Intelligent Network Management Using Graph Differential Anomaly Visualization

Qi Liao

Network Management

Security Management

Needs of Network Manager

- Health check
- Situation awareness
- Accountability / Forensics
- Troubleshoot
- Challenges
 - Huge amount of data
 - Complexity
 - Dynamics
 - Gap: daily monitoring ←→ operational interpretation

Network Anomaly

- Network anomaly is useful in many areas of network management.
- Some examples of "easy" anomalies
 - Readings from sensor network
 - DoS attack
 - Port scanning
 - Packet headers match a pattern
- □ More *general* (harder) anomalies
 - Stealthy

Less traffic

Given only a time-series of network graphs, can we detect abnormal changes and find the underlying causes?

Graph Diff. Anomaly Visualization

Department of Computer Science Ce Michigan University

Central

Differential Anomaly Visualization

- Graph differential anomaly visualization (DAV) framework
 - Whole graphs
 - Nodes and edges
 - Communities (subgraphs)
 - □ More tolerant to the *dynamics* of network.
- Effectively visualizes the dynamics and abnormal changes among the heterogeneous, time-series network graphs.

Monitoring Where, Who, and What

- Need finer granularity than raw network connectivity
- Two important enterprise network components
 - Who (users) are responsible
 - What (applications) are running on the network.
- CONTENT vs. CONTEXT
 - Associated with each network connection
 - Users, applications, parameters, file accesses, etc.

Local Context

Traditional view

Most existing tools show this view

Web traffic in, web traffic out, DNS, Active Directory

Network flows – Who and what?

Data Collection Agent

- Gathers context from local hosts
 - who (users), what (applications), when (time), where (hosts)
- Built-in system tools (free and robust)

Easy to deploy (no change to existing systems)

Lightweight

- CPU< 2%
- Bandwidth (1000 hosts: 240 Kbps = 0.2% of 100Mbps)
- Disk (1GB /host/year)

Bipartite graphs

The general HUA connectivity graphs can be separated into (multi-)bipartite graphs.

host:iss-node030.cse.nd.edu_L host:iss-node032.cse.nd.edu_L host:cclweb03.cse.nd.edu L host:cclweb00.cse.nd.edu L host:129.74.153.243 L host:cvrl-c0-15.cse.nd.edu L host:cclscratch00.cse.nd.edu L host:cclws00.cse.nd.edu L host:classical.cselab.nd.edu L host:chamber.cselab.nd.edu L host:thermometer.cse.nd.edu L host:cclsun12.cse.nd.edu L host:cvrl-c0-1.cse.nd.edu L host:129.74.154.230 L host:cvrl-c0-2.cse.nd.edu L host:sc0-03.cse.nd.edu L host:sc0-04.cse.nd.edu L host:cse-ibm-02.cse.nd.edu L

src host

4/17/2012

Department of Computer Science C Michigan University

Central

dst

host

K-partite graphs

Quadripartite graph

Hosts

domain:12.130.81.0 R domain:123.103.101.0 R domain:123.103.102.0 R domain:123.103.12.0 R host:cobalt.helios.nd.edu R domain:124.163.255.0 R host:stats.hpcc.nd.edu R domain:124.238.251.0 R domain:66.254.232.0_R domain:125.16.223.0 R host:opteron.hpcc.nd.edu R domain:128.105.143.0 R domain:128.105.175.0 R host:sc0-04.cse.nd.edu R domain:128.105.7.0 R host:sc0-10.cse.nd.edu R domain:128.183.240.0 R host:directory.nd.edu_R domain:128.211.143.0 R host:breathed.helios.nd.edu R domain:128.211.157.0 R domain:128.211.158.0 R domain:129.186.18.0 R

domain:129.215.170.0 R

Applications

app:MATLAB app:acroread app:amandad app:bash app:firefox-bin app:bonobo-activation-server app:java app:catalog_serve app:gaim app:gzip

> app:ssh app:gweather-applet app:chirp_server app:clock-applet app:condor app:python app:httpd app:parrot app:sendmail app:condor_negoti app:condor_preen

app:condor_preen app:condor_q app:condor_schedd app:condor_shadow

Users

usr:sliu5 usr:26 usr:27 usr:maliasga usr:gmadey usr:33 usr:traeder usr:cmoretti usr:ccl usr:malbrec2 usr:ychen12 usr:32 usr:condor usr:dchen usr:dcieslak usr:99 usr:hwang6 usr:kjackele usr:thoens usr:pbui usr:mcrocker usr:mniemier

usr:molson3

usrinvadav

Hosts

host:cclsun09.cse.nd.edu L host:129.74.153.236 L host:jupiter.cse.nd.edu L host:129.74.153.243 L host:vault.cse.nd.edu L host:129.74.154.204 L host:cclws02.cse.nd.edu_L host:129.74.154.253 L host:cclweb03.cse.nd.edu 1 host:bender-wire.cspnd.edu_L host:ccldb.cse.nd.edu L host:saturn.cse.nd.edu L host:cclscratch00.cse.nd.edu_L host:bootleg.cselab.nd.edu_L host:cclscratch01.cse.nd.edu L nost:cclscratch02.cse.nd.edu L host:cclsun00.cse.nd.edu L host:cclsun01.cse.nd.edu L host:cclsun02.cse.nd.edu L host:cclsun03.cse.nd.edu L host:cclsun04.cse.nd.edu L host:cclsun05.cse.nd.edu L host:cclsun06.cse.nd.edu L host:cclsun07.cse.nd.edu L

lnfogain

Critical path

4/17/2012

Department of Computer Science C Michigan University

Central

Similarity Graphs (app)

Visual Analysis for Network Management

Data mining / machine learning

- Automatic
- Algorithmic, analytic methods

Visualization

- Manual
- interactive visual exploration
- Bring in domain knowledge from experienced managers.

Differential Anomaly Visualization

- □ What are the <u>changes</u>?
- □ What are the *variance* and *invariance*?
- How similar (different) from day-to-day network activities?
- □ What <u>changes</u> are *normal / abnormal*?
- How to quantify and visualize the *evolution* of changes?

Hierarchical DAV

(overview + context)

4/17/2012

Graph Diff. Anomaly Visualization

Department of Computer Science Ce Michigan University

Central

Graph Properties

Graph sizes

Cluster coefficients

Graph diameters

Degree distributions

Graph distances

Graph variance scores

4/	1	7	12	20	1	2
	_	-		_	_	

Department of Computer Science Michigan University

Central

Graph Similarity

□ General graph *isomorphism*

A more complex example

Graph distance

- □ *Edit distance*: number of operations required to transform one into the other.
- Graph Edit Distance (GED) [Bunke07] to measure the graphs' similarities.
- □ Maximum common subgraphs (MCS) based:

$$d(g_1, g_2) = 1 - \frac{|mcs(g_1, g_2)|}{max(|g_1|, |g_2|)}$$

□ Graph edit distance (GED) based:

$$d(g_1, g_2) = \frac{|g_1| + |g_2| - 2|mcs(g_1, g_2)|}{|g_1| + |g_2|}$$

Expected Graphs (EG)

Differential visualization

Differential visualization

Link Anomalies

- Not exactly *link prediction* problem.
 - Common neighbors assumption
 - Known nodes only assumption
 - Non-dynamic assumption
- Proof-of-concept
 - Non-linear weighting frequency function

Can take inputs from future link anomaly algorithms

Link Anomalies Visualization


```
4/17/2012
```

Link Anomalies Visualization

Link Anomalies Visualization

Community-based DAV

□ Intermediate similarity metric

Balance of granularity and complexity

Intra-graph clusters visualization

Temporal Community Evolution

Community-based DAV

Graphs changes via *community similarity*

Similar to Rand Index [Rand71]

$$dist(C_1, C_2) = 1 - \frac{SS + DD}{SS + SD + DD + DS}$$

□ Flexibility

Suitability for highly dynamic networks

Nodes *consistently* changes are *normal* belong to the same (or different) communities

Central

Community-based DAV (example)

4/17/2012

Central Michigan University

Communities of a User Similarity Graph

Communities of a User Similarity Graph

Time: 9

Conclusion

- Network (security) management is hard.
 - Large scale, heterogeneity, dynamics, complexity
- Anomaly detection and analysis is important yet challenging.
- We developed a novel hierarchical graph *differential* anomaly visualization (DAV) framework
 - Combines automated graph data mining and manual exploration.
 - At different levels: Graphs, Nodes/Edges, Communities
- Completeness
 - Overview vs. Details-on-demand
 - Exact changes vs. Dynamic churns
 - Detection vs. root causes
- DAV: intelligent, *time-efficient* management alternative.

More info visit http://cps.cmich.edu/liao1q

4/17/2012

Questions

	X
Ele View Statistics Distribution Graph Similarity Importance Measure Clustering About	
System Hosts Users Apps Nodes_Dynamics Nodes_Dynamics (properties) Temporal_Spacial_Fault_View MinCommonSupgraph 0_HH_dg_w_1263099600_done 1_HH_dg_w_1263186000_done ×	
Start Time: 1/10/2010 (Sun) 0:0:0 (1263099600)	
End Time: 1/11/2010 (Mon) 23:59:59 (1263272399) 1/11/2010 VDpdate	
Sampling time 9:00 12:00 15:00 18:00 21:00 0:00 3:00 6:00	
Window (seconds) 300 Snapshots	
System Messages:	
<pre>java.lang.NullPointerException Read C:\LQ\ND\NetBeans\Lockdown\GUI_DATA\graphHT\1_1_20091_17_2010_HUA\HH_dg_w_1263186000.ght. ID: 1_HH_dg_w_1263186000: G=(V,E) directed weighted graph, V =478 E =1556. No cluster. Total graphs read: 2 Inferred START/END time range: Sun Jan 10 00:00:00 EST 2010 Mon Jan 11 00:00:00 EST 2010 (Graph> xml): Wrote GUI_DATA\graphML\0_HH_dg_w_1263099600.xml Prefuse graph created: colorByNodeTypes_animatedView_ID: 0_HH_dg_w_1263099600 clone 1_HH_dg_w_1263186000_clone.xml (Graph> xml): Wrote GUI_DATA\graphML\MinCommonSupgraph 0_HH_dg_w_1263099600_clone 1_HH_dg_w_1263186000_clone.xml Prefuse graph created: colorByNodeTypes_animatedView_ID: MinCommonSupgraph 0_HH_dg_w_1263099600_clone 1_HH_dg_w_1263186000_clone: G=(V,E) directed weighted graph, V =530 E =1740. No cluster. Thread(Plot graph): Total processing time 5 seconds.</pre>	
(Graph> xml): Wrote GUI_DATA\graphML\MinCommonSupgraph 0_HH_dg_w_1263099600_clone 1_HH_dg_w_1263186000_clone.xml Prefuse graph created: colorByNodeTypes_animatedView_ID: MinCommonSupgraph 0_HH_dg_w_1263099600_clone 1_HH_dg_w_1263186000_clone: G=(V,E) directed weighted graph, V =530 E =1740. No cluster. Thread(Plot graph): Total processing time 2 seconds.	Ш
	-
Start Time: 1/10/2010 (Sun) 0:0:0 (1263099600), End Time: 1/11/2010 (Mon) 0:0:0 (1263186000), Current Time: 1/10/2010 (Sun) 0:0:0 (1263099600)	
0 2 4 6 8 10 12 14 15 18 20 22	24