomalies is
defined as follows:

P (Li) =

∑N
t=1 w(t) · d∑N
t=1 w(t)

, dt,i ∈ {0, 1} (1)

w(t) = e−λ(1−
t
N ) (2)

The appearance probability functions can be either weighted
or unweighted. The weighted form (Equation 1) takes a non-
linear time weighting function w(t) (Equation 2), i.e., the

appearance of links at later snapshot graphs (or in other words
closer to the time of investigation interest) should have higher
weights over the earlier graphs. Both Equations 1 and 2 are
normalized between 0 and 1, where P (Li) represents the
probability of ith link; N denotes the number of snapshot
graphs; and dt,i takes a binary form to denote whether ith
link appears or not at time t.

2) Examples: Figure 3 shows one user (condor) and three
condor-related applications (condor shadow, condor starter
and condor startd) that should have run (above 90% prob-
ability) on the host 10.0.154.49 but did not appear in one
snapshot graph, indicating potential problems with condor dis-
patcher and services. Figure 4 demonstrates both Type-I (red)
and Type-II (blue) anonymous links. Users interact with the
application sshd, which contacts a suite of hosts with different
probabilities. In this specific example, dogbert.university.edu
has a very low probability to appear but actually appeared
on that day while directory.univ.edu has a high probability to
appear but did not. These link anomaly visualization examples
have security and fault implications. While the proposed link
anomaly detection algorithm (Equation 1) is relatively simple
for illustration purpose, the link anomaly visual analytic frame-
work can be extended to future sophisticated link anomaly
detection algorithms.

IV. DIFFERENTIAL ANOMALY VISUALIZATION VIA
COMMUNITY EVOLUTION

While the graph differential anomaly visualization discussed
in Section III gives the maximum details in terms of which
hosts, users and applications, we are further interested in ana-
lyzing spatio-temporal anomalies by taking a right balance of
granularity and complexity. As stated earlier, the measurement
of overall graph properties such as degree distributions is too
coarse to be useful. On the other hand, analyzing every single
change happening on the node/edge levels can be of too much
details and obfuscating, thus less effective in face of larger
networks with higher dynamics and churn rates.

We develop a visual analytics function based on community
membership changes. One can view this approach as an
intermediate similarity metric between the levels of graph
properties (coarse) and nodes/edges (fine). The immediate
advantage of comparing networks at the community level is
the attenuation of noise from individual node/edge changes.
One key challenge behind anomaly analysis is to ask what
changes are normal while other changes are abnormal, and
what are the reasons behind these anomalies. In the scheme
of community-based graph DAV, no matter how dynamic
the nodes are (come and go), if nodes consistently belong
to the same community (or consistently belong to different
communities), it is considered normal change; otherwise, it is
considered abnormal change.

A. Concept Illustration

Intuitively, if a user suddenly uses a different set of appli-
cations, appears on a different set of hosts, or contacts many
different target machines causing his membership change with
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Fig. 5: Illustration of graph differential anomaly visualization
through community membership changes.

respect to other users, then the behavior of that user is at least
suspicious and needs the administrator’s attention for further
investigation.

Figure 5 illustrates the concept of community-based graph
differential anomaly visualization: users may switch their
memberships in a temporal manner. This example uses a user
similarity graph, in which edges suggest neighboring users
share at least one destination host. The distance between two
snapshot graphs increases as some user-nodes change their
cluster memberships from Finance/HR and Sales departments
to an unknown community over time. Further investigation re-
veals that those users (U4, U8 and U9) all contacted cc3.irc.ru,
which is one of the command and control (C&C) channels
controlled by certain botmasters. Therefore, these users could
have been compromised and become a part of a larger botnet.

Algorithm 1 Compute normalized differences between two
sets of communities
Require: C1, C2

Ensure: distance between C1 and C2

N := C1 ∪ C2

for each pair of nodes (ni, nj) ∈ N do
if ni & nj belong to the same cluster ∈ C1 then

if ni & nj belong to the same cluster ∈ C2 then
SS := SS + 1

else
SD := SD + 1

end if
else

if ni & nj belong to the same cluster ∈ C2 then
DS := DS + 1

else
DD := DD + 1

end if
end if

end for
return 1− (SS +DD)/(SS + SD +DD +DS)

B. Algorithm

We use a simple yet effective algorithm to measure the
changes of communities. Given any two sets of communities

Anomaly caused by a spike of

community distance changes

Fig. 6: Community-based graph differential anomaly visual-
ization from Algorithm 1. Anomalies are suggested by the
spikes of graph distances in terms of normalized percentage
of community changes.

or clusters C1 and C2, which do not have to contain exactly
the same number of communities, the distance between com-
munities is based on an idea derived from the Rand Index
[25], i.e., by taking the ratio of how many nodes consistently
belonging (or not belonging) to the same community over
those belonging to the same community in C1 but end up
in different community in C2 or vice verse. The higher the
ratio, the smaller the distance, as shown in Algorithm 1.

Once we compute a distance matrix over all pairs of
communities, a multidimensional scaling (MDS) [26] view
can be mapped in an efficient way that allows the human
investigator to spot easily any changes (or anomalies) over
the entire data range. With the help from the intelligence
provided by the visual analytic tool, the administrator’s domain
knowledge can then play an important role when drilling down
the suggested anomaly to the root cause, i.e., what actually
causes these changes, by interacting with the data through
user-friendly clicks and queries.

C. Case Study

Suppose an administrator wants to explore his log data
and to see if there are any suspicious user behaviors that
possibly violate acceptable use policy (AUP). He opens the
graph differential anomaly visualization tool, and sets the
granularity of time window as one day and thirty daily network
activity snapshot graphs are generated automatically by the
visualization tool. Since the administrator only wants to see
user behaviors, he chooses to generate user similarity graphs.
For example, two user nodes are connected only if they share
at least one common application. With a click of menu option,
various graph community detection algorithms can be applied.
In this case, the Walktrap [16] algorithm is selected to compute
the optimal communities. The Walktrap is especially appealing
because the administrator does not need to specify the exact
number of communities in advance.

Figure 6 shows the community distance changes (computed
by Algorithm 1) over the one month’s period. Distances are
in proportion to community membership changes between
consecutive snapshot graphs. Therefore, the spikes in the
distance indicate potential anomalies. In this example, graphs
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Fig. 7: An alternative MDS overview reflects the evolution
of community memberships of snapshot graphs. Ci represents
the set of communities of the ith graph. Nodes that are further
away indicate anomalous user behaviors.

from day 8 to day 9 and from day 9 to day 10 have the highest
percentages of community membership changes. As a useful
compliment, a 2D MDS view (Figure 7) is generated in another
window to visually analyze the overall community evolution.
In this view, each node represents one daily snapshot graph
containing a set of communities. The distances between these
nodes reflect the similarity levels among those daily snap-
shot graphs based on the metric of community membership
changes. The larger the distance and further away from the
rest of graphs, the more anomalous the network graphs are.
Figure 7 intuitively matches Figure 6 with significantly larger
distances among C8, C9 and C10. Interestingly, C10, despite
its large distance from the immediately previous graph, returns
to a state closer to many of previous graphs, i.e., C0 − C5.

A natural question following the above observation is who
is responsible for those changes. The interactive exploration
capability of the tool allows the investigator to visually explore
the two graph communities (Figure 8 and Figure 9) that
correspond to the time of change (day 8 to day 9). In the
previous snapshot graph (Figure 8), one enterprise user pbui
belongs to the community largely formed by graduate students
who run a similar set of Linux desktop applications that make
network connections. The user pbui shares one application
(python) with one of his neighboring nodes (zmusgrav), who
nevertheless belongs to another community formed largely by
condor users. Interestingly, in the following snapshot graph
(Figure 9), the same user pbui changes his community mem-
bership to the condor community. The querying mechanism
is enabled via multiple node selections by holding down
Ctrl key and right-clicking nodes for comparing overlapping
attributes (shared application in this case). The query suggests
that the new application, i.e., condor shadow used by the user
pbui, causes the membership changes.

While the data in the above example are directly from users
consisting of mostly students and faculty and may not contain
malicious attacks, the methodology of the proposed algorithms
and visualization framework allows the detection of potential
malicious user behaviors possible. Graph differential anomaly
visualization based on community membership changes can

Two neighboring users
belong to different clusters

Fig. 8: Community visualization at time 8. Specifically, en-
terprise user pbui belongs to the graduate student community
(gray) while one of his neighbors zmusgrav belongs to condor
community (pink). Popup window returns query result show-
ing the two users share one application python.

The same user changes
cluster membership

Fig. 9: Community visualization at time 9. The enterprise
user pbui migrates from the graduate student community to
the condor community (gray) by using a new application
condor shadow.

serve as a promising alternative in analyzing hard-to-detect
anomalous network activities that worth further investigation.

V. CONCLUSION

Managing large-scale complex networks is challenging due
to the dynamics of increasing involvement of users and ap-
plications in the enterprise network activities making tradi-
tional monitoring and analysis mechanism less effective. In
this study, we developed a novel visual analytic tool that
combines both human and computer intelligence for smarter
network operations and management. In particular, the graph
differential anomaly visualization framework, which is based
on both individual nodes/links and the evolution of community
structures, can detect and find the root causes of anomalies in
dynamic graphs. The proposed graph anomaly visualization
algorithm has direction applications in network security man-
agement with potential usefulness in other network operation
and management areas.
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